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Cognitive dysfunction
associated with COVID-19:
Prognostic role of circulating
biomarkers and microRNAs
Marissa Alvarez†, Erick Trent†, Bruno De Souza Goncalves,
Duane G. Pereira, Raghav Puri, Nicolas Anthony Frazier,
Komal Sodhi and Sneha S. Pillai*

Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine,
Marshall University, Huntington, WV, United States

COVID-19 is renowned as a multi-organ disease having subacute and

long-term effects with a broad spectrum of clinical manifestations. The

evolving scientific and clinical evidence demonstrates that the frequency of

cognitive impairment after COVID-19 is high and it is crucial to explore more

clinical research and implement proper diagnostic and treatment strategies.

Several central nervous system complications have been reported as

comorbidities of COVID-19. The changes in cognitive function associated with

neurodegenerative diseases develop slowly over time and are only diagnosed

at an already advanced stage of molecular pathology. Hence, understanding

the common links between COVID-19 and neurodegenerative diseases will

broaden our knowledge and help in strategizing prognostic and therapeutic

approaches. The present review focuses on the diverse neurodegenerative

changes associated with COVID-19 and will highlight the importance of major

circulating biomarkers and microRNAs (miRNAs) associated with the disease

progression and severity. The literature analysis showed that major proteins

associated with central nervous system function, such as Glial fibrillary acidic

protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase

L1, S100 calcium-binding protein B, Neuron-specific enolase and various

inflammatory cytokines, were significantly altered in COVID-19 patients.

Furthermore, among various miRNAs that are having pivotal roles in various

neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and

miR-21 have shown significant dysregulation in COVID-19 patients. Thus the

review consolidates the important findings from the numerous studies to

unravel the underlying mechanism of neurological sequelae in COVID-19

and the possible association of circulatory biomarkers, which may serve as

prognostic predictors and therapeutic targets in future research.
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Introduction

Coronavirus disease 2019 (COVID-19), the disease
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has created morbidity and mortality at an
unprecedented scale globally and was declared a pandemic
by the World Health Organization (WHO) in March 2020
(Nalbandian et al., 2021). It was initially detected in Wuhan,
China, which triggered a severe acute respiratory syndrome,
contaminating more than 175 million people after one year and
leading to the death of 3.8 million people worldwide (Huang
et al., 2020; Hui et al., 2020; Wu et al., 2020a; Lopez-Leon
et al., 2021). SARS-CoV-2 is a betacoronavirus, a member
of the subfamily Coronavirinae, having a single-stranded
positive-sense RNA genome (Wang et al., 2020b). SARS-
CoV-2 is made up of at least 29 proteins, four of which are
structural proteins, and the others are non-structural proteins
(Yao et al., 2020). SARS-CoV-2 is prone to genetic evolution
through mutations over time in human hosts. This leads to the
generation of mutant variants having diverse characteristics
than their ancestral strains. Several variants of SARS-CoV-2
have been described during the course of this pandemic and
WHO has classified them based on their impact on public
health. Currently, there are five SARS-CoV-2 variants of
concern (VOC), Alpha, Beta, Gamma, Delta, and Omicron, and
two SARS-CoV-2 variants of interest (VOI), Lambda and Mu
(WHO SARS-CoV-2 Variants) (Liu et al., 2022). The emergence
of these new SARS-CoV-2 variants are posing threats to vaccine
development and other therapeutic options.

Several scientific and clinical studies have shown that
subacute and long-term effects of COVID-19 can affect multiple
organ systems (Gupta et al., 2020a). It is reported that
the mechanism of infection and replication of SARS-CoV-
2 is similar to that of SARS-CoV and MERS-CoV. The
angiotensin-converting enzyme-2 (ACE-2) receptors are the
primary binding receptors for the viral particle and are found
highly expressed in alveolar epithelial cells of lungs, vascular
endothelial cells, and enterocytes but can also be found in
other organs, such as kidney, liver, and gastrointestinal tract
(Azer, 2020; Bhavana et al., 2020; Harrison et al., 2020; Parasher,
2021). The internalization of the virus in host cells results
in different inflammatory changes such as edema, necrosis,
and tissue dysfunction. These changes can cause a cytokine
storm, promoting changes in the immune response that cause
excessive damage to the lung, gastrointestinal, neurological, and
cardiopulmonary systems (Azer, 2020; Bhavana et al., 2020;
Harrison et al., 2020; Rizzo et al., 2020; Xu et al., 2020; Anka
et al., 2021).

As SARS-CoV-2 has the ability to affect different organs,
recent clinical studies have demonstrated that there is an
increased risk of long-term health problems in patients who
have survived infection with SARS-CoV-2 (Seyedalinaghi et al.,
2021). The most recurrent long-term complication is respiratory

problems that may further develop pulmonary fibrosis, arterial
complications, venous thrombo-embolic late complications
associated with a hyperinflammatory and hypercoagulable state
(Lodigiani et al., 2020; Puntmann et al., 2020). Likewise, cardiac
dysfunction can be caused due to structural damage to the
myocardium, pericardium, and conduction system, triggering
arrhythmias in a large proportion of patients (Lindner et al.,
2020; Liu et al., 2020). Renal lesions have also been reported
in approximately 20-31% of patients who developed the severe
form of COVID-19. The reduced glomerular filtration was
related to extensive acute tubular necrosis observed in renal
biopsies (Kudose et al., 2020). Diabetic ketoacidosis, liver
dysfunction, joint pain, muscle weekness and dermatologic
manifestations were also observed in post-covid patients
(Freeman et al., 2020; Suwanwongse and Shabarek, 2021). In
addition, late complications are reported in the central and
peripheral nervous system, promoting decreased awareness
and absorption, difficulties with concentration, disturbed
memory, difficulty in communication, anxiety, depression,
sleep problems, and olfactory and taste losses (Paybast
et al., 2020; Varatharaj et al., 2020; Huang et al., 2021a).
Figure 1 demonstrates the various complications associated
with COVID-19.

The present review aims to elucidate the underlying
mechanism that links COVID-19 with neurodegenerative
changes that lead to cognitive dysfunction. As patients infected
with SARS-CoV-2 are stratified according to their clinical
manifestations, such as symptoms, oxygen saturation, and blood
pressure (Malik et al., 2021), these manifestations are apparent
at the late stages of infection, especially for neurological
complications. Identifying factors that can lead to complications
during the disease early is extremely important since it
can significantly influence the quality of care and adequate
treatment. It would be valuable to reveal the alterations of
plasma biomarkers in various cognitive impairment stages since
the cognitive manifestations are one of the most concerned
post covid complications. Hence, based on recent literature, we
will provide clinicians with updated and practical information
on the role of circulating biomarkers and miRNAs in COVID-
19-associated cognitive dysfunction that may act as possible
therapeutic targets and prognostic predictors in future studies.

Materials and methods

The purpose of this review is to highlight the importance
of cognitive dysfunction and neurodegenerative changes
associated with COVID-19 and the dysregulation of circulating
biomarkers and miRNAs in the clinical condition being
studied. A systematic search of relevant research articles was
performed using the databases, namely, PubMed, ProQuest,
Science Direct, and Google Scholar. The electronic search was
conducted using a combination of search terms related to the
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FIGURE 1

Schematic representation showing the potential complications of COVID-19 causing wide range of complications in various organ systems.

following keywords: “COVID-19” OR “SARS-CoV-2” OR “
Post COVID-19 complications” OR “Cognitive dysfunction”
OR “Neurodegeneration” OR “Circulating Biomarkers” OR
“miRNAs”. The articles retrieved from our search were further
distinguished for relevancy. The inclusion and exclusion criteria
were set to only evaluate articles published from 2000 to 2022
in order to limit this search. Moreover, articles that contain only
abstracts without their full text and published in languages other
than English were excluded.

COVID-19-associated cognitive
dysfunction and
neurodegeneration

COVID-19-associated cognitive
dysfunction

As the population of patients recovering from COVID-
19 grows, it is important to establish an understanding of
the multi-organ dysfunction associated with post- COVID-
19 complications. Of note, neurological manifestations in

COVID-19 patients have been reported, showing a close
correlation between COVID-19 and future development of
neurodegenerative diseases (Wu et al., 2020b; Taquet et al.,
2021; Frontera et al., 2022; Li et al., 2022a). It has also
been established that the likelihood of developing COVID-
19-associated cognitive impairment and the severity of these
deficits is associated with the severity of the SARS-CoV-2
infection and the subsequent increases in specific circulating
inflammatory mediators and biomarkers (Becker et al., 2021;
Miskowiak et al., 2021; Zeng et al., 2022). Alternatively, some
studies have demonstrated that even non-hospitalized COVID-
19 patients have developed cognitive-associated post-COVID-
19 symptoms, suggesting that regardless of illness severity,
cognitive dysfunction can arise (Graham et al., 2021; Hadad
et al., 2022; Van Kessel et al., 2022). Report shows that COVID-
19-associated cognitive impairment can arise during post-acute
COVID-19 infection 3 weeks following diagnosis, and 31.2%
of participants experience cognitive dysfunction within the first
week of symptoms (Davis et al., 2021). Another study found
that 22% of individuals infected with SARS-CoV-2 developed
symptoms of cognitive impairment, which remained after
12 weeks following their diagnosis (Ceban et al., 2022). These
deficits can last for a prolonged period of time and clinically
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relevant cognitive impairments in verbal learning and executive
function were found in 48% of patients 1 year following the
onset of symptoms (Miskowiak et al., 2022).

Likewise, another report identified abnormalities in
executive function, attention, and phonemic fluency in
post-COVID-19 patients (Hadad et al., 2022). The results
of a systemic review showed a high frequency of cognitive
impairment after COVID-19 infection with defects in
processing speed, inattention, or executive dysfunction
(Tavares-Junior et al., 2022). A post-COVID-19 community
clinic compared Montreal Cognitive Assessment (MoCA) index
scores of participants who reported cognitive symptoms and
found that index scores were significantly worse in language,
executive function, and attention (Crivelli et al., 2022). With
increasing severity of infection with SARS-CoV-2, there are
corresponding increases in both the likelihood of developing
cognitive dysfunction as well as the severity of the cognitive
dysfunction in those who develop these sequelae (Wang et al.,
2021). For these reasons, it is imperative to understand the
underlying mechanisms by which covid-associated cognitive
dysfunction and neurodegeneration occur.

COVID-19-associated
neurodegeneration

The neurological complications of COVID-19 include
damage to the central and the peripheral nervous system that
consists of neuronal damage, neuroinflammation, rupture of
the blood brain barrier, microvasculitis and hypoxia (Ellul
et al., 2020; Boldrini et al., 2021). ACE2 receptors within the
central nervous system (CNS) are most highly concentrated
within the substantia nigra, ventricles, middle temporal gyrus,
posterior cingulate cortex, olfactory bulb, motor cortex, and
brainstem (Iodice et al., 2021). The disruption of the normal
physiological functions of these areas due to infection with
SARS-CoV-2 has been postulated to be a potential explanation
for many of the reported symptoms associated with the long-
Covid syndrome. This was validated by an observational study
that examined cortical metabolism in the subacute and chronic
(>6 months) stages of illness and found that hypometabolism
in the frontoparietal and temporal cortex was associated with
cognitive impairment (Hosp et al., 2021). Long- COVID-19
brain fog in patients has presented with abnormal FDG-PET
scan results, with hypometabolic regions localized mostly to the
anterior and posterior cingulate cortices (Hugon et al., 2022).
The cingulate cortex plays a role in a variety of neurological
functions including memory, emotions, and decisive action
taking. The abundance of ACE2 receptors in this area could
additionally provide some insight into their experience of brain
fog (Hugon et al., 2022).

There are numerous potential mechanisms by which SARS-
CoV-2 could access the CNS to elicit these pathologies,
which can be broadly classified into direct invasion and

indirect hematological entry following inflammatory mediated
neurodegeneration of the blood-brain-barrier (BBB) (Iodice
et al., 2021). Direct neurological invasion is hypothesized to
occur through the olfactory epithelium and the cribriform plate
into the olfactory bulbs following nasal inhalation of aerosolized
droplets containing the infectious viral load. Additionally, it
has been suggested that SARS-CoV-2 penetration into the CNS
can result in heightened neuroinflammation which may cause
neurodegeneration or exacerbate existing neuroinflammation
from preexisting comorbidities such as Alzheimer’s dementia
and Parkinson’s disease, leading to the development of
neuropsychological symptoms (Iodice et al., 2021).

Hematological spread is another proposed mechanism by
which SARS-CoV-2 can gain access to the CNS. One possible
mechanism involves the attachment of SARS-CoV-2 to ACE2
expressed on BBB endothelial cells and the induction of
neuroinflammation, which weakens the protective barrier of
the brain and thus provides access for the virus. It is also
hypothesized that it is possible that the virus may circumvent
BBB altogether by infecting CNS-infiltrating macrophages and
monocytes (Zhou et al., 2020b). Furthermore, astrocytes, a vital
component of the BBB, can receive signals from circulating pro-
inflammatory cytokines, generated in response to viral infection
in the lungs, which in turn cause SARS-CoV-2 to enter the CNS
and induce neuroinflammation (Murta et al., 2020). Moreover,
SARS-CoV-2 can elicit the pro-inflammatory phenotype of
microglia, the native immune cells in the CNS, which up-
regulate the expression of genes involved in neuroinflammation
(Amruta et al., 2021). In addition, it has been demonstrated
that SARS-CoV-2 infection can facilitate neuronal injury,
encephalitis, fibrosis, thrombosis and axonal damage (Bradley
et al., 2020; Turski et al., 2020; Wang et al., 2020a). As, COVID-
19-associated pathological changes are characterized by distinct
changes in the levels of specific circulating biomarkers, the
expression profile of these biomarkers may demonstrate a link
between various disease states. The Schematic representation of
various neurodegenerative changes associated with COVID-19
is shown in Figure 2. Understanding the changes in expression
of these circulating biomarkers may provide insights into the
holistic understanding of the underlying process by which
COVID-19 long-haulers experience their cognitive dysfunction.

Role of circulating biomarkers in
COVID-19-associated cognitive
dysfunction

Circulating biomarkers present a promising approach in
the research and clinical practice of various diseases including
neurodegenerative diseases as they are minimally invasive,
highly cost-effective and provide high specificity (Solfrizzi
et al., 2006; Pillai et al., 2020; Lakhani et al., 2021; Kivisakk
et al., 2022). The prognostic utility of plasma biomarkers in
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FIGURE 2

Schematic representation showing the neuronal infection of SARS-CoV-2 virus and CNS damage caused by the infection that leads to cognitive
dysfunction and neurodegenerative diseases. Angiotensin-converting enzyme-2 (ACE-2), Alzheimer’s disease (AD), Parkinson’s disease (PD),
Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), Multiple system atrophy (MSA), Ischemia stroke (IS).

neuroinflammation, vascular injury, and cognitive dysfunction
may aid in the management of clinical care and treatment
strategies. Hence in this section, we are highlighting the
importance of some key biomarkers of cognitive decline and
neurodegeneration that are altered in COVID-19 for their future
application in research on therapeutic targets and prognostic
deliberations of COVID-19- associated cognitive dysfunction.
A summary of the findings are illustrated in Table 1.

Glial fibrillary acidic protein

Astrocytes are the most abundant cell type throughout
the CNS and have many roles including but not limited
to maintenance of BBB, neurotransmitter homeostasis,
synaptogenesis, neurogenesis, ion and water homeostasis,
and neuronal cholesterol synthesis (Cabezas et al., 2014; Liu
et al., 2018). When neurological insult occurs, astrocytes
become activated through reactive gliosis that involves the
upregulation of glial fibrillary acidic protein (GFAP), a widely
known biomarker of brain injury (Pekny and Pekna, 2014).
As a structural protein that is unique to astrocytes, GFAP
provides stability to astrocytes, thereby influencing their shape
and movement (Eng et al., 2000; Hol and Capetanaki, 2017).
Therefore, GFAP has been regarded as a biomarker of reactive
astrocytes in a variety of neuropathological conditions (Eng
et al., 2000). Elevated circulating levels of GFAP have been
linked to a number of such neurological conditions including
traumatic brain injury (TBI), spinal cord injury, multiple
sclerosis (MS), Alzheimer’s Disease (AD), Alexander disease,
Parkinson’s disease (PD), and neuromyelitis optica spectrum
disorder (Elahi et al., 2020; Abdelhak et al., 2022; Heimfarth
et al., 2022; Kim et al., 2022; Newcombe et al., 2022). It is

evident that GFAP has been and continues to be explored as
a potential biomarker of neurological injury across several
neurodegenerative and inflammatory CNS diseases.

Recent studies have found elevated levels of GFAP in
serum and/or plasma of COVID-19 patients (Kanberg et al.,
2020, 2021; Frontera et al., 2022; Hanson et al., 2022; Sahin
et al., 2022). This supports that GFAP correlates with disease
severity, as it was found at significantly higher levels in
COVID-19 patients who died during hospitalization when
compared to those who survived (Frontera et al., 2022). Other
results have supported elevated GFAP levels with disease
severity but did not find a significant correlation with the
presence of neurological symptoms (Sahin et al., 2022). One
study found that GFAP levels normalized in all COVID-19
patients despite disease severity and the persistence of reported
cognitive symptoms suggesting that the symptoms of COVID-
19-associated cognitive impairment linger without the presence
of active CNS injury (Kanberg et al., 2021). These findings
may also further support the proposed mechanism that reactive
gliosis following SARS-CoV-2 infection causes COVID-19-
associated cognitive dysfunction by spreading hematogenously,
infecting endothelial cells, and disrupting the BBB (Johansson
et al., 2021; Mohamed et al., 2022). Taken together, these
findings suggest that additional studies with larger sample sizes
and standardized protocols should be explored to determine
exactly how useful plasma or serum GFAP can be as a biomarker
for COVID-19-associated cognitive impairment.

Neurofilament light chain

Neurofilaments (Nfs) are classified as type IV intermediate
filaments that provide cytoskeletal stability and allow for radial
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TABLE 1 Summary of circulating biomarkers associated with neurological dysfunction showing potential dysregulation in COVID-19.

Biomarker Source Function Pathophysiology Status in
neurodegenerative
diseases

Patients’ information Status in
COVID-19

References

GFAP Serum/
plasma

Provides stability to
astrocytes influencing their
shape and movement.

Astrocytes damage and
inflammation

AD- increased
PD- increased
MS- increased

1. 47 COVID-19 patients divided
into 3 groups related to systemic
disease severity.
2. 100 COVID-19 patients classified
into three main groups: mild,
moderate and severe patients.
3. 58 COVID-19 patients divided
into 3 groups related to disease
severity.
4. 251 hospitalized COVID-19
patients aged between 60-83 years
without a history of dementia

Significantly
increased

Eng et al., 2000; Elahi et al., 2020;
Kanberg et al., 2020, 2021; Frontera
et al., 2022; Heimfarth et al., 2022;
Kim et al., 2022; Sahin et al., 2022

NFL Serum/
plasma

Provide cytoskeletal
stability and allow for
radial growth of neurons.

Neuroaxonal injury AD- increased
PD- increased
ALS- increased
HD- increased
LBD- increased

1. 104 COVID-19 patients
2. COVID-19 Patients classified into
3 groups according to the disease
severity: mild (n = 24), moderate
(n = 28), and severe (n = 48).
3. 142 hospitalized COVID-19
4. 251 hospitalized COVID-19
patients aged between 60-83 years
without a history of dementia
5. 57 hospitalized Covid-19 patients
without major neurological
manifestations

Significantly
increased

Yuan et al., 2017; Gaetani et al.,
2019; Palermo et al., 2020; Rajan
et al., 2020; De Lorenzo et al., 2021;
Kanberg et al., 2021; Prudencio
et al., 2021; Verde et al., 2021, 2022;
Chouliaras et al., 2022; Frontera
et al., 2022; Thijssen et al., 2022;
Zanella et al., 2022

P-tau 181 Serum/
plasma

Maintaining neuronal
microtubule integrity by
providing stability and
encouraging assembly.

Form neurofibrillary
tangles

AD- increased 1. 16 COVID-19 volunteers without
neurological symptoms and 8
COVID-19 volunteers with
neurological symptoms
2. 251 hospitalized COVID-19
patients aged between 60-83 years
without a history of dementia

Significantly
increased

Metaxas and Kempf, 2016; Wang
and Mandelkow, 2016; Moscoso
et al., 2021; Sun et al., 2021; Frontera
et al., 2022; Smirnov et al., 2022

UCH-L1 Plasma Removing ubiquitin from
their target proteins
maintaining the nervous
system integrity.

Changes in regulating the
function of various
synapses influencing their
maintenance, transmission,
and plasticity.

PD- increased
AD-increased
FA- increased

1. 27 hospitalized COVID-19
patients aged 54-76 years without
major neurological manifestations
2. 251 hospitalized COVID-19
patients aged between 60-83 years
without a history of dementia
3. 104 COVID-19 patients aged 49-
67

Significantly
increased Bishop et al., 2016; Zeitlberger et al.,

2018; Cooper et al., 2020; Ng et al.,
2020; De Lorenzo et al., 2021;
Bogdan et al., 2022; Frontera et al.,
2022

S100B Serum Regulation of cell
proliferation and
cytoskeletal structure

Cause astrocyte damage
and injury

AD- increased
PD- increased
ALS- increased
MS- increased

1. 74 hospitalized COVID-19
patients
2. 64 COVID-19 patients (34 mild
cases; 30 severe cases)
3. 57 patients hospitalized with
COVID-19
4. 58 COVID-19 Patients classified
into mild (n = 17), moderate
(n = 18), and severe (n = 23).

Significantly
increased

Steiner et al., 2007; Lam et al., 2013;
Barateiro et al., 2016; Serrano et al.,
2017; Cristovao and Gomes, 2019;
Aceti et al., 2020; Angelopoulou
et al., 2021; Mete et al., 2021;
Savarraj et al., 2021; Sahin et al.,
2022
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growth of neurons (Yuan et al., 2017; Gaetani et al., 2019).
Under normal conditions, axons release neurofilament light
chain (NfL), the most abundant subunit of Nfs, into the blood
at low levels, and this has been found to increase with age (Yuan
et al., 2017; Gaetani et al., 2019; Zanella et al., 2022). Moreover,
during neurological degeneration or injury, these levels increase
significantly indicating its potential use as a biomarker of
neuroaxonal injury (Zanella et al., 2022). Elevated levels of NfL
in serum have been associated with various neuropathologies
such as cognitive decline, TBI, AD, PD, MS, Lewy body dementia
(LBD), frontotemporal dementia (FTD), Amyotrophic Lateral
Sclerosis (ALS), and Huntington Disease (HD) (Palermo et al.,
2020; Rajan et al., 2020; Verde et al., 2021; Chouliaras et al., 2022;
Ebenau et al., 2022; Newcombe et al., 2022; Thijssen et al., 2022).

Studies examining various COVID-19 patient populations
have also found elevated plasma and or serum levels of NfL
(Ameres et al., 2020; Kanberg et al., 2020, 2021; Aamodt et al.,
2021; De Lorenzo et al., 2021; Prudencio et al., 2021; Frontera
et al., 2022; Hanson et al., 2022; Verde et al., 2022). Similarly
to GFAP, NfL was elevated in hospitalized patients who had
COVID-19 encephalopathy (Hanson et al., 2022). NfL also
correlates with disease severity as elevated plasma levels were
found in COVID-19 patients that died during hospitalization
(Aamodt et al., 2021; Frontera et al., 2022). When compared
to the control group consisting of non-COVID-19 AD patients,
the COVID-19 patients exhibited higher levels of NfL (Frontera
et al., 2022). COVID-19 patients who did not have obvious signs
or symptoms of cognitive dysfunction also had elevated levels
of serum NfL (Prudencio et al., 2021; Verde et al., 2022). In
another group of intensive care unit (ICU) COVID-19 patients,
those who did not survive the infection had higher levels of NfL
when compared to those who survived (Aamodt et al., 2021).
Report shows that after 30-70 days, plasma NfL levels increased
persistently and then normalized after six months in COVID-19
patients who continued to report the presence of neurological
symptoms (Kanberg et al., 2021). Also plasma NfL levels were
found to be increased from the first follow-up to the last in the
severe group (Kanberg et al., 2020). Both studies support their
shared hypothesis of delayed axonal injury occurring in severe
COVID-19 patients, while astrocyte activation occurs earlier
and is not limited to the severe COVID-19 patient population
(Kanberg et al., 2020, 2021). The elevated concentrations of
plasma NfL found in these COVID-19 patient populations
warrants further investigation to explore its neuropathological
mechanism causing neuroaxonal injury to determine whether it
can be a contributing factor to the cognitive sequelae that arises
in post-COVID-19 infections.

Phosphorylated tau at threonine-181

The soluble tau proteins are important for maintaining
neuronal microtubule integrity by providing stability and
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encouraging assembly (Wang and Mandelkow, 2016). The
post-translational phosphorylation of tau is necessary for
the protein to change its confirmation to operate under
physiological conditions (Wang and Mandelkow, 2016; Kent
et al., 2020). However, when phosphorylated excessively, the
tau proteins dissociate from microtubules and aggregate with
one another becoming insoluble and ultimately leading to
extensive networks of neurofibrillary tangles (NFTs), which
are characteristic of AD pathology (Metaxas and Kempf,
2016). The neurogenerative diseases distinctively express the
hyperphosphorylation of Tau and subsequent aggregation are
altogether known as tauopathies (Wang and Mandelkow, 2016).
The role of p-tau 181 has been explored extensively in AD
pathology and has been found to predict cognitive decline and
AD several years before diagnosis and/or death (Guo et al., 2017;
Lantero Rodriguez et al., 2020; Moscoso et al., 2021; Smirnov
et al., 2022). These findings support p-tau 181 as a promising
blood biomarker for AD and the potential for its application in
other tauopathies.

Elevated levels of serum and/or plasma p-tau 181 have been
found in COVID-19 patients (Sun et al., 2021; Frontera et al.,
2022). COVID-19 patients who did not survive the infection
and those who developed COVID-encephalopathy had elevated
levels of p-tau 181, along with NfL and GFAP as mentioned
previously. The study also found that hospitalized COVID-19
patients who experienced new cognitively related symptoms
also had elevated levels p-tau 181 when compared to patients
who did not experience additional cognitive sequelae (Frontera
et al., 2022). In a study that examined the contents of neuronal-
enriched extracellular vesicles (nEVs) in the plasma of COVID-
19 patients, elevated levels of p-tau 181 were found and these
levels also had a significant correlation with NfL in patients who
reported neurological sequelae (Sun et al., 2021). There is some
evidence suggesting that COVID-19 worsens pathology that
has been implicated in AD such as tau, β-amyloid aggregation,
neuroinflammation cerebral ischemia, and disruption of the
BBB (Miners et al., 2020; Shen et al., 2022). Therefore, these
findings suggest that p-tau 181 is yet another neurodegenerative
biomarker correlated with COVID-19 disease severity during
and/or following SARS-CoV-2 infection.

Ubiquitin Carboxy-Terminal Hydrolase
L1

Ubiquitin is a regulatory protein that is widely known for
its role in the ubiquitin-proteasome system (UPS), which is
involved in cellular processes including protein degradation,
DNA repair and cell trafficking (Bishop et al., 2016; Guo and
Tadi, 2022). In neurons, ubiquitination is involved in regulating
the function of various synapses influencing their maintenance,
transmission, and plasticity by altering the quantity of proteins
at each synapse (Mabb and Ehlers, 2010). Deubiquinating

enzymes known as deubiquitinases (DUBs) are responsible
for removing ubiquitin from their target proteins (Bishop
et al., 2016). Ubiquitin C-terminal hydrolase L1 (UCH-L1) is
a specific member of this group that is highly expressed in
neurons (Bishop et al., 2016). Higher levels of plasma UCH-L1
have been associated with PD (Ng et al., 2020), AD (Bogdan
et al., 2022), Friedreich’s Ataxia (Zeitlberger et al., 2018), TBI
(Wang et al., 2018), and general cognitive capabilities (Zhang
et al., 2022a). The loss of UCH-L1 has resulted in the loss of
neurons and instability of axons, while in some cases oxidatively
modified UCH-L1 may aggregate (Bishop et al., 2016). These
findings support that UCH-L1 is utilized as a general marker of
neurodegeneration and other CNS-related complications.

Various COVID-19 patient populations have also
experienced elevated levels of plasma UCH-L1 (Cooper
et al., 2020; Frontera et al., 2022). It was found to correlate
with COVID-19 disease severity as it was significantly higher in
COVID-19 patients with encephalopathy (Frontera et al., 2022).
As mentioned previously, hospitalized COVID-19 patients who
experienced new neurological symptoms during admission had
elevated plasma levels of UCH-L1, p-tau 181, and NfL, when
compared to the control group consisting of non-COVID AD
patients (Frontera et al., 2022). A group of ICU COVID-19
patients were also found to have higher levels of UCH-L1 that
was also associated with delirium (Cooper et al., 2020). In
another group of COVID-19 patients, UCH-L1 and NfL yielded
predictive values on whether patients required a transfer to the
ICU (De Lorenzo et al., 2021). Hence, it remains a possibility
that UCH-L1 may be used as a prognostic biomarker when
combined with others in providing potential clinical outcomes
in COVID-19 patients (De Lorenzo et al., 2021).

S100 calcium-binding protein B

The S100 protein family consists of proteins that principally
bind Ca2+ and are named S100 because they dissolve in a neutral
pH solution consisting of 100% saturated ammonium sulfate
(Sedaghat and Notopoulos, 2008). A frequently investigated
member of this protein family, S100 calcium-binding protein
B (S100B), is used to describe levels of both the heterodimer
S100AB and homodimer S100BB (Thelin et al., 2017). Serum
levels of S100B may indicate astrocyte damage or injury,
though with less accuracy than GFAP due to its more extensive
distribution throughout different cell types of the CNS (Steiner
et al., 2007). The function of S100B also differs depending
on the concentration, having cytotoxic effects when increased
(micromolar) and neuroprotective effects when at lower levels
(nanomolar) in serum (Lam et al., 2013). S100B has been
implicated in several neurological disorders including TBI
(Thelin et al., 2017; Mondello et al., 2021), AD (Cristovao and
Gomes, 2019), PD (Angelopoulou et al., 2021), ALS (Serrano
et al., 2017), and MS (Barateiro et al., 2016). Micromolar levels
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of S100B is reported to cause such disorders by activating
astrocytes and microglia, inducing nitric oxide (NO) release,
increasing reactive oxygen species (ROS) and ultimately leading
to neuroinflammation and loss of neurons (Michetti et al., 2019).
These findings support that S100B is continuing to be explored
as a potential blood biomarker across neurological disorders.

Elevated levels of circulating S100B has also been found
in different groups of COVID-19 patients (Aceti et al., 2020;
Mete et al., 2021; Savarraj et al., 2021; Sahin et al., 2022). As
mentioned with previous brain injury biomarkers, serum S100B
has also been associated with disease severity in COVID-19
patients (Aceti et al., 2020; Mete et al., 2021). Report show that
levels of serum S100B were not correlated with neurological
symptoms overall in acute phase COVID-19 patients, but did
find marginally elevated levels of S100B in patients with more
than one neurological symptom (Sahin et al., 2022). This may
suggest that the elevated levels of S100B represents CNS injury
to some extent during the acute phase of COVID-19, but
it is unclear what implications this may have both clinically
and in long-COVID patients. S100B has also been described
as a pro-inflammatory ligand by binding to the Receptor for
Advanced Glycation Endproducts (RAGE), which itself has
been associated with neuroinflammation following neurological
insult (Michetti et al., 2019). These findings may partly explain
the association of elevated levels S100B with both disease
severity and cognitive sequelae in COVID-19 infection. The
exact role of S100B in COVID-associated cognitive dysfunction
remains to be discovered to confirm whether it is directly
contributing to neuropathological damage and/or it is a reaction
of downstream inflammatory processes.

Neuron specific enolase

Neuron specific enolase (NSE) is the gamma isozyme named
due to its specificity for neuronal and neuroendocrine cells
(Haque et al., 2018). NSE itself can be expressed as two
different isozymes in neurons as either γγ or αγ (Polcyn
et al., 2017). In astrocytes, NSE is expressed as γγ and in
oligodendrocytes and microglia it is found as the αγ subunits
(Polcyn et al., 2017). NSE has therefore been linked to both
neurological and non-neurological pathologies due to its tissue
specificity and upregulation following axonal injury (Polcyn
et al., 2017). Similar to S100B, NSE can be both neuroprotective
or neuroinflammatory depending on surrounding conditions
such as the typical homeostatic environment, disease state, or
presence of injury (Polcyn et al., 2017). The neuropathological
conditions that have been associated with altered levels of
plasma or serum NSE include AD (Chaves et al., 2010), HD
(Ciancarelli et al., 2014), postoperative cognitive dysfunction
(POCD) (Wan et al., 2021), and beta-propeller protein-
associated neurodegeneration (BPAN) (Takano et al., 2017).

Neuron specific enolase levels have also been found at higher
concentrations in the serum or plasma of COVID-19 patients

(Wei et al., 2020; Cione et al., 2021; Savarraj et al., 2021).
Increased levels of serum NSE has also been associated with
disease severity as mentioned previously with other biomarkers
specifically in a cohort of COVID-19 patients who developed
dyspnea (Cione et al., 2021), in critical cases of COVID-19
patients (Wei et al., 2020), and in patients immediately following
hospital admission for COVID-19 infection (Savarraj et al.,
2021). A unique observation found was that serum NSE was
found at significantly higher levels in men when compared to
women, which may support increased susceptibility to COVID-
associated cognitive dysfunction in men (Savarraj et al., 2021).
NSE may be elevated in COVID-19 due to the potential presence
of axonal injury (Polcyn et al., 2017), lung injury (Cione
et al., 2021), neuroinflammation (Haque et al., 2018), or a
combination of all. There is not enough data at this time to
concretely validate the use of serum NSE as a biomarker of only
neurodegeneration and/or prognosis in COVID-19 infection.
Further investigation are required to support these findings and
uncover the exact role of NSE in COVID-29 infection.

Inflammatory cytokines

Pro-inflammatory cytokines, such as interleukin (IL)-6, IL-
1β, and tumor necrosis factor-α (TNF-α) are well established as
major contributing factors to neuropathological diseases (Wang
et al., 2015; Gupta et al., 2020b; Xin et al., 2021; Lu et al.,
2022). Anti-inflammatory cytokines such as IL-10 also play
crucial roles in brain injury and neuroinflammation due to its
ability to suppress inflammatory responses (Garcia et al., 2017;
Burmeister and Marriott, 2018; Lu et al., 2022; Sanchez-Molina
et al., 2022). C-reactive protein (CRP), a non-specific marker
of systemic inflammation, is induced by pro-inflammatory
cytokines such as IL-6, and has been associated with chronic
inflammation, and various degrees of cognitive dysfunction
(Watanabe et al., 2016; Luan and Yao, 2018; Vintimilla et al.,
2019; Gupta et al., 2020b; Xin et al., 2021). A cascade of events,
referred to as “cytokine storm” or “cytokine release syndrome
(CRS),” has been implicated in neurotoxicity, disruption of
the integrity of BBB, neuroglial cells activation, and ultimately
neuroinflammation (Gupta et al., 2020b; Zhang et al., 2022b).

In COVID-19 patients, elevated serum levels of IL-6, IL-
1β, TNF- α, IL-10, and CRP have been measured and discussed
(Chen et al., 2020; Han et al., 2020; Islam et al., 2021a;
Lavillegrand et al., 2021; Lu et al., 2021; Acosta-Ampudia et al.,
2022; Ferrando et al., 2022; Hirzel et al., 2022; Leretter et al.,
2022; Montazersaheb et al., 2022; Peluso et al., 2022; PHOSP-
COVID Collaborative Group, 2022; Schultheiss et al., 2022).
IL-6, CRP, and IL-10 and have also been associated with disease
severity amongst COVID-19 patients, correlating with severe
clinical outcomes and fatality (Han et al., 2020; Lavillegrand
et al., 2021; Alshammary et al., 2022; Ashktorab et al., 2022;
Azaiz et al., 2022; Galliera et al., 2022; Jafrin et al., 2022;
Mainous et al., 2022). CRP was found specifically to be positively
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correlated with two parts of a Continuous Performance Test
(CPT) conducted in patients who had resolved COVID-19
infections (Zhou et al., 2020a) and was found at significantly
elevated concentration in COVID-19 patients with moderate
to severe cognitive dysfunction (Arica-Polat et al., 2022). Even
though vast amount of evidence continues to validate the role
of hyperinflammation in SARS-CoV-2 infection, there is a
clear need for additional studies to explore the role of these
inflammation in the CNS in COVID-19 patient populations.

Role of circulating micro RNAs in
COVID-19-associated cognitive
dysfunction

Growing evidence suggests that as post-transcriptional
regulators of gene expression, miRNAs are involved in
physiological and pathological processes and their dysregulation
in function is synonymous with a multiplicity of diseases
(Condrat et al., 2020; Carini et al., 2021). The prominent
role of non-coding microRNAs in CNS and their signature
in the circulation has been well established in various
neurodegenerative diseases (Thounaojam et al., 2013; Bahlakeh
et al., 2021; Islam et al., 2021c; Perdoncin et al., 2021; Blount
et al., 2022). Hence, miRNAs as possible therapeutic targets and
disease markers for early diagnosis have strongly been advocated
because of their stability and convenience in extraction from
biological fluids (Szelenberger et al., 2019). In this section of the
review, we are showcasing the importance of some dysregulated
miRNAs in COVID-19 and their possible correlation with CNS
to further explore the mechanism of COVID-19- associated
cognitive dysfunction. A summary of the findings are illustrated
in Table 2.

miR-146a

miR-146a is produced by bone marrow mesenchymal stem
cells and released in exosome granules, then it is taken up
by activated astrocytes, particularly in the hippocampal region,
indicating it may serve a neuroprotective role in seizure-
related cognitive dysfunction (Kong et al., 2015). miR-146a
exerts an anti-inflammatory effect by inactivating NF-κB activity
through a reduction of interleukin-1 receptor-associated kinase
1 (IRAK1) and tumor necrosis factor associated factor 6
(TRAF6) (Nakano et al., 2020a,b). This will further lead to
the supression of NF-κB’s target genes such as the interleukins
IL-6, IL-8, IL-1β, and TNF alpha (TNF-α) (Saba et al., 2014;
Fan et al., 2020). Increased expression of miR-146a in brain
endothelial cells alters cytokine signaling and reduces NF-
κB activity by reducing its nuclear translocation and thus
decreasing the number of expressed T-cell adhesion molecules
and limiting their entry into the CNS in the development of

neuroinflammation (Wu et al., 2015). Circulating miR-146a
is reduced in the blood of AD (Kumar and Reddy, 2016;
Swarbrick et al., 2019), reducing the capability to deal with
neurodegenerative inflammation. Overexpression of miR146a
in microglia has been shown to reduce cognitive deficits in
learning and memory, attenuate neuroinflammation, reduce
beta-amyloid levels, and alleviate plaque-associated neuritic
pathologies. miR-146a also influences microglial phenotype
switching, allowing for the reduction of pro-inflammatory
cytokine production and improved phagocytic functions in the
clearance of beta-amyloid and tau (Liang et al., 2021). Thus,
serum miR-146a levels are being considered for clinical use as
a biomarker for neurodegenerative diseases (Kumar and Reddy,
2016; Mai et al., 2019; Swarbrick et al., 2019; Sabbatinelli et al.,
2021).

Cumulative evidences suggest that decreased expression
of miR-146a is associated with SARS-CoV-2 infection (Keikha
and Jebali, 2021; Roganovic, 2021; Sabbatinelli et al., 2021).
Furthermore, individuals with pre-existing inflammatory
conditions which cause a decreased expression of miR-146a are
thus predisposed to COVID-19 infection, and at risk for more
serious progression of the illness (Roganovic, 2021; Sudhakar
et al., 2022). Interestingly, COVID-19 patients showed a down-
regulation of this anti-neuroinflammatory miRNA, which in
turn causes an increase in expression of IL-6, IL-8, IL-17, and
other inflammatory cytokines (Arghiani et al., 2021; Roganovic,
2021). Increased levels of the inflammatory cytokine IL-6 thus
reduce the effectiveness of many drugs being currently tested
for use against COVID, such as tocilizumab, because they act as
antibodies against these inflammatory cytokines (Arghiani et al.,
2021; Sabbatinelli et al., 2021). Conversely, some studies have
shown that the expression of miR-146a is increased in COVID-
19 patients when compared to healthy controls (Donyavi et al.,
2021; Pinacchio et al., 2022). miR-146a is therefore uniquely
can be positioned as one of a handful of micro-RNAs suited for
use as a biomarker for cognitive dysfunction and SARS-CoV-2
infection and as a potential therapeutic for the treatment of
those disease states. Given the altered expression of miR-146a in
neurodegenerative diseases as well as in SARS-CoV-2 infection,
and its role as an anti-neuroinflammatory microRNA, future
studies with large populations may help to elucidate the actual
mechanism of action of miR-146a in COVID-19 mediated
cognitive decline and its importance as a circulating prognostic
marker.

miR-155

CNS upregulation of miR-155 has been associated cognitive
dysfunction and is the most expressed chromosome 21 miRNA
in Down’s Syndrome dementia, as it is co-expressed with
hyperphosphorylated tau protein (Tili et al., 2018). miR-
155 act as a prevalent CNS pro-inflammatory mediator and
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TABLE 2 Summary of circulating miRNAs associated with neurological dysfunction showing potential dysregulation in COVID-19.

miRNA Source Target genes Status in
neurodegenerative

diseases

Patients’ information Status in
COVID-19

References

miR-146a Serum IRAK1, TRAF6 IS- decreased
AD- decreased
PD- decreased

1.Different grades of COVID-19
patients (n = 103)
2. 13 COVID-19 patients,
characterized by multifocal
interstitial pneumonia confirmed
by CT-scan and requiring oxygen
therapy.

Significantly
decreased

Fan et al., 2020; Nakano et al.,
2020a,b; Keikha and Jebali,
2021; Keikha et al., 2021;
Sabbatinelli et al., 2021

miR-155 Serum SOCS1, SHIP1,
STAT5, IL13Ra1,
claudin-1,
annexin-2,
syntenin-1,
DOCK-1

IS- increased
AD- increased
PD- increased
ALS- increased
MS- increased

1. 18 patients after diagnosis of
Covid-19 and in the recovery
period.
2. 20 patients with COVID-19
infection in the acute period and
in the recovery period.
3. 150 COVID-19 patients
classified into two main groups:
moderate patients and severe
patients.

Significantly
increased

Lopez-Ramirez et al., 2014;
Song and Lee, 2015; Donyavi
et al., 2021; Zingale et al.,
2021; Abbasi-Kolli et al.,
2022; Haroun et al., 2022

Let-7b PBMC TLR7, HMGA2 AD- increased
PD-increased

MIC-increased

1. 18 patients after diagnosis of
COVID-19 and in the recovery
period.
2. 31 COVID-19 positive obese
female participants.

Significantly
increased

Coleman et al., 2017;
Donyavi et al., 2021; Huang
et al., 2021b; Qin et al., 2021;
Bellae Papannarao et al., 2022

miR-31 Serum RhoA, APP,
BACE1, PARK2,
GIGYF2

AD- decreased
PD- decreased

MSA- decreased

1.Different grades of COVID-19
patients (n = 103)
2. 122 COVID-19 patients with
different severity of illness.
3. 10 COVID-19 patients
2–15 days (average 8 days) post
symptomatic disease onset.

Significantly
decreased

Pearn et al., 2018;
Barros-Viegas et al., 2020; Li
et al., 2020; Tang et al., 2020;
Yan et al., 2020;
Bautista-Becerril et al., 2021;
Farr et al., 2021; Keikha and
Jebali, 2021; Keikha et al.,
2021

miR-16 Plasma APP, BACE1, Tau AD- decreased 1. 84 COVID-19 patients divided
according to the severity of the
disease.
2. 94 COVID-19 patients

Significantly
decreased

Liu et al., 2012; Parsi et al.,
2015; De Gonzalo-Calvo
et al., 2021; Li et al., 2022b

miR-21 Plasma/serum NF-κB,
PTEN/AKT,PI3K,
GSK-3β, mTOR1,
STAT3

AD- decreased
PD- decreased
IS-decreased

1. 10 COVID-19 patients
2. 13 COVID-19 patients,
characterized by multifocal
interstitial pneumonia confirmed
by CT-scan and requiring oxygen
therapy
3. 122 COVID-19 patients with
different severity of illness.
4. 6 severe and 6 moderate
COVID-19 patients

Significantly
decreased

Ma et al., 2011; Feng et al.,
2018; Gao et al., 2020; Bai and
Bian, 2022; Blount et al., 2022

Ischemia stroke (IS), Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS), Multiple system atrophy (MSA), mild cognitive
impairment (MIC), Peripheral blood mononuclear cell (PBMC), interleukin-1 receptor-associated kinase 1 (IRAK1), receptor-associated factor 6 (TRAF6), Suppressor of Cytokine
Signaling 1 (SOCS1), SH2 Domain-Containing Inositol 5’-Phosphatase1 (SHIP1), Signal Transducers and Activators of Transcription 5 (STAT5) and IL-13 Receptor Alpha 1 (IL13Ra1),
Dedicator of cytokinesis 1 (DOCK-1), toll-like receptor 7 (TLR7), High-mobility group AT-hook 2 (HMGA2), amyloid precursor protein (APP), β-secretase (BACE1), parkin E3 ubiquitin-
protein ligase (PARK2), interacting GYF protein 2 (GIGYF2), Ras Homolog Family Member A (RhoA), tubulin associated unit protein (TAU protein), Nuclear factor kappaβ (NF-κβ),
Phosphatase and tensin homolog (PTEN), Phosphoinositide 3-kinase (PI3K), Mammalian target of rapamycin complex 1 (mTOR1), Glycogen Synthase Kinase 3 Beta (GSK-3β), toll-like
receptor 4 (TLR4).

microglia activator by regulating inflammatory cytokines such
as (IFN)-λ and IFN-β (Thounaojam et al., 2013). In the
CNS, the action of miR-155 is mediated in microglia and
macrophages through NF-κB following stimulation of the
appropriate TLR and interferon-gamma release. It also causes

a reduction in the anti-inflammatory response by targeting
anti-inflammatory regulators such as Suppressor of Cytokine
Signaling 1 (SOCS1), SH2 Domain-Containing Inositol 5’-
Phosphatase1 (SHIP1), activator protein 1, Signal Transducers
and Activators of Transcription 5 (STAT5) and IL-13 Receptor
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Alpha 1 (IL13Ra1), further increasing inflammation (Song
and Lee, 2015; Zingale et al., 2021). miR-155 increases BBB
permeability by targeting cell–cell complex molecules including
claudin-1 and annexin-2 and focal adhesion components such
as syntenin-1 and dedicator of cytokinesis 1 (DOCK-1) (Lopez-
Ramirez et al., 2014). miR-155 is also associated with promotion
of CNS T cell responses and the subsequent development of
cognitive dysfunction symptomology. Through regulation of
interferon-gamma signaling, miR-155 can influence CD8 + T
cell activation, T cell development, various cell to cell
interactions, and macrophage activation. T cell activation and
IFN-y production, followed by infiltration into the CNS,
results in the deposition of beta-amyloid and thus cognitive
dysfunction (Song and Lee, 2015). The pro-neuroinflammatory
role of miR-155 was affirmed through knockout studies
which show reduced neuroinflammation, reduced cognitive
impairment and better recovery in traumatic brain injury
mouse models (Henry et al., 2019). Moreover, miR-155
overexpression is implicated in CCR2/CXCL2 translation
disorders, causing impaired cell migration and clearance
of beta-amyloid by blood-derived monocytes (BDMs) and
monocyte-derived macrophages (MDMs) in AD (Guedes
et al., 2016). The pro-inflammatory function of miR-155
also carries over into auto-immune conditions such as MS-
associated cognitive dysfunction by promoting inflammatory
damage to the neurovascular units of the blood-brain-
barrier via down regulation of junctional proteins (Maciak
et al., 2021). miR-155 contributes to CNS demyelination via
microglia activation and subsequent production of TNF-a, IL-
1, IL-6, interferon-inducible protein 10 (IP-10), macrophage
inflammatory protein-1a (MIP-1a), monocyte chemoattractant
protein-1 (MCP-1), and nitric oxide (NO) (Miller, 2012).
It is reported that miR-155 mediated impairment to the
BBB, damage of myelin and axons, synaptic dysfunction,
and dysregulated neurotransmitter production due to acute
inflammation can lead to brain atrophy and progressive
cognitive impairment (Varma-Doyle et al., 2021).

Serum miR-155 levels are significantly increased during the
acute and post-acute phases of SARS-CoV-2 infection (Bautista-
Becerril et al., 2021; Abbasi-Kolli et al., 2022). The study
which showed significantly increased expression of miR-155
in the peripheral blood mononuclear cell (PBMC) samples
of patients with acute COVID-19 infection suggest it as a
diagnostic marker for COVID-19 (Abbasi-Kolli et al., 2022).
Similarly, another study demonstrates miR-155 as a biomarker
to distinguish acute from post-acute phase of COVID-19
disease (Donyavi et al., 2021). Additionally, plasma miR-155
levels appear to be significantly correlated with chest CT
findings, CRP and ferritin levels, mortality, d-dimer, WBC
count and neutrophil percentage. miR-155 levels are 90%
sensitive and 100% specific when used as a biomarker for the
detection of COVID-19 and are 76% sensitive and specific for
detection of severity of COVID-19 disease (Haroun et al., 2022).

Overexpression of miR-155 in SARS-CoV-2 infection thus may
partially explain the enhanced immune response that leads
to CNS damage in the context of covid-associated cognitive
dysfunction.

Let-7b

Let-7b a multifunctional miRNA that is differentially
expressed in issues of cognitive dysfunction in comparison to
healthy individuals (Rahman et al., 2020; Yuen et al., 2021).
Levels of Let-7b appear to be increased in diseases of cognitive
dysfunction such as MCI (Kenny et al., 2019), AD (Leidinger
et al., 2013), and PD (Huang et al., 2021b). Overexpression
of Let-7b in AD models was found to significantly reduce cell
viability, inhibit autophagy and increase apoptosis through
increased cleavage of caspase 3 and through increased
expression levels of PI3K, p-AKT, and p-mTOR in upstream
signaling pathways (Pang et al., 2022). Let-7b also appears
to be involved in neurodegeneration through interaction
with toll-like receptor 7 (TLR7) (Lehmann et al., 2012).
TLR7 mediated pathway of Let-7b action is additionally seen
in the postmortem hippocampal formations of alcoholics,
where TLR7 and Let-7b expression was increased, leading
to neuroinflammation and neurodegeneration (Coleman
et al., 2017). Additional studies have also shown the role of
Let-7b and TLR7 mediated mechanism of alcohol-associated
cognitive dysfunction (Qin et al., 2021). Let-7b has been shown
to regulate the function of high mobility group AT-hook 2
(HMGA2) protein in PD, causing a dysregulation of chromatin
structure and transcription which leads to decreased self-
renewal of neuronal stem cells, leading to neurodegeneration
(Huang et al., 2021b).

Let-7b levels are elevated in peripheral blood samples
in both the acute and post-acute stages of SARS-CoV-2
infection compared to healthy individuals (Donyavi et al.,
2021; Nain et al., 2021), suggesting potential use as a
clinical biomarker COVID-19 infection. Let-7b targets ACE2
causing dysregulation of ACE2 and potentially increasing
susceptibility to SARS-CoV-2 infection, making it a potential
target for therapeutic treatment of SARS-CoV-2 infection
(Bellae Papannarao et al., 2022). Let-7b, in the context of
SARS-CoV-2 infection, increases apoptosis through a reduction
of BCL-2, an anti-apoptotic protein, and through modulation
of immune responses, establishing a potential link between
chronic inflammatory illness such as type 2 diabetes and
COVID-19 (Islam et al., 2021b), which may have effect on
cognitive dysfunction. Reports shows showcase Let-7b as a
marker of lung disease which is highly prevalent in COVID-
19 (Islam et al., 2021b; Nain et al., 2021). These reported
upregulation of Let-7b in SARS-CoV-2 infection suggest its
possible link with cognitive dysfunction that warrants future
studies.
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miR-31

miR-31 is decreased in the serum of AD individuals
compared to healthy controls (Dong et al., 2015; Klyucherev
et al., 2022) and can be used as part of a panel in conjunction
with miR-93 and miR-146a to differentiate Alzheimer’s Disease
from Vascular Dementia (Dong et al., 2015). Expression
of miR-31 was also decreased in the serum of PD and
Multiple System Atrophy (MSA) individuals (Yan et al.,
2020). Letiviral delivery of miR-31 was able to significantly
ameliorate AD neuropathology by reducing Aβ deposition
in both the hippocampus and subiculum of transgenic mice
models (Barros-Viegas et al., 2020). The study shows that
miRNA-31 targets amyloid precursor protein (APP) and β-
secretase (BACE1), which further abolishes the pathogical
aletrations in AD. The results showed improvements in memory
deficits, reduced anxiety, and reduced cognitive inflexibility,
suggesting future possibilities for miR-31 to be used as a
therapeutic in the treatment of AD (Barros-Viegas et al., 2020).
RhoA has been reported to modulate synaptic plasticity and
inhibition of the RhoA pathway reduces cognitive impairment
and deficits in synapses and dendritic spines (Pearn et al.,
2018). miR-31 has been reported as a regulator of RhoA and
decrease in miR-31 plays a role in the development of cognitive
dysfunction in learning, memory, behavior, etc., patterns which
are similarly seen in neurodegenerative disease (Qian et al.,
2021). miRNA target prediction analysis have shown some PD-
and MSA-related genes such as parkin E3 ubiquitin-protein
ligase (PARK2), GRB10-interacting GYF protein 2 (GIGYF2) as
potential target of miR-31 (Yan et al., 2020).

miR-31 is multifunctional in the context of COVID-19,
particularly when discussing hypoxia and potential resultant

neurodegenerative effects. miR-31 serum expression levels have
been demonstrated to be decreased in COVID-19 infected
patients (Bautista-Becerril et al., 2021). Expression levels of miR-
31 appear to decrease with worsening severity of illness with
COVID-19 infection also, making it a worthwhile candidate
for use as a biomarker of COVID-19 infection and severity
(Keikha et al., 2021). Decreased expression may play a role
in the neurodegenerative pathologies seen with enhanced
micro coagulation in SARS-CoV-2 infected individuals. Thus,
decreased levels of miR-31 appear to have a multifactorial
effect in cognitive dysfunction and in SARS-CoV-2 infection
and presents as a potential link between the two disease
processes. Conversely, microRNA expression profile analysis of
another set of COVID-19 patients showed up-regulation of miR-
31 expression (Farr et al., 2021). Hence, future studies with
more population size and more detailed mechanistic approach
may clarify the exact role of miR-31 in COVID-19-associated
cognitive decline.

miR-16

miR-16 is differentially expressed in various
neurodegenerative diseases, with its levels being significantly
decreased in the serum of AD patients (Denk et al., 2018;
Mckeever et al., 2018). miR-16 regulates cell death in AD by
targeting APP (Liu et al., 2012; Zhang et al., 2015; Turk et al.,
2021). Downregulation of miR-16 in hippocampal neurons
has been associated with increases in APP eventual processing
to beta-amyloid followed by deposition into neurons within
the brain (Zhang et al., 2015; Grinan-Ferre et al., 2018). In
cell culture studies, miR16 has been shown to regulate Aβ

FIGURE 3

Schematic representation of the main mechanisms involved in the neurophysiology caused by SARS-CoV2 virus and the role of biomarkers and
miRNAs in neuronal damage. The SARS-CoV2 virus has the ability to infect brain tissue by mechanisms involving the olfactory and
hematological pathway, which will lead to an oxidative and inflammatory state in nervous tissue, due to the activation of neutrophils, astrocytes,
and microglial cells releasing excessive ROS and pro-inflammatory molecules. The imbalance in brain homeostasis leads to a dysfunction in the
expression pattern of different biomarkers and miRNAs, potentiating neuroinflammatory mechanisms, responsible for brain damage and the
consequent progression of cognitive dysfunction and neurodegenerative disorders. GFAP, Glial fibrillary acid protein; NFL, Neurofilament light
chain; P-tau-181, Phosphorylated tau at threonine-181; UCH-L1, Ubiquitin Carboxy-Terminal Hydrolase L1; S100B, S100 calcium-binding
protein B; NSE, Neuron Specific Enolase.
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production, and Tau phosphorylation (Hebert et al., 2012).
Similarly report shows a reduction of the expression of a
number of genes related to AD including APP, BACE1, tau,
inflammation and oxidative stress through the delivery of
miR-16 mimics directly to mouse brain (Parsi et al., 2015).
The role of miR16 in targeting genes involved in neurite
extension and branching in hippocampal neurons during
presymptomatic prion disease has also been reported (Burak
et al., 2018). miR-16 appears to have potential for future
drug development because it simultaneously targets various
endogenous targets of AD biomarkers. These findings suggest
that further research is needed into the role of miR-16 in other
forms of neurodegenerative diseases to evaluate its impact more
completely on cognitive function.

Serum miR-16 levels are likewise reduced in COVID-19
infected patients suggesting a potential link between differential
miR-16 expression and covid-associated cognitive dysfunction.
miR-16 levels were established to be inversely correlated with
length of ICU stay in COVID-19 infected patients as well,
opening the possibility for its use as a biomarker of disease
and severity (De Gonzalo-Calvo et al., 2021). Also, miR-
16 has already been used as a biomarker for other viral
respiratory illnesses such as community acquired pneumonia
(Galvan-Roman et al., 2020). miR-16 is capable of high affinity
binding to the SARS-CoV-2 genome, opening future avenues of
potential drug research (Kim et al., 2020; Nersisyan et al., 2020).
A single-cell RNA-sequencing based study identified miR-16 as a
potential virus targeting miRNAs across multiple cell types from
bronchoalveolar lavage fuid samples (Li et al., 2022b). Down
regulation of miR-16 levels in individuals with SARS-CoV-2
suggests miR-16 may play a role in covid-associated cognitive
dysfunction due to its previously defined role in other forms of
neurodegenerative cognitive dysfunction.

miR-21

miR-21 is extensively involved in processes governing
apoptosis and neuroinflammation in neurodegenerative
diseases and thus in cognitive dysfunction (Bai and Bian,
2022). Serum and CSF levels of miR-21 are decreased in
patients with AD compared to individuals with Lewy Body
Dementia and healthy controls (Gamez-Valero et al., 2019).
miR-21 acts as an anti-inflammatory microRNA by acting
as a negative feedback regulator on NF-κB in response to
pro-inflammatory signaling (Ma et al., 2011). miR-21 has been
shown to ameliorate cognitive impairments associated with
brain injury from subarachnoid hemorrhaging by modulation
of the PTEN/AKT pathway and reducing apoptosis in the
hippocampus and prefrontal cortex (Gao et al., 2020). Use
of miR-21 mimics in cell culture studies of AD has shown
that miR21 is capable of inhibiting beta-amyloid induced
apoptosis by increasing expression of PI3K, AKT, and GSK-3B

(Feng et al., 2018). Overexpression of miR-21 was demonstrated
to protect neurons of the hippocampus in epileptic rat studies
by inhibiting STAT3 (Bai and Bian, 2022). Microglial miR-21
has been reported to protect neurons from cell death under
hypoxic conditions (Zhang et al., 2012). miR-21 has been
shown to restore neurogenesis and reverse cellular senescence
via inhibition of the mTOR1 pathway in models of vascular
dementia, making a candidate as a potential therapeutic in the
treatment of vascular dementia and its associated cognitive
impairment (Blount et al., 2022).

Serum miR-21 levels have been reported to be decreased
in COVID-19 infected individuals (Li et al., 2020; Sabbatinelli
et al., 2021). The down-regulation in the relative expression
of miR-21 in COVID-19 patients was concomitant with
up-regulation of its target proinflammatory genes (Keikha
and Jebali, 2021). The study also demonstrate miR-21
as an anti- neuroinflammatory miRNA, for correlating
the disease grade from asymptomatic to critical illness
in COVID-19. Down regulation of miR-21 in COVID-
19 patients exacerbates systemic inflammation through
hyperactive immune response, loss of T cell function,
and immune dysregulation (Tang et al., 2020). Increased
systemic inflammation can weaken the blood-brain-barrier,
causing heightened neuroinflammation and resulting in
neurodegeneration. Thus, decreases in expression of miR-21
could directly and indirectly contribute to the development
and progression of covid-associated cognitive dysfunction, or
worsening of pre-existing cognitive dysfunction after infection
with SARS-CoV-2.

Conclusion

The different sequelae presented by post-COVID-19
patients are being increasingly studied from the improvement
of clinical and laboratory experience. Cumulative evidences
suggest that surviving patients of COVID-19 have a high risk
of developing some neuropsychiatric impairment, which can
occur in different forms, such as cases of depression, anxiety,
and severe mental illness. The sequelae related to cognitive
decline and neurodegeneration are diverse and there is a
need for detailed assessments to identify new neurological
conditions. An extremely relevant factor to be considered in
the fight against COVID-19 is the use of biomarkers in the
early recognition of patients susceptible to developing the
severe form of the disease. The discovery of potential markers
could be used to provide essential information that will assist
in stratifying these patients, improving primary care, and
developing optimal individualized therapy according to the
patient’s response to cognitive damage. The review summarizes
the neuropathological changes associated with COVID-19
and signifies the importance of circulating biomarkers and
miRNAs in these neurodegenerative changes (Figure 3).
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Thus, the clinical use of the markers reported in this
review will significantly improve the development of new
policies to prevent, address and manage the neurological
conditions caused by SARS-CoV-2 infection and may aid
in future research exploring the mechanistic aspects of
COVID-19 associated neurodegeneration and cognitive
dysfunction.
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