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The genomic revolution and subsequent advances in large-scale genomic and
transcriptomic technologies highlighted hidden genomic treasures. Among them
stand out non-coding small RNAs (sRNAs), shown to play important roles in post-
transcriptional regulation of gene expression in both pro- and eukaryotes. Bacterial
sRNA-encoding genes were initially identified in intergenic regions, but recent evidence
suggest that they can be encoded within other, well-defined, genomic elements. This
notion was strongly supported by data generated by RIL-seq, a RNA-seq-based
methodology we recently developed for deciphering chaperon-dependent sRNA-target
networks in bacteria. Applying RIL-seq to Hfq-bound RNAs in Escherichia coli, we
found that ∼64% of the detected RNA pairs involved known sRNAs, suggesting that
yet unknown sRNAs may be included in the ∼36% remaining pairs. To determine the
latter, we first tested and refined a set of quantitative features derived from RIL-seq
data, which distinguish between Hfq-dependent sRNAs and “other RNAs”. We then
incorporated these features in a machine learning-based algorithm that predicts novel
sRNAs from RIL-seq data, and identified high-scoring candidates encoded in various
genomic regions, mostly intergenic regions and 3′ untranslated regions, but also 5′

untranslated regions and coding sequences. Several candidates were further tested
and verified by northern blot analysis as Hfq-dependent sRNAs. Our study reinforces
the emerging concept that sRNAs are encoded within various genomic elements, and
provides a computational framework for the detection of additional sRNAs in Hfq RIL-
seq data of E. coli grown under different conditions and of other bacteria manifesting
Hfq-mediated sRNA-target interactions.

Keywords: sRNA (small RNA), RIL-seq, prediction, E. coli – Escherichia coli, post-transcriptional regulation, Hfq

INTRODUCTION

Trans-acting small RNAs (sRNAs) have emerged as a major class of post-transcriptional
gene expression regulators in bacteria. These are short RNA molecules, 50–400
nucleotides long, which regulate their targets in trans, usually by incomplete base
pairing with their mRNAs, affecting translation and/or mRNA stability (Wagner and
Romby, 2015; Hör et al., 2020). sRNAs were discovered in many bacteria and were
shown to play regulatory roles in diverse cellular processes, and in particular in the
response to various stress conditions. Often, these RNA regulators are associated with
chaperon proteins, such as Hfq (Vogel and Luisi, 2011) or ProQ (Melamed et al., 2020).
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In many Gram-negative bacteria the protein chaperon Hfq
mediates many of the sRNA-target interactions and stabilizes the
sRNAs (Vogel and Luisi, 2011; De Lay et al., 2013; Updegrove
et al., 2016; Santiago-Frangos and Woodson, 2018). Yet, there
are sRNAs in Escherichia coli for which it was suggested that
their RNA-binding activity is Hfq-independent (Mihailovic et al.,
2018). In the present study, we focus on Hfq-dependent sRNAs
in E. coli.

While the initial discovery of the first sRNA in E. coli, Spot
42, is dated to 1973 (Ikemura and Dahlberg, 1973a,b) and a
few other sRNAs were discovered serendipitously along the
years [e.g., MicF (Mizuno et al., 1984), DsrA (Sledjeski and
Gottesman, 1995), OxyS (Altuvia et al., 1997)], their big burst
occurred following the genomic revolution in the mid-1990s. The
completion of the genome sequencing of E. coli inspired several
systematic computational-experimental expeditions, attempting
to identify additional sRNA-encoding genes based on the genome
information. As all previously known sRNAs were encoded by
genes located between two protein coding genes, the initial
screens were focused at intergenic regions and identified novel
sRNA-encoding genes only in those regions (Argaman et al.,
2001; Rivas et al., 2001; Wassarman et al., 2001; Chen et al., 2002).
Yet, subsequent experimental screens of RNAs bound to Hfq,
carried out in several bacterial species, revealed putative Hfq-
bound sRNAs encoded in various genomic regions, including
coding sequences (CDS) and 5′ and 3′ untranslated regions
(UTR) (Zhang et al., 2003; Chao et al., 2012; Bilusic et al., 2014;
Tree et al., 2014; Huber et al., 2020). These sRNAs may be
either independently transcribed, or processed from mRNAs by
endoribonucleases (Miyakoshi et al., 2015b). When processed
from the mRNA of their hosting gene they often regulate genes
involved in the same pathways as the parent gene and may
generate efficient regulatory circuits [e.g., CpxQ and cpxP, and
GadF and gadE (Chao and Vogel, 2016; Grabowicz et al., 2016;
Melamed et al., 2016)].

The discovery of novel Hfq-bound sRNAs that are encoded
within a variety of genomic elements was enhanced by RIL-
seq (RNA Interaction by Ligation and sequencing), a high-
throughput methodology we recently developed for mapping
direct RNA–RNA interactions mediated by Hfq (Melamed et al.,
2016, 2018). The idea behind RIL-seq is that a sRNA and
a target RNA co-bound to Hfq could be ligated and then
identified by sequencing as chimeric fragments. The major
steps of RIL-seq involve in vivo protein-RNA crosslinking, co-
immunoprecipitation of Hfq and bound RNAs, RNA ligation and
paired-end RNA sequencing. Interacting pairs are identified by
mapping the ends of sequenced fragments to the genome and
identifying chimeric fragments in which the two ends are mapped
to two different genomic locations. Only chimeric fragments
whose abundance exceeds random expectation are kept and
considered as representing RNA interacting pairs (statistically
significant chimeras, hereinafter, S-chimeras). Application of
RIL-seq to E. coli grown to exponential phase, stationary
phase and exponential phase under iron limitation revealed
∼2800 RNA–RNA interactions, ∼64% of which involved well-
established sRNAs and the rest involved RNAs derived from
various genomic entities (Melamed et al., 2016). Interestingly,

in most of the chimeric fragments including known sRNAs, the
sRNA was the second RNA in the chimera (at the 3′ part of the
chimeric RNA). This regarded both class I and class II sRNAs
(Schu et al., 2015). The positioning of the sRNAs as second in
the chimeras is consistent with the known binding mode of many
sRNAs within Hfq, where the uridine-rich 3′ terminus of the
sRNA (hereinafter, U-tract) is bound by Hfq (Otaka et al., 2011;
Sauer and Weichenrieder, 2011; Dimastrogiovanni et al., 2014;
Schu et al., 2015). RIL-seq involves, prior to the ligation of Hfq-
bound RNAs, a step where RNA regions that are not protected
by Hfq or by base pairing are trimmed by riboendonucleases
and treated with polynucleotide kinase, generating 5′P end of
the sRNA. This 5′P end is accessible to the ligase, resulting
in chimeras where the sRNA is the second RNA. In fact,
this finding provided further support to the suggested binding
mode of sRNAs on Hfq (Dimastrogiovanni et al., 2014), by the
identification of a common motif in the second RNAs of RIL-
seq chimeras, comprising a GC-rich sequence followed by a
U tail (Melamed et al., 2016), compatible with a transcription
terminator. In addition, Holmqvist et al. (2016) identified a
similar motif in mRNA 3′ UTR sequences bound by Hfq in
Salmonella. The observation that sRNAs are often second in
their respective chimeric fragments has raised the intriguing
conjecture that the second RNAs in chimeric fragments that do
not contain known sRNAs may be novel sRNAs. Furthermore,
many of the RNAs found at the 3′ part of the chimeric fragments
(second RNAs of the chimeras) were derived from intergenic
regions or from 3′ UTRs, underpinning their potential as novel
sRNAs. Indeed, some of these second RNAs, such as those
embedded in the 3′ UTR of cutC and in the 3′ UTR of cpxP
were identified in independent studies as sRNAs (Guo et al., 2014;
Chao and Vogel, 2016).

In total, RIL-seq data comprised ∼1000 RNA–RNA pairs that
did not include a known sRNA (Melamed et al., 2016), suggesting
that they may include yet unknown sRNAs. To identify novel
sRNAs systematically, we characterized the RNAs in all RIL-seq
chimeras by various features inferred from the data and from
their sequences. The distributions of several of these features,
such as the number of unique interactions that a RNA is involved
in, were found to differ statistically significantly between known
sRNAs and “other RNAs”, reaffirming them as informative
features. Here, we describe and discuss the set of informative
features of sRNAs as well as a predictive algorithm utilizing
them, provide a list of potential novel sRNAs and report the
experimental verification of novel sRNAs encoded in intergenic
regions within operons, in 5′ and 3′ UTRs and within the coding
sequence. Our computational and experimental results support
the expanding concept that there is a reservoir of sRNAs encoded
within a variety of genomic entities and expressed under various
conditions (Adams and Storz, 2020; Adams et al., 2021). The
computational framework that we provide for analysis of Hfq
RIL-seq data can be used to identify novel sRNAs in RIL-seq data
generated for E. coli grown under additional cellular conditions
and in RIL-seq data generated for other bacteria manifesting
Hfq-mediated sRNA-target interactions. It may also inspire the
application of similar algorithms for analysis of large-scale data
generated by equivalent protocols in other contexts.
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MATERIALS AND METHODS

Computational Analysis
Data
We used three data sets of chimeric fragments corresponding
to S-chimeras, obtained in RIL-seq experiments applied to
bacteria grown to exponential phase, to stationary phase and to
exponential phase under iron limitation (Melamed et al., 2016).
The data set of exponential growth phase was obtained from
six biological replicates of the experiment, while the data sets
of the stationary phase and growth under iron limitation were
obtained from three biological replicates in each condition. Each
RNA in the data was annotated as either “known sRNA” or “other
RNA” (Supplementary Table 1). We included in the set of known
sRNAs all RNAs that were annotated as sRNAs prior or in parallel
to RIL-seq publication (Melamed et al., 2016). The latter regard
CpxQ (Chao and Vogel, 2016), SroC (Miyakoshi et al., 2015a)
and 3′ETS-leuZ (Lalaouna et al., 2015). Any RNA that is not a
known sRNA was annotated as “other RNA”. The total numbers
of known sRNAs and “other RNAs” in each group within each of
the three data sets is summarized in Table 1.

Selecting Features Distinguishing sRNAs From
“Other RNAs”
We describe each RNA by features mainly extracted from
RIL-seq data (Supplementary Table 2) and compare their
distributions between the groups of sRNAs and “other RNAs”
by Mann–Whitney U test (with Bonferroni correction for
multiple hypotheses testing). For features that differ statistically
significantly between the two groups we compute the Pearson
correlation coefficient between every pair of features, cluster
the features based on their correlation coefficients, and select
one of the features in a cluster as representative. As the data
corresponding to a RNA in one RIL-seq experiment (e.g.,
exponential phase) may differ from the data corresponding to this
RNA in another RIL-seq experiment (e.g., stationary phase), all
analyses were carried out separately for each data set. We verified
that the selected features were found to statistically significantly
differ between the group of known sRNAs and the group of “other
RNAs” in all data sets. These selected features were used in the
successive analyses.

Predicting the Probability of a RNA to Be a sRNA
The development of the predictive scheme was carried out
separately for each data set. Each RNA in the data was described
by a vector of the selected features. The data set was split in
a ratio of 2:1 into a training set and a test set, respectively,

TABLE 1 | Number of sRNAs and “other RNAs” in the various data sets.

Condition/growth
phase

Number of known
sRNAs

Number of “other
RNAs”

Exponential phase 26 751

Stationary phase 29 1201

Exponential phase
under iron limitation

29 1248

where in each set the ratio of known sRNAs to “other RNAs”
was maintained (Table 1). We applied logistic regression (python
sklearn module) to the training set. The logistic regression
provides weights to the different features (βi) and an intercept
(β0), such that l = β0 +

∑n
i=1 βi · xi, where n is the number of

selected features and xi is the value of feature i. The probability
of a RNA to be a sRNA is then computed as 1/(1 + exp(−l)).
We tested the obtained logistic regression model by applying
it to RNAs in the test set. In practice, we conducted 10,000
iterations of this procedure, and recorded the probabilities a RNA
obtained when it was included in the test set of an iteration. The
final predicted probability of each RNA was computed as the
mean of the predicted probabilities across all the iterations in
which it was included in the test set. The logistic regression was
trained using the default parameters of the sklearn linear_model
LogisticRegression class, i.e., using L2 regularization.

Computation of Feature Contribution
It is common to examine the weights in order to learn on the
relative contributions of the various features to the computed
probability. However, as the values of the different features span
different numeric scales, comparison of the weights per se is not
informative. Instead, we can transform the feature values into
z-scores, and compare the products of weight and the feature
standard deviation:

β0 +

n∑
i=1

βi · xi = β0 +

n∑
i=1

βi · (xi +mi −mi)

=

(
β0 +

n∑
i=1

βi ·mi

)
+

n∑
i=1

βi · (xi −mi)

=

(
β0 +

n∑
i=1

βi ·mi

)
+

n∑
i=1

βi ·
si
si
· (xi −mi)

=

(
β0 +

n∑
i=1

βi ·mi

)
+

n∑
i=1

βi · si · zscore(xi)

where mi and si are the mean and the standard deviation,
respectively, of the RNA’s ith feature values. The equation shows
that transforming the data to z-scores is associated by an
appropriate change of the intercept by the weighted sum of
the mean feature values, and the weights of the features are
represented by the products of the original weight and standard
deviation of each feature, which are comparable. In practice,
we applied this transformation to the average coefficients from
the 10,000 logistic regression iterations we conducted per
growth condition.

Principal Component Analysis (PCA)
Feature vectors of the RNAs were initially scaled with python’s
sklearn preprocessing module using the robust_scale function.
Then, we applied the PCA transformation for the first two
dimensions using sklearn decomposition PCA class.

5′ and 3′ Boundaries of sRNA Transcripts
5′ and 3′ transcript boundaries of the recently published sRNAs
relied on the original papers reporting them (Table 2A). 5′ and
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TABLE 2 | Novel sRNAs.

A. Novel sRNAs predicted based on RIL-seq results and recently reported in published papers

Novel Hosting gene Genomic Genomic Number of Prediction score Comment/
sRNA or operon region position unique

targets
(probability of being a sRNA)a References

Exponential Stationary Iron
limitation

FlgO flgL 3′ UTR 1,140,986→
1,141,063

4 0.073 0.087 0.152 Hör et al. (2020)b

FliX FliC 3′ UTR 2,001,912←
2,002,106

17 0.859 0.272 0.672 Hör et al. (2020)b

GadF gadE 3′ UTR 3,658,992→
3,659,082

24 – 0.684 – Melamed et al.
(2016)

MalH malG 3′ UTR 4,242,531←
4,242,629 or
4,242,531←
4,242,633c

38 0.416 0.468 0.596 Iosub et al. (2020)

MotR motA 5′ UTR 1,977,208←
1,977,300

19 0.562 0.158 0.444 Hör et al. (2020)

NarS-L narK 3′ UTR 1,279,286→
1,279,520

8 0.376 – 0.380 Wang et al. (2020)

NarS-S 1,279,337→
1,279,520

PspH pspG 3′ UTR 4,263,139→
4,263,249

1 0.003 0.002 0.001 Melamed et al.
(2016)

RaiZ raiA 3′ UTR 2,737,381→
2,737,542

29 0.337 0.482 0.296 Smirnov et al.
(2017)

RaiZ-S 2,737,417→
2,737,542

RbsZ rbsB-rbsK Intergenic in operon 3,937,045→
3,937,278

4 0.091 0.035 0.105 Melamed et al.
(2020)

SdhX
(RybD)

sucD 3′ UTR 765,050→
765,150

33 0.638 0.836 0.735 De Mets et al.
(2019); Miyakoshi
et al. (2019)

UhpU uhpT 3′ UTR 3,845,730←
3,845,995

111 0.751 0.347 0.786 Hör et al. (2020)b

B. Novel sRNA candidates predicted based on RIL-seq results and verified by northern blot analysis in the current study

AceK-int aceK CDS 4,218,879→
4,218,963

15 – 0.592 0.084 Recently verified
also by Adams
et al. (2021)

AllZ allR 3′ UTR 533,629→
533,863

5 0.042 0.295 0.046

BhsB bhsA 3′ UTR 1,169,303→
1,169,402

2 – 0.099 –

FadZ fadA 3′ UTR 4,027,232←
unknown

12 0.031 0.202 0.081

KilS kilR 5′ UTR 1,418,405←
1,418,502

3 0.033 0.154 0.032

XylZ xylA-xylB Intergenic in operon 3,729,386←
3,729,545

10 0.064 0.346 0.068

ZbiJ ybiJ 3′ UTR 837,435←
837,531

21 0.223 0.374 0.506 Recently verified
also by Han and
Lory (2021), who
called it “asYbiE”

aDashed cells mean the RNA was not included in the data of the corresponding experiment.
bReferring to unpublished results from Storz’s lab.
cMapping of the 5′ end is according to Iosub et al. (2020). According to our RNA-seq results the 5′ end is at 4,242,609.
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3′ transcript boundaries of the new sRNAs predicted here were
determined based on the read coverage in corresponding RNA-
seq libraries (see below). For fadA 3′ UTR we were not able
to determine the 5′ end (marked unknown in Table 2B) and
estimated its 5′ end position based on the size of the band
observed in the Hfq-dependent northern blot (see below).

Identification of Transcription Start Sites and RNase
E Cleavage Sites Near Predicted sRNAs
In order to appreciate if the transcripts of the novel sRNAs were
generated by independent transcription or by cleavage of the
hosting mRNA, we used published data of large-scale screens
of transcription start sites (TSSs) (Thomason et al., 2015; Ju
et al., 2019) and RNase E cleavage sites (Clarke et al., 2014),
and searched for TSSs and cleavage sites located between the
determined 3′ end and up to 50 nucleotides upstream the 5′ end.

Identification of Putative sRNAs in Hfq-CLASH Data
To verify whether the putative sRNAs we report are supported
by other data sets, we compared their estimated coordinates to
chimeric fragments included in the Hfq-CLASH data set (Iosub
et al., 2020). We considered a RNA as found in Hfq-CLASH
chimera if its estimated coordinates were at most 50-nt apart from
the coordinates reported in Iosub et al. (2020).

Experimental Testing
Strains and Growth Conditions
For the verification of novel sRNA expression, cultures of
Escherichia coli MG1655 and its isogenic strain MG1655 hfq::Kn
were grown over-night in LB medium and then diluted 1:100
in fresh LB medium and grown while shaking at 37◦C. Samples
of culture were collected throughout growth, and centrifuged at
4◦C. The pelleted cells were resuspended in 50 µl of TE buffer
(10 mM Tris HCl pH 8.0, 1 mM EDTA pH 8.0), mixed with
lysozyme to a final concentration of 0.9 mg/ml and fast frozen
in liquid nitrogen. The samples were then subjected to two cycles
of thawing at 37◦C and freezing in liquid nitrogen.

Northern Analysis
Total RNA was extracted from harvested cells using TRI-reagent
(Sigma). 30 µg of total RNA were separated in 7 M urea/6%
polyacrylamide gels in 44.5 mM Tris-base, 44.5 mM boric
acid and 2 mM EDTA pH 8.0, and transferred to Zeta-Probe
membrane (Bio-Rad) by electroblotting. The membranes were
hybridized with specific [32P] end labeled DNA probes. For each
tested sRNA, the northern blot was repeated at least twice, with a
different replicate of total RNA. The probe sequences are listed in
Supplementary Table 3.

RNA-Seq
We used compatible RNA-seq data available in the lab, which
were generated as following: Three single colonies of MG1655
cells carrying a pJV300 plasmid (Urban and Vogel, 2007) were
grown over night at 37◦C in LB medium supplied with Ampicillin
(100 µg/ml). The cultures were diluted 1:100 in fresh medium
and grown while shaking at 37◦C for 6 h. Cells were collected and
RNA was extracted as described above. RNA-seq libraries were

constructed according to the RNAtag-seq protocol (Shishkin
et al., 2015), with few modifications described in Melamed
et al. (2018). The libraries were paired-end sequenced using
Illumina NextSeq 500 machine, with read length of 45 and 40 bp
for first and second read, respectively. Raw reads were split
into their original three replicate libraries using an in-house
script. Cutadpat was applied to remove adapter sequences, low
quality ends and sequences shorter than 25 nucleotides (Martin,
2011). We applied bwa aln followed by bwa sampe (Li, 2013) to
align the reads to the genome. We applied stringent mapping
allowing only two mismatches. The total number of reads in the
libraries of the three replicates 1, 2, 3 was 10674656, 16274638,
10368982 reads, respectively. In all three libraries 99% of the reads
passed the processing filter and 89% of the processed reads were
successfully mapped. Library 2, which had the highest number of
reads, was used to define the novel sRNA boundaries.

RESULTS

Examination of the chimeric fragments corresponding to
S-chimeras in RIL-seq data hinted at several properties that may
aid in the classification of RNAs represented in these chimeras as
either sRNA or target RNA (Melamed et al., 2016). sRNAs were
included in many chimeric fragments, were found to interact with
multiple targets and were preferentially identified as the second
RNA in the chimeric fragments. In contrast, RNAs found in
interaction with a known sRNA were usually found to be involved
in a small number of chimeric fragments, were found to interact
with only a few partners (mainly, the sRNA), and were frequently
identified as the first RNA in the chimeric fragments.

While previously these properties were intuitively considered
for supporting or rejecting a sRNA candidate (Melamed et al.,
2016), our aim here is to quantify them and carry out a systematic
analysis, selecting informative features that will be incorporated
in a sRNA predictive scheme. The features that we propose to
examine for each RNA are of two types: (i) features derived
from the chimeric fragments the RNA is involved in (first layer),
and (ii) features of the RNA interactors (second layer). The
incorporation of both layers of features in the analysis is inspired
by the acknowledgment that up to date the number of identified
sRNA–sRNA interactions is very small and far below the number
of identified sRNA interactions with mRNAs. Recognizing first
layer features that support the RNA as a sRNA along with second
layer features that do not support the interactors as sRNAs should
provide stronger support for a sRNA candidate than expected
from its first layer features alone. Combining the two layers of
traits is expected to enhance the discriminative power of the
model and to increase the reliability of predicted sRNAs.

Feature Selection
All analyses described hereinafter were carried out for each
RIL-seq data set separately (exponential phase, stationary phase,
exponential phase under iron limitation). We describe in the text
the results for the stationary phase data and in the Supplementary
Material the results for the two other data sets. When relating

Frontiers in Microbiology | www.frontiersin.org 5 May 2021 | Volume 12 | Article 635070

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-635070 May 15, 2021 Time: 15:16 # 6

Bar et al. sRNA Prediction From RIL-Seq Data

to the chimeric fragments, we refer to chimeric fragments
corresponding to S-chimeras identified in RIL-seq results.

Some of the traits characterizing a RNA can be quantitatively
described in several ways (hereinafter, features). For example,
let X be a RNA that was identified as interacting with k RNAs
Y1, ...,Yi, ...,Yk and is involved in n1, ..., ni, ..., nk chimeric
fragments corresponding to each RNA, respectively, making up
a total of N chimeric fragments. The trait ‘number of chimeric
fragments the RNA is involved in’ can be described as N, or as the
mean of ni, or as the median of ni. We examined 18 features in
total, several of which regard different representations of the same
trait (Supplementary Table 2). We assigned each RNA the values
of the features. For each feature we compared the distributions of
its values between the group of known sRNAs and “other RNAs”
by two-tailed Mann–Whitney U test with Bonferroni correction
for multiple hypotheses testing (Supplementary Material and
Supplementary Table 2). We then clustered all features that
differed statistically significantly between the group of known
sRNAs and group of “other RNAs” (Supplementary Material
and Supplementary Figure 1), and selected from each cluster of
features one representative feature (usually the one with simplest
intuitive interpretation) to be used in successive analyses. In
addition to features solely based on RIL-seq data, we also
included the length of the U-tract of the RNA, as we previously
observed that sRNAs have longer U-tracts at their terminators
compared to “other RNAs” (Melamed et al., 2016). The U-tract
length is also considered a first-layer feature, as it is a feature
of the RNA itself.

Six features were selected, four are first layer features and two
are second layer features (Figure 1). It is of note that these six
features were consistently selected in the analyses of all three
data sets. For each RNA these features are: (A) Total number
of chimeric fragments: The total number of chimeric fragments
that included the RNA. This value was normalized by the total
number of chimeric fragments in the data set. (B) Number of
unique interactions: Number of unique interactions the RNA was
involved in (k). This value was normalized by the total number of
unique interactions in the data set. (C) Second-In-Chimera (SIC)
score: A score representing the fraction of chimeric fragments in
which the RNA was the second RNA of the chimera, while taking
into account the number of unique interactions this RNA is
involved in. We defined this score as S− 1

k , where S is the fraction
of chimeric fragments in which the RNA was the second RNA
of the chimera and k is as defined above. Intuitively, for RNAs
with many interactions the score is approximately S, while the
score of RNAs with a small number of interactions is penalized
to prevent high SIC scores that are based on one or only a few
interactions. Note that due to this correction SIC may also get
negative values. (D) U-tract length: For each RNA we assigned
the length of the longest U-tract that could be identified in a
region spanning 50 nucleotides around the segments of this RNA
in the chimeric fragments of the RIL-seq data. (E)Median number
of interactions of interactors: Each interactor of a RNA is also
annotated by feature B. We take the median of these values across
all interactors of the RNA. (F) Median SIC score of interactors:
Each interactor has a SIC score, as defined above. We take the
median of these values across all interactors of the RNA. Note that

since the variances of features A, B, and E were extremely large,
their values were transformed to Log10 scale for further analysis.

The distributions of these feature values differed statistically
significantly (after Bonferroni correction for multiple hypotheses
testing) between the groups of known sRNAs and “other RNAs”
(Figure 2 and Supplementary Figures 2, 3). It is evident from
Figure 2 that compared to the “other RNAs”, the known sRNAs
were found to be involved in more chimeric fragments and in
more unique interactions; the fraction of the chimeric fragments
in which they appear as second RNA is higher; and they have
longer U-tracts. As for the interactors of sRNAs, the fraction
of interactions in which they are second RNA in the chimera
and the number of unique interactions they are involved in are
lower compared to interactors of “other RNAs”. The statistically
significant differences between the distributions of the features
in the two RNA groups (p values between 10-23 and 10-11)
suggested that they can be used for classifying sRNAs and for
the determination of novel, yet unknown sRNAs, which may be
hidden in RIL-seq data.

Each RNA in RIL-seq data was represented by a vector of the
above six features. Analysis of the vectors by principal component
analysis (PCA) further demonstrated the separation of known
sRNAs from “other RNAs” by the features and the contribution
of the various features to this separation (Figures 3A,B and
Supplementary Figures 4A,B, 5A,B). Furthermore, this analysis
showed additional RNAs in close proximity to the previously
known sRNAs, suggesting these might be novel sRNA candidates.
Intriguingly, several novel sRNAs derived from 3′ UTRs, which
were recently verified experimentally (Table 2A), are clustered
together with known sRNAs in the PCA plots.

Prediction of Novel sRNAs
To systematically and comprehensively identify novel sRNA
candidates, we applied logistic regression, using these six features
as characteristics of each RNA in the data. We applied 10,000
iterations of the logistic regression, where in each iteration we
randomly split the data into a training set and a test set. Each
training set included 2/3 of the known sRNAs and 2/3 of the
“other RNAs” and the test set included the rest of the data.
At each iteration we trained a logistic regression model on the
training set, resulting in a linear combination of the features,
which provides the probability of a RNA in the data to be a sRNA
(see the section “Materials and Methods”). The model was then
used to compute these probabilities for RNAs in the test set. At
the end of the process, each RNA had a list of N probabilities,
where N is the number of test sets that included this RNA. The
final sRNA probability of a specific RNA was the average of these
probabilities, considered hereinafter as the sRNA score of the
RNA. Determining different probability thresholds above which
a RNA is determined as a sRNA, we obtained a receiver operating
characteristic (ROC) curve and a precision–recall (PR) curve for
each iteration and for the average results (Figures 3C,D and
Supplementary Figures 4C,D, 5C,D), showing the consistency
and high predictive power provided by the logistic regression.

Due to the low frequency of sRNAs in the data and the
inclusion of sRNAs not yet discovered in the training set, we
expect the model to output uncalibrated prediction probabilities.
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FIGURE 1 | Features characterizing a RNA in RIL-seq data. RIL-seq final data set includes chimeric fragments corresponding to S-chimeras (first box), determining
RNA interacting pairs, which can be described as a RNA–RNA interaction network (second box). Each node in the network represents a RNA. Two nodes are
connected by an edge if they were determined as interacting. For every RNA, first layer features were computed based on the chimeric fragments it was involved in
(third box; U-tract length is not shown on the chimeric fragments). Finally, for each RNA, second layer features were computed based on the first layer features of its
interacting partners (forth box). If the RNA is a sRNA, its first layer features are expected to be characteristic of a sRNA, namely, many chimeric fragments, many
interactions, high fractions of chimeras in which it is second RNA (high SIC, Second-In-Chimera, score), long U-tract. The second layer features of the sRNA, which
involve the first-layer features of its interactors, are expected to be characteristic of targets, namely, low number of interactions and low SIC scores (fifth box).

We therefore did not determine a probability threshold above
which a RNA is predicted as a sRNA, but ranked the RNAs by
their sRNA scores, scanned the ranked RNAs from top down
and searched for RNAs ranked above or in the vicinity of known
sRNAs (Figure 3E and Supplementary Figures 4E, 5E). As
the logistic regression was performed for each RIL-seq data set
separately, the ranking of a specific RNA can change between
conditions. This stems from the fact that both the feature vectors
of RNAs and the annotated sRNAs that are included in a data set
are condition specific. This implies a RNA can be predicted as
a sRNA under one condition, but not necessarily under another
condition, consistent with the acknowledged condition-specific
expression of sRNAs (Wagner and Romby, 2015). In fact, we
find an association between the change in expression levels of
the sRNAs between conditions and the differences in their sRNA
score between the corresponding conditions (Supplementary
Figure 6). This implies a relationship between the expression
level of the sRNA and its sRNA score per condition. For example,
SroC, known to be expressed in stationary phase (Miyakoshi
et al., 2015a), got a sRNA score of 0.5 in stationary phase data,
but scores of 0.004 and 0.003 in the data sets of exponential
phase and exponential phase under iron limitation, respectively.
Encouragingly, many of the known sRNAs have obtained high
ranking scores in at least one data set (Supplementary Table 1).
Thus, the implementation of the selected features of the RNAs
in a machine learning approach, such as the logistic regression,

enables the distinction of sRNAs from “other RNAs”, and
therefore may enable the discovery of novel sRNAs. Notably, we
identified most of the recently discovered sRNAs (that were not
annotated as such in our data) among the top ranking RNAs
(Table 2A), as well as additional novel sRNAs, some of which
(Table 2B) we tested experimentally, as detailed below.

To verify that our results do not depend on the number
of iterations or the selected ratio of 2:1 between the sizes
of the training and test sets, we conducted the analyses for
different numbers of iterations and different ratios of training
to test set sizes. These analyses confirmed that the results are
independent of these parameters (Supplementary Material and
Supplementary Figures 7–9).

Contribution of Individual Features to the
Classification
The logistic regression assigns weights to the features, which are
used for the computation of the probability of a RNA in the
data to be a sRNA (see the section “Materials and Methods,”
Table 3, and Supplementary Table 4). As shown in Table 3
and Supplementary Table 4, the various features differ in their
contributions to the predicted probability. First, since the first-
layer features directly assess a RNA as a sRNA and the second-
layer features are expected to contribute to the prediction by
rejecting its interactors as sRNAs (Figure 1), it is affirmative
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FIGURE 2 | Distinction between sRNAs and “other RNAs” by the characteristic features. Each RNA was characterized by the following features: (A) Total number of
the chimeric fragments the RNA is involved in. This value was normalized by the total number of chimeric fragments in the data set and then transformed to Log10

scale. (B) Number of unique interactions the RNA is involved in. This value was normalized by the total number of interactions in the data set and then transformed
to Log10 scale. (C) SIC score (SIC, for Second-In-Chimera), namely the percentage of chimeric fragments in which the RNA was second in the chimera, penalized
by the number of unique interactions the RNA is involved in. (D) The U-tract length of the RNA. (E) The median number of interacting partners of the RNA interactors
(normalized as in B and expressed by Log10). (F) The median SIC score of the RNA interactors. The distributions of each feature values in the group of known
sRNAs (orange) and “other RNAs” (purple) are described by boxplots. The differences between the two distributions (A–F) were found to be statistically significant by
two-tailed Mann–Whitney U test (p values between 10-23 and 10-11 after Bonferroni correction for multiple hypotheses testing). The distributions in panels (A–F) are
based on the data of stationary phase RIL-seq experiment (Supplementary Table 1). Results for the exponential phase data sets are shown in Supplementary
Figures 2, 3.

that the weights reflecting the contributions of the second layer
features are in opposite signs to the contributions of the first
layer features (Table 3, Figure 4, Supplementary Table 4, and
Supplementary Figure 10). Secondly, as explained in the Section
“Materials and Methods,” we can assess the relative contributions
of the various features to the computed probability by examining
the products of the weight and standard deviation of the feature
values (Figure 4 and Supplementary Figure 10). It seems that
the major contributors to the final sRNA score involve both first-
and second-layer features. The features that are high contributors
in all data sets are ‘the total number of chimeric fragments’ and
the ‘median number of interactions the interactors are involved
in’, while the feature that consistently has the least contribution
is ‘number of unique interactions’. The contributions of the SIC

(Second-In-Chimera), median SIC of interactors and the U-tract
length seem to be more data set-dependent.

The second layer features were expected to prevent
misclassification of a RNA targeted by multiple sRNAs (“target
hub”) as a sRNA. To assess this, we examined the sRNA scores
of “target hubs”, defined as RNAs interacting with at least
four different sRNAs in at least one condition. Indeed, out
of 18 “target hubs”, 16 got low sRNA scores (Supplementary
Table 5). When “target hubs” present high values of first layer
features, such as a long U-tract, the second layer features may
not be sufficient to prevent their misclassification. Indeed, the
two “target hubs” lpp and ompF have a long U-tract of eight
nucleotides each, are involved in 9 and 15 unique interactions,
respectively, and have many chimeric fragments, together
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FIGURE 3 | Detection of novel sRNAs. (A) Principal component analysis (PCA) of RNAs characterized by the six features. The RNAs (dots) are plotted in two
dimensions, using their projections onto the first two principal components. Each RNA in the data is colored by its sRNA probability, as assigned by the logistic
regression analysis. Colored circles surrounding the dots represent: a well-established sRNA marked in Supplementary Table 1 by 1 (black), a recently discovered
sRNA listed in Table 2A (red) or a newly discovered sRNA listed in Table 2B (blue). (B) Contribution of the features to PC1 and PC2. The vectors represent the
coefficients of the features in each PC: Total number of chimeric fragments (green), number of unique interactions (blue), SIC score (red), U-tract length (orange),
median number of interactions of interactors (pink), median SIC score of interactors (purple). (C,D) Receiver operating characteristic (ROC) curve (C) and
precision–recall (PR) curve (D) showing the high predictive power of the logistic regression model. Shown in black are the curves obtained from the mean
probabilities of 10,000 iterations of the logistic regression, and the curves of individual iterations in the range of one standard deviation around the curve of mean
probabilities. The curves are compared to the expected curve of a random classifier (red dashed line). The area under curve (AUC) of the ROC curve is 0.98 ± 0.01.
(E) Known sRNAs and “other RNAs” (colored orange and purple, respectively) were ranked by their computed sRNA scores. Highly ranked RNAs, yet unknown as
sRNAs, are predicted as putative novel sRNAs. Presented results are for the data set of stationary phase RIL-seq experiment. Results for the exponential phase data
sets are shown in Supplementary Figures 4, 5.
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TABLE 3 | Weights of the logistic regression model for stationary phase dataa.

Total number of Number of SIC (Second-In-Chimera) U-tract Median number of Median SIC score Intercept

chimeric fragments unique interactions score length interactions of interactors of interactors

0.956 0.354 0.683 0.584 −1.345 −0.955 −5.837

aThe table shows the mean intercept and weights of the 10,000 logistic regression iterations.

enforcing their seemingly misclassification as a sRNAs, although
with relatively low sRNA scores (Supplementary Table 1).
Interestingly, a recent study identified a premature transcription
termination site downstream to the transcription start site of
ompF, suggesting that, in addition to being targeted by sRNAs
in its 5′ UTR, a yet unknown small RNA overlapping ompF
5′ UTR might be generated (Adams et al., 2021). In general,
sRNAs that function mainly as sponges of other sRNAs are
not expected to be predicted by our algorithm as they usually
have very few interactions (Supplementary Table 5). Yet, in a
few cases the combination of various features in the prediction
has allowed their identification by the computational scheme.
For example, we found in RIL-seq stationary phase data that
70% of the chimeric fragments including the sRNA GcvB
involve SroC, a recently discovered sRNA encoded in the 3′
UTR of gltI, a target of GcvB (Miyakoshi et al., 2015a). SroC

FIGURE 4 | Contribution of the various features to the logistic regression
predictions. Presented are the logistic regression weights after z-score
transformation of the feature values (see the section “Materials and Methods”).
The presented weights, which are the original weights (Table 3) multiplied by
the standard deviation of the feature value, are comparable. The weight value
represents its contribution to the probability the logistic regression model
provides, and the sign signifies the direction in which the weight affects this
probability (i.e., positive values increase the sRNA probability and negative
values reduce the sRNA probability). The results are based on the data set of
stationary phase RIL-seq experiment. Results for the exponential phase data
sets are shown in Supplementary Figure 10.

sponges GcvB under stationary phase, relieving the repression
of its targets. While SroC is involved mainly in the interaction
with GcvB, our computational scheme awards it a relatively
high sRNA probability in the stationary phase data, which
is obtained by the combined contributions of all features
(Supplementary Tables 1, 5).

Experimental Verification of sRNA
Candidates
Our computational scheme reported newly predicted sRNAs,
encoded within various genomic elements (Supplementary
Table 1 summary tab). Many are encoded in 3′ UTRs, but
there were also sRNA candidates encoded in 5′ UTRs and in
coding sequences. We tested experimentally eleven candidates
that got relatively high sRNA scores, but not necessarily those
that ranked the highest above known sRNAs. These were selected
to span the whole range of sRNA scores above known sRNAs
and included seven candidates encoded in the 3′ UTR of protein-
coding genes (allR, bhsA, fadA, glpX, malG, ybiJ and ykgH),
two in intergenic regions (rbsB-rbsK, xylA-xylB), one in 5′ UTR
(kilR), and one in a coding sequence (aceK). To validate the
expression of these sRNAs we probed them by northern blotting,
which provides information on both the expression pattern of
the RNA and on its approximate size. Total RNA was extracted
from wild type K-12 and 1hfq strains grown to different growth
phases and the expression of the sRNA candidates was tested.
As malG 3′ UTR and rbsB-rbsK IGR were in the meanwhile
reported by other groups as sRNAs [MalH (Iosub et al., 2020) and
RbsZ (Melamed et al., 2020), respectively], we included them in
Table 2A and report their northern blot results in Supplementary
Figure 11. Seven of the remaining nine putative sRNAs were
verified experimentally by northern blotting, where expression
was evident in wild type but not in the 1hfq strain (Figure 5 and
Table 2B). While this paper was under revision, the expression
of AceK-int was confirmed also in another publication (Adams
et al., 2021). The expression of sRNAs encoded at the 3′ UTRs
of glpX and ykgH could not be verified by the northern blot
experiments using two different probes for each of the candidates
(Supplementary Table 3). However, the accumulation of RNA-
seq reads at the 3′ UTR of ykgH and, with a less distinct pattern,
at the 3′ UTR of glpX hint that transcripts originating from these
loci do exist independently of the hosting gene (Supplementary
Figure 12). All the verified sRNA candidates obtained high sRNA
scores in the analysis of RIL-seq stationary phase data, and
indeed they all accumulated during the stationary growth phase
(Figure 5 and Table 2B). Using RNA-seq data of stationary phase
cells studied in our laboratory, we obtained estimates of the sizes
of most sRNA candidates, and these sizes were confirmed by the
northern blots (Figure 5).
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FIGURE 5 | Verification of the novel sRNAs by northern analysis. Total RNA was extracted from wt E. coli and 1hfq cultures throughout growth. Samples of the wt
culture were taken at an OD600 of 0.3, 1.0, and 2.0, 3 h and 6 h after the culture reached an OD600 of 2.0 (+3 h and +6 h, respectively) and after 24 h of growth
(24 h). Samples of the 1hfq were taken at an OD600 of 2.0, 3 h and 6 h after the culture reached an OD600 of 2.0 and after 24 h of growth. 30 µg total RNA were
subjected to northern analysis using specific probes. The membrane used for the probing of AceK-int was re-used for the probing of AllZ, after the AceK-int probe
radio-labeling has faded. 5S rRNA was probed as a loading control. For each sRNA, a coverage plot of RNA-seq library made of total RNA from a stationary phase
(6 h growth) culture is shown. The green arrows indicate the coding sequence (CDS) region and gene orientation, with the CDS size above the arrow in nucleotides
(nt). The approximated size of each sRNA is indicated above the read coverage plot (nt). Starlet indicates the band fitting in size to the RNA-seq data. Transcription
start sites, based on data of Thomason et al. (2015) and Ju et al. (2019), and RNase E cleavage sites, based on data of Clarke et al. (2014) are shown below the
read coverage plots along the transcript by bent black arrows and red triangles, respectively. Transcription start and cleavage sites in the vicinity of the suspected
sRNA are recorded also in Supplementary Table 6.

To get clues whether the novel sRNAs were transcribed
independently from an internal promoter or were processed
from the hosting mRNA by an endoribonuclease, we examined
global TSS data (Thomason et al., 2015; Ju et al., 2019) and
large-scale cleavage data of RNase E (Clarke et al., 2014). These
analyses indicated that AllZ and KilS can be transcribed from

independent promoters, while the other novel sRNAs seem to
be processed by an endoribonuclease from longer transcripts.
We identified cleavage sites at the 5′ end position of AceK-int
and two nucleotides upstream to the approximated 5′ end of
XylZ (Figure 5 and Supplementary Table 6). The generation of
ZbiJ and BhsB cannot be explained by the previously mapped
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TSSs or RNase E cleavage sites, as none were mapped near their
approximated 5′ ends.

DISCUSSION

Systematic detection of sRNAs in large-scale RNA-seq data is
highly valuable. As the fraction of genomic elements producing
sRNAs out of all genes expressed in a cell is very small
and estimated to be around 2% [∼100 sRNAs out of ∼4500
transcribed genes (Keseler et al., 2017)], the probability of
detecting a genomic region encoding a sRNA at random is
very small. In contrast, a prediction of “not a sRNA” for a
genomic element has a high chance to be correct. Therefore, if
our interest was in classification per se, it would be worthwhile
to declare each RNA as non-sRNA, promising high chance of
success. However, our challenge has been to find these needles
in the haystack of all genes, and indeed we demonstrated
that using informative features extracted from RIL-seq data
and from the RNA sequences, it is feasible to distinguish the
sRNAs from other genes. Using these features and the predictive
scheme they are incorporated in, we predict additional novel
sRNAs and demonstrate experimentally their expression as Hfq-
dependent sRNAs.

There is an inherent difficulty in analyzing data that include
ambiguous annotations for some genes, where some genomic
elements classified as “other RNAs” are actually sRNAs that have
not yet been detected. This causes the precision of the prediction
to be underestimated. Indeed, if we re-label the recently
discovered sRNAs and the seven additional experimentally
verified sRNAs in the data (Table 2) as sRNAs and re-compute the
precision rates we obtain better results (Figure 6). Interestingly,
training the logistic regression model on the re-labeled data
does not provide substantial improvement in the precision–recall
results (Figure 6). The ambiguity of the initial labeling has also
guided our strategy for determining new putative sRNAs. Thus,
we chose to scan the RNAs ranked by their sRNA scores from
top down, and classify RNAs ranked above known sRNAs as
putative sRNAs that were wrongly labeled as “other RNAs.” Using
this strategy, we predicted nine novel sRNAs that obtained sRNA
scores of 0.1–0.59, seven of which were verified experimentally.
As stated above, as the chance probability for a genomic element
to encode a sRNA is about 0.02, a sRNA score of 0.1 is also high
above random expectation.

It is interesting, yet not surprising, that a RNA can be
ranked differently in the different data sets, since it gets
different sRNA scores depending on the feature values and
weights in each data set. As most of the feature values are
derived from RIL-seq data, which may change for a particular
gene from experiment to experiment, it is conceivable that its
computed sRNA score may change (Supplementary Figure 6).
For example, a sRNA that is weakly expressed under one of
the conditions may be involved in fewer chimeric fragments
under this condition, and the weak contribution of the feature
“total number of chimeric fragments” may lead to a final low
probability by the predictor. In no way this means that the
RNA is a sRNA under one condition and not under another.

FIGURE 6 | Precision of the predictions with and without labeling of novel
sRNAs. Presented is a comparison of the mean precision–recall (PR) curve
over the logistic regression iterations for different sets of known sRNAs. We
consider three cases: (1) Precision curve as in Figure 3 (black line), when only
sRNAs marked by 1 in Supplementary Table 1 are considered as known
sRNAs in both training and test sets. (2) The training is done with known
sRNAs as in (1) but for the assessment we label all the sRNAs in Table 2 as
known sRNAs (orange line). (3) RNAs from Table 2 are labeled as sRNAs for
the training and for the assessment (blue line).

It simply means that the data of this RNA under a certain
condition was not sufficient to allow its identification as a sRNA.
Hence, we consider a genomic element as encoding a putative
sRNA if it was ranked high and among known sRNAs in at
least one data set.

The computed weights are also data set-dependent, and we
examined whether their relative contributions are consistent
or differ among the data sets. Comparing the original weights
(Supplementary Table 4) and the products of weight and
standard deviation (Figure 4 and Supplementary Figure 10), we
observed that, as expected, the directions of the contributions
of the various features are consistent in all data sets, as well
as the features that are main contributors. In all data sets
the total number of chimeric fragments had a substantial
positive effect, while the median number of the interactions of
interactors had a large negative effect. The large contribution
of this latter feature emphasizes that the recognition of the
interactors as targets rather than sRNAs is highly important for
the success of the predictions. Interestingly, the contribution
of the U-tract length changes between the various conditions.
This might be due to differences in the compositions of
chimeric fragments among the various data sets, which may
result in sRNAs with short U-tract in a particular data set,
affecting its weight. The slight differences in the weights
among the data sets suggest that it will be preferable to
develop a predictive scheme per data set by repeating the
learning process. Yet, the features we present can be easily
extracted from the RIL-seq data and the execution of the
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TABLE 4 | Common pathways involving the host genes of novel sRNAs and their targets.

Host gene Host gene
function

sRNA sRNA target
genea

Target gene function Suggested
common pathway

References Additional
RIL-seq targetsa

aceK Regulator of the
branch point
between the TCA
cycle and the
glyoxylate cycle

AceK-int gatY Tagatose-1,6-bisphosphate
aldolase 2 subunit;
galactitol metabolism

Carbohydrate
metabolic process

LaPorte and
Koshland (1982);
Richet and Raibaud
(1989); Nobelmann
and Lengeler (1996)

clpB.rrsG.IGR;
glpQ; fur; ryjB;
ryjB.sgcQ.IGR;
ycaK.3UTR; ydgA;
yfjJ; yqeG

gatR gat operon repressor;
galactitol metabolism

malT mal operon activator;
maltose catabolism and
transport

allR Transcriptional
repressor of genes
involved in
anaerobic utilization
of allantonin as a
nitrogen source

AllZ grcA Stress-induced alternate
pyruvate formate-lyase
subunit; important in
anaerobic maintenance of
redox balance

Anaerobic
metabolism

Cusa et al. (1999);
Rintoul et al. (2002);
Kramer et al. (2010)

ftsA.ftsZ.IGR; ftsZ;
bssR

bhsA Outer membrane
stress protein;
induced by H2O2

and increases cell
resistance to H2O2

induced stress

BhsB ompC Outer membrane protein;
was shown to facilitate and
regulate the diffusion of
H2O2 through the outer
membrane in Salmonella

Cell response to
oxidative stress

Pomposiello et al.
(2001); Zheng et al.
(2001); van der
Heijden et al.
(2016); Iwadate and
Kato (2017)

ytfK Stringent response
activator; induced by
paraquat, involved in H2O2

tolerance

fadA 3-ketoacyl-CoA
thiolase, involved in
fatty acid
degradation via
β-oxidation and
generation of
acetyl-CoA

FadZ dctA C4
dicarboxylate/orotate:H+

symporter; importer of
metabolites that can serve
as substrates in the TCA
cycle

TCA cycle Kay and Kornberg
(1969, 1971);
Darlison et al.
(1984); Buck et al.
(1986)

clpS; ompC; ompF;
yhsB

kgtP a-Ketoglutarate:H+

symporter

sucA Component of the
2-oxoglutarate
dehydrogenase
multienzyme complex

kilR Killing protein;
inhibits cell division
by binding FtsZ

KilS yncL Inner membrane protein of
unknown function

KilR targets FtsZ
and YncL, both
localize to the inner
membrane

Overath and
Raufuss (1967);
Kay and Kornberg
(1969, 1971); Lo
et al. (1972)

aOnly RIL-seq targets detected in at least one individual library in addition to the unified libraries were regarded in this analysis.

logistic regression is straightforward, making our approach
feasible for detecting novel sRNAs in E. coli grown under
other conditions and in other bacteria to which RIL-seq is
applied. It is of note that applying similar computational
approaches to data sets of sRNA-target pairs detected by
different methods may result in different informative features.
For example, in a comparable data set of chimeric fragments
including sRNAs and targets, recently determined by the
CLASH methodology applied to Hfq in E. coli (Iosub et al.,
2020), the sRNAs were not found to be preferentially the
second RNAs in their respective chimeras. Encouragingly, all
the novel sRNAs reported here were included in the CLASH

chimeras, and half of them were located mostly second
in their chimeras.

While most of the previously known sRNAs are properly
classified, we do encounter and expect misclassifications
emerging mainly from three major RNA classes. The first class
comprises “target hubs” that interact with multiple sRNAs
(Supplementary Table 5). While in most cases the second-layer
features prevent their misclassification as sRNAs, some RNAs
exhibiting very strong first layer features might be misclassified.
Note however that the exact classification of sRNAs and targets
is not always obvious and some of these allegedly misclassified
sRNAs may turn out to be true sRNAs (e.g., the above described
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ompF 5′ UTR). The second class comprises sRNAs with very
few targets. This group includes sRNAs that are not highly
expressed in the conditions studied here and, thus, are lowly
ranked at these conditions, but they are likely to be detected
under the relevant condition. In addition, this class includes
highly specialized sRNAs with specific targets, mostly considered
as sponges. While some sponges, with extremely high first-layer
properties, such as SroC, are classified as sRNAs, others are not
(Supplementary Table 5). As this special class of sRNAs is not
expected to be predicted by an algorithm like the one presented
here, which is trained on information drawn mostly from the
RNA interactome, loading the training set with single target
sRNAs is not recommended. The third class of misclassifications
can be traced back to ambiguous annotation of the RIL-seq data
itself, and in particular to reads overlapping different genomic
annotations (e.g., CDS and 3′ UTR of the same gene). Putative
sRNA for which the reads are split between two annotations,
are more likely to be missed. Furthermore, one annotation, e.g.,
CDS, can be misclassified as sRNA at the expense of the second
annotation, e.g., the respective 3′ UTR-derived sRNA (e.g., uhpT
and sucD). Re-examination of the proximity of the chimeric
fragment coordinates of the CDS-derived candidates to 5′ UTR
or 3′ UTR can resolve some of these misclassifications.

Finding that the targets of the newly revealed sRNAs
have functions that are associated with the function of the
hosting mRNA would support the functionality of the novel
sRNAs as regulatory molecules. It would also suggest that
the sRNA and hosting gene affect the same pathways at
different regulation levels, and, in case they share targets
they may generate regulatory circuits combining multiple
regulation levels. However, as RIL-seq data do not provide
information whether the sRNA enhances or represses the target
expression, it would not be possible at this stage to draw
mechanistic conclusions on such possible circuits. Yet, we found
for several of the novel sRNAs that the hosting genes and
their targets are involved in common pathways (Table 4).
For example, BhsB is derived from the 3′ end of the bhsA
mRNA, encoding a small outer membrane protein that is
involved in various stress responses. Oxidative stress induced
by hydrogen peroxide or paraquat activates bhsA transcription
(Pomposiello et al., 2001; Zheng et al., 2001). Also, BhsA
was shown to increase cell resistance to hydrogen peroxide
(Zhang et al., 2007). The RIL-seq data indicate that BhsB
interacts with two targets, ytfK and ompC, and both were
shown to be involved in the cellular response to oxidative
stress. ytfK, induced by paraquat (Pomposiello et al., 2001), was
shown to be involved in hydrogen peroxide tolerance (Iwadate
and Kato, 2017). OmpC, an outer membrane protein, was
shown in Salmonella to facilitate and regulate the diffusion
of hydrogen peroxide through the outer membrane (van der
Heijden et al., 2016). Thus, RIL-seq results suggest a shared
pathway for the hosting gene and the sRNA derived from its
transcript, further supporting the functionality of the 3′ UTR-
derived BhsB as a sRNA.

In summary, using our methodology followed by experimental
verification we reaffirmed that there is a rich repertoire of
sRNAs encoded within various genomic elements and generated

under different conditions. The use of our systematic approach
has allowed us to identify putative sRNAs that would not
have been considered otherwise, such as AllZ, KilS and BhsB.
Each of them is involved in only a few interactions and a
few hundred chimeric fragments, and they would not have
been suspected as sRNAs by examining their individual features
alone. Yet, the overall combination of their features has
allowed their detection. Especially, their interactors had very
few interactions with “other RNAs”, rejecting the interactors
as sRNAs and supporting AllZ, KilS and BhsB as sRNAs. We
believe that taking into account both the first- and second-
layer features empowers our predictions. Hence, taking into
account the information extracted directly from RIL-seq data
while accounting for the RNA–RNA interaction network inferred
from RIL-seq results is highly rewarding. Our approach may
be generalized to other RNA-seq-based methodologies, where
the results may imply a network structure or hierarchy of the
genes. Combining features based on the direct sequencing results
with features based on a higher-order structure of the data may
prove beneficial to the inference of novel biological insights
in other contexts.
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