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Abstract: Plant mitochondria have large genomes to house a small number of key genes. Most
mitochondria do not contain a whole genome. Despite these latter characteristics, the mitochondrial
genome is faithfully maternally inherited. To maintain the mitochondrial genes—so important for
energy production—the fusion and fission of mitochondria are critical. Fission in plants is better
understood than fusion, with the dynamin-related proteins (DRP 3A and 3B) driving the constriction
of the mitochondrion. How the endoplasmic reticulum and the cytoskeleton are linked to the fission
process is not yet fully understood. The fusion mechanism is less well understood, as obvious
orthologues are not present. However, there is a recently described gene, MIRO2, that appears to
have a significant role, as does the ER and cytoskeleton. Massive mitochondrial fusion (MMF or
hyperfusion) plays a significant role in plants. MMF occurs at critical times of the life cycle, prior to
flowering, in the enlarging zygote and at germination, mixing the cells’ mitochondrial population—
the so-called “discontinuous whole”. MMF in particular aids genome repair, the conservation of
critical genes and possibly gives an energy boost to important stages of the life cycle. MMF is also
important in plant regeneration, an important component of plant biotechnology.

Keywords: plant mitochondria; plant mitochondrial fusion; plant mitochondrial fission; plant
mitochondrial DNA; massive mitochondrial fusion in plants; plant life cycle; mitophagy

1. Introduction

Mitochondria in flowering plants, which this review focuses on, are the sites of oxida-
tive phosphorylation, producing most of the cellular adenosine triphosphate (ATP), central
to providing the energy for plant life processes [1]. In addition, mitochondria are the sites
of a complex metabolism and synthesise important compounds, including vitamins [2–4].
Plant mitochondria are mostly observed as small spherical ovoid organelles (Figure 1),
0.2–2.0 µm in diameter [5,6]. In the major plant model, Arabidopsis, a 0.8-µm sphere is
considered a reasonable representation of an average mitochondrion, when estimating
protein copy numbers per mitochondrion [6]. In a typical mesophyll cell, there can be
300–600 of these average mitochondria [7,8]. Mitochondria are, however, pleomorphic and
dynamic organelles that have other morphologies that are important in understanding a
number of aspects of mitochondrial cell biology and molecular genetics as they undergo
fission and fusion [9]. Fusion can lead to long tubular mitochondria of 16 µm [7] or large
tubuloreticular mitochondria [10] in certain cells and under certain conditions.

Mitochondria contain DNA, which in Arabidopsis codes for 32 proteins, including
critical proteins of the cytochrome electron transport chain, plus 3 rRNA and 22 tRNA
genes [11,12]. However, nuclear DNA codes for the overwhelming majority of mitochon-
drial proteins. Isolated mitochondria from Arabidopsis cell suspension cultures contained
917 different protein species, when all contaminating proteins from other compartments
were identified and eliminated [6]. All Angiosperms contain similar number of mito-
chondrial DNA (mtDNA) genes, but there is extensive variation in genome size. Most
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mitochondrial genomes in flowering plants range from 200 to 700 kb, but some can be
up to 11 Mb [13], with most of the DNA being non-coding. This contrasts with mam-
malian mitochondria which range from 15 to 17 kb [13], with human mtDNA being 16.6 kb.
Mitochondria do not form de novo and divide by fission to produce daughter mitochon-
dria [14,15]. As mitochondria are semi-autonomous, with molecular evidence suggesting
they were derived by endosymbiosis from an α-bacterium 1.5 billion years ago [16], it
would be expected that there would be a regular transmission of DNA to daughter mito-
chondria. However, in a population of mitochondria, some contain less than a genome
or even no DNA [8,9,17]. This problem can be overcome by fusion and subsequent fis-
sion [9,18]. Fission and fusion have been reviewed in Logan (2006) [19] and Arimura
(2018) [20]. Fusion may involve mitochondrial pairs or may be massive, involving many
mitochondria [21].
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cleus. Bars (a–d) 10 µm, Bars (e) = 20 µm. Figure 1 taken from [1] the Yale Journal of Biology and Medicine under Creative 
Commons Attribution-NonCommercial-ShareAlike 3.0.  
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This review focuses on the current understanding of the cell biology and genes
involved in mitochondrial fission and fusion, the cell and molecular biology of fission
and fusion in the metabolizing cell, the cell cycle, development, and inheritance. How
might these processes maintain the integrity/quality of the plant mitochondrion and its
complex genome?
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2. Mitochondrial Division
2.1. Proteins of the Mitochondrial Fission Machinery

The first protein associated with fission by higher plant mitochondria was the dynamin-
like protein ADL2b [14], identified by similarities to yeast DNM1pand human DRP1. The
fluorescently labelled ADL2b (GFP-ADL2b) localises to the mitochondrial constriction
sites and the tips of the mitochondrion. Subsequently, similar data were obtained for
ADL2a, with GFP-ADL2a localised to constriction sites [22,23]. Mutants of ADL2a produce
long tubular mitochondria [22,23], due to impairment of mitochondrial division. There
are a number of dynamin-related proteins, which are large GTPases with diverse cellular
functions [24]. A unified nomenclature for plant dynamin-related proteins has ADL2a
and ADL2b named as DRP3A and DRP3B, respectively [24], which has become common
usage [20,25]. DRP3A and DRP3B are also involved in peroxisome division [26].

Members of the DRP1 family have also been implicated in mitochondrial division [27],
denoted here as DRP1C and E. Elongated mitochondria were produced in mutant plants
with a T-DNA insertion in the DRP1E locus [27]. However, the function of the DRP1
family is in membrane trafficking for cell plate formation in cytokinesis and for cellular
tip growth in pollen tubes and root hairs [28]. Mutants of the dynamin-related protein
DRP5 also cause elongated mitochondria [26], though its role has now been shown to be
in the division of the chloroplast [29] and peroxisome [30]. It is generally accepted that
the dynamin-related proteins involved in driving mitochondrial fission are DRP3A and
DPR3B [20,31,32]. Double mutants of DRP3A and DRP3B can produce extreme tubular
mitochondria longer than 100 µm [31]. DRP3A and DRP3B are the contractile proteins that
act as “molecular scissors”, forming a ring-like structure that divides the mitochondria into
two [32].

In addition to DRP3A and DRP3B, there are several other proteins involved in the
mitochondrial division machinery. Mutants of human and yeast orthologues of FISSION
1 and FISSION 2 (FIS1 and FIS2) enabled BIGYIN1 and BIGYIN2 (FIS1 and FIS2) to be
identified with a mitochondrial division role [33]. A role for FIS1 and FIS2 in mitochondrial
division is supported by mutant and overexpression studies [34]. FIS1 proteins recruit
and anchor DRP3A and DRP3B proteins to the outer mitochondrial membrane [32,34,35].
ELONGATED MITOCHONDRIA1 (ELM1) was identified in Arabidopsis by screening and
analysing mutants with longer and fewer mitochondria [36]. The phenotype was similar to
drp3a. Studies with ELM1:GFP showed fluorescence surrounding the mitochondria [36],
rather than the constriction site and mitochondria tips found in DRP3A and DRP3B GFP
studies. ELM1 also interacts with DRP3A and DRP3B. A plausible model [36] based on
Arabidopsis data and understanding from yeast and humans is that ELM1 can interact with
DRP3A or DRP3B and then interacts with FIS1 or FIS2, which anchors the complex to
the mitochondrion. Deficiency of the mitochondrial phospholipid cardiolipin destabilises
DRP3 proteins [37], which would affect the DRP3:ELM1:FIS complex, inhibiting fission [37].
Other proteins identified in plant mitochondrial fission are PEROXISOMAL AND MITO-
CHONDRIAL DIVISION FACTOR1 (PMD1) and PMD2 [38]. Mutants produced elongated
and fewer mitochondria, and the PMD1 and PMD2 coiled coil proteins tethered to the outer
mitochondrial membrane. However, there was no evidence of interaction with DRP3A/B
or FIS1/2 [38]. At this stage, there is no specific role for PMD1 or PMD2 in the fission
process. In addition, they have non-redundant roles [38]. One possibility is that these
proteins are more strongly associated with morphogenesis than proliferation.

2.2. The Endoplasmic Reticulum and Mitochondrial Fission

It was first shown in yeast and mammalian cells that mitochondrial division occurred
at sites where the mitochondria contacted endoplasmic reticulum (ER) tubules [39]. Some
constriction occurs at the ER sites prior to recruitment of the dynamin-related protein
(DRP1in mammals DNM1 in yeast) which forms a helical ring around the mitochondrion
as DRP3A/3B would do [39]. Models of mitochondrial division in mammals and yeast
have an ER tubule wrapping around the constriction site adjacent to the dynamin-related
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protein ring [40,41]. What do we know of the ER connection in plants? In Arabidopsis,
using simultaneous visualisation of the ER and mitochondria, elongated mitochondria
induced by physiological treatments and mutants were investigated [5]. Beads on string-
like mitochondrial structures in association with ER tubules and small polygons were
observed, such that this was the forerunner of the mitochondrial division process into
smaller mitochondria ER tubules that could encircle the mitochondria. Studies on the moss,
Physcomitrella patens, also found an association between the ER tubules and mitochondrial
fission [42]. These observations suggest that ER–mitochondria interactions lead to assembly
of the DRP3A/3B fission complex. There clearly is a dynamic relationship between the
ER and mitochondria that influences mitochondrial division. The ER tubules in plants
form and then shrink, and can be formed from cisternae and form polygons [43]. However,
the specific role of the ER in plant mitochondrial division requires further work. Some
clues will no doubt be found from comparative research carried out on mitochondrial
dynamics with fungi and animals as well as bryophytes, as highlighted in the reviews by
Arimura [20] and Logan [19].

In mammalian cells, actin is active at ER mitochondria contact sites [41]. Actin
polymerisation is driven by the ER-associated inverted formin INF2 in the early stages
of mitochondrial fission [44], with DRP1 completing fission and severing. In plant cells,
the actin inhibitor Latrunculin B inhibited the dispersion of mitochondria and reduced
mitochondrial number in dividing protoplasts [7]. Mitochondrial numbers were, however,
hard to determine in the presence of Latrunculin B due to lack of dispersion and may have
been underestimated. Oryzalin, the microtubule de-polymerising agent, did not inhibit
mitochondrial dispersion and inhibited mitochondrial division, with mitochondria being
larger. In N. tabacum BY-2 cells, microtubules are involved in mitochondrial fission in
mitosis [45]. How the cytoskeleton in plants contributes to mitochondrial fission is still
unclear. The situation in mammals has recently been reviewed and both the ER and actin
are linked to the recruitment and assembly of the constriction apparatus, which the authors
term the “divisome” [46].

3. Mitochondrial Fusion
3.1. Demonstration of Mitochondrial Fusion

Fusion of isolated plant protoplasts allows the fusion of cells with different mitochon-
dria and the production of cytoplasmic hybrid plants. Mitochondrial DNA recombination
was demonstrated between two different mtDNAs in these latter studies [47]. Mitochon-
drial fusion with subsequent mitochondrial DNA recombination was recognised as a
common phenomenon in somatic hybrid/cybrid plants [48]. It was much later that there
was a direct demonstration of mitochondrial fusion in plants using the photoconvertible
fluorescent protein Kaede targeted to the mitochondrion of onion epidermal cells [9]. Kaede
targeted to the mitochondria causes a green fluorescence. A proportion of the mitochondria
were photoconverted to red. In onion epidermal cells, green and red mitochondria fused
transiently and became yellow and then the fused mitochondria divided [9]. Another study
used the protoplast fusion approach. In this case, mitochondria from one protoplast fusion
partner were labelled with the green fluorescent protein, while the other fusion partner con-
tained red-staining MitoTracker-labelled mitochondria [18]. Fused mitochondria produced
a yellow signal and showed what was called massive mitochondrial fusion (MMF), with
the whole mitochondrial population undergoing fusion. It had been previously shown that
isolated protoplasts destined for plant regeneration produce elongated mitochondria [7],
which subsequently undergo fission prior to cell division (Figure 1). The protoplast fusion
supported the elongated mitochondria being due to mitochondrial fusion.

3.2. The Mechanism of Mitochondrial Fusion

Unlike the situation with fission, obvious orthologues of yeast or mammalian fusion
have not been found [20]. However, recently, the GTPase ATMIRO2 has been investigated
in tobacco epidermal cells [49]. Homologues in yeast (ScGEM1) affect mitochondrial–
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ER interactions and in mammals (HsMIRO1) affect mitochondrial motility. Evidence
was obtained that AtMIRO2 regulates the tethering of mitochondria to the ER, such that
ER–mitochondria attachment increases mitochondrial fusion, associated with increased
clustering of mitochondria and decreased motility [49]. It has been shown that actin
polymerisation is not required for mitochondrial fusion [18,50], though myosin and mi-
crotubule inhibitors reduced fusion [18]. White et al. [49] have also suggested a role for
myosin in regulating mitochondrial fusion, based on analogies withHsMIRO1. Jaipargas
and co-workers also found that the ER influenced mitochondrial fusion [5]. The impor-
tant factors encouraging fusion were decreased tubular ER and mitochondrial motility
and increased polygon size; in addition, myosin was suggested to be important. A mu-
tant that affects mitochondrial clustering has been identified. This mutant known as
friendly causes clustering of mitochondria because of extended association time between
mitochondria [51]. Mitochondrial clustering is a prerequisite for mitochondrial fusion
regulated by the FRIENDLY gene. Again, the importance of the regulation of mitochondrial
motility comes to the fore [5,18,49,51]. The specific factors that enable the fusion of the
mitochondrial membranes remain to be elucidated.

4. Significance of the Mitochondrial Fusion/Fission Cycle
4.1. Mitochondrial DNA Content per Mitochondrion Is Highly Variable

The fusion/fission cycle has meant that the mitochondria population in a cell should
be thought of as a “discontinuous whole” [19]. What is the biological role of the mitochon-
drial fusion/fission cycle? The fusion/fission cycle has helped resolve one of the major
historical problems of plant mitochondrial molecular genetics. It has been proposed for
some time that plant mitochondria have variable amounts of DNA or no DNA at all [52]
and this has subsequently been confirmed [8,17,53,54]. Fusion offers the opportunity for
all mitochondria to gain access to mtDNA; tracking nucleoids provides evidence for this.
Direct demonstration of fusion accompanied by nucleoid visualisation shows that mi-
tochondrial fusion can decrease nucleoid heterogeneity, enabling most mitochondria to
contain DNA [9,18]. Mitochondrial DNA is packaged into membrane-bound nucleoids,
which are nucleoprotein structures readily visualised by the fluorochrome DAPI [12,18,55].
Even though it is possible to visualise nucleoids in most mitochondria after massive mi-
tochondrial fusion [18], this does not necessarily mean all nucleoids contain a complete
genome [17,54,56]. The mitochondrial genome can be very large [13] and is also multipar-
tite, physically a mixture of linear, branched and fewer small circular forms [1,13,55,57].
However, the mtDNA maps to a large circular form using mapping and sequence assem-
bly [13]. Fusion not only reduces mtDNA heterogeneity between mitochondria but allows
mixing of the mitochondrial contents including mRNAs, proteins and metabolites. This
mixing must be important as there are more mitochondria than there are copies of specific
genes [8,58]. Different mitochondrial genes can have different copy numbers, consistent
with the multipartite, subgenomic model [8,58], with not all subgenomic molecules being
replicated to the same extent.

4.2. MtDNA Recombination

It has become clear that, as originally proposed by Lonsdale et al. [52], the total
mtDNA of the cell must be considered as a single entity. It is the capacity for mitochondrial
fusion that allows the mtDNA population to participate in recombination—it cannot
be facilitated in a single punctate mitochondrion. The recombination allows for rapid
structural evolution but suppresses base sequence evolution [13,52,59,60]. Homologous
recombination is driven by high numbers of repeated sequences. It is fascinating that
plant mtDNA with its complex genome has lower base substitution rates than cpDNA
or plant nuclear DNAs as well as animal mtDNAs [59,60]. It has been suggested that
this is due to the genome facilitating homologous recombination-dependent repair and
mismatch repair [13]. Therefore, despite the diversity of the mtDNA with its subgenomes,
the genotype is faithfully transmitted from one generation to the next. Nevertheless, the
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mtDNA is transmitted as nucleoids [13]; however, they do not necessarily contain a whole
genome [17,54,56]. Therefore, MMF is an important consideration which is developed
further in the MMF section below.

4.3. Cytoplasmic Male Sterility

Mitochondrial DNA-encoded factors cause cytoplasmic male sterility (CMS), an im-
portant tool in the development of hybrid crops [61,62]. CMS commonly involves the
transcription of open reading frames (orfs), which ultimately causes sterile pollen [61,62].
While this latter type of orf could derive from interspecific hybridisation and mtDNA
rearrangements [62], following mitochondrial fusion, there are other types of CMS that
can derive from interspecific somatic hybrids. One example is mitochondrial fusion and
the development of feminised stamens (carpel-like); thus, there are no organs for pollen
production [63]. The development of carpelloid stamens is associated with mtDNA recom-
bination. The CMS phenomenon can clearly be linked to mitochondrial fusion, mtDNA
recombination and mitochondria–nucleus compatibility. The inheritance of mitochondrial
genotypes is generally maternally via the egg cell [64,65].

4.4. Mitochondrial Fusion and Energetics

Jaipargas et al. [5] found that mitochondrial fusion was favoured under conditions of
low energy status, such as darkness, low sugar and hypoxia, where increased energy levels
are required. This raises the question of whether mitochondrial fusion or fission can be
utilised to influence cellular metabolism. White et al. [49] suggest that fusion, promoted
by ER tethering and low mitochondrial mobility, can be used as a device to support
high energy demand. Possibly, increased mixing of mitochondrial contents optimises the
capacity for ATP production.

4.5. Mitochondrial Fusion and Evolution

A study by Rice et al. [66] has shown, quite dramatically, the role of mitochondrial
fusion in horizontal gene transfer in the evolution of Angiosperms. The mtDNA (3.9 Mb)
from the Angiosperm Amborella trichopoda mapped to five circular chromosomes, coming
from Angiosperms, green algae and mosses. Following capture of the different genomes,
there was recombination. It is argued that fungal or animal mtDNA does not feature due
to the different mitochondrial fusion mechanisms that are common to Angiosperms, algae
and mosses. The evidence obtained to support multiple mitochondrial fusion is based on
very detailed sequence analysis.

5. Massive Mitochondrial Fusion in the Plant Life Cycle
5.1. The Metabolising Non-Dividing Cell

In a metabolising cell not undergoing division or differentiation, there are reports of up
to 600 punctate mitochondria in mesophyll cells [57], but this number can be much higher.
In the onion epidermal cells used to study mitochondrial fusion by Arimura et al. [9],
there were more than 10,000. The punctate mitochondria underwent fusion in a “kiss-and-
run” type process. Typically, green and red labelled mitochondria fused transiently to
form a yellow mitochondrion and separated to form two yellow mitochondria, with this
process occurring throughout the cell until all the mitochondria in the cell were yellow in
1–2 h. This suggests a constant mixing of mitochondrial contents by fusion to ensure most
mitochondria had the capacity for optimum ATP production.

5.2. Mitochondrial Fusion and the Cell Cycle

Given that mitochondria are not derived de novo, they must grow and divide in
the cell cycle as well as having an appropriate balance between fusion and fission. Mam-
malian mitochondria form a reticulate network by massive mitochondrial fusion in the
cell cycle [67–70]. There is evidence in some cell lines that this occurs in G1 and the G1/S
transition. This reticulum formation can be critical for normal cell cycle progression. Impor-
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tantly, the reticulate mitochondria have a greater ATP production capacity than at any other
stage [69]. There have been no reports of mitochondrial reticulum formation in the cell
cycle of flowering plants. Wang et al. [45] have studied the distribution of mitochondrial
size across the cell cycle in N. tabacum BY-2 cells. The percentage of the largest mitochon-
dria is highest in interphase and the percentage of the smallest mitochondria is highest in
anaphase. It was suggested that most fission occurs in mitosis. The mitochondrial fission
timing is related to the phosphorylation and ubiquitination of the DRP3A/3B proteins. The
DRP3A/3B proteins are most active in the phosphorylated state during mitosis and are
partially degraded in interphase. This means that in interphase, there is more of a balance
between fusion and fission, with the DRP3A/3B levels of expression contributing to the
fusion/fission balance. In isolated N. tabacum protoplasts undergoing the first division,
punctate mitochondria increased from 700 to about 2000 [7]. In protoplast division, mi-
tochondria distribute throughout the cell via actin filaments, enabling actin-dependent
partitioning of mitochondria in equal numbers [7] to daughter cells (Figure 1). In roots, just
above the quiescent centre, mitochondria numbers double in the cell cycle and there is no
MMF [54]. In this latter study, it was not investigated whether there were binary fusions as
in onion epidermal cells [9], but presumably, there is similar fusion and fission of punctate
mitochondria.

Mitochondrial DNA replication is required to maintain the genome. Available evi-
dence is consistent with the RDR (recombination-dependent replication) replication mecha-
nism involving linear molecules, similar to that used in bacteriophage T4 [20,55]. There are
examples in Arabidopsis of mtDNA duplication (99 to 183 nucleoids), associated with an
increase in mitochondrial number from 133 to 212, during the development of the two-cell
embryo [71]. However, mtDNA replication may be highly amplified in some cells and then
partitioned subsequently to daughter cells without mtDNA replication, as occurs in root
growth [54,72]. When mitochondria undergo fission in the cell cycle, there is segregation
of mtDNA to daughter mitochondria. Given the wide distribution of mtDNA levels in
mitochondria, the fairly equal partitioning that occurs in chloroplasts [1] is unlikely to
occur. Mitochondrial nucleoids are bound to the mitochondrial membrane [55,73]. Whether
the nucleoids are distributed in the mitochondrion to assist equal partitioning is unclear.
The cristae membrane structures may make this difficult.

Given that mitochondria are not derived de novo, it is essential that the mitochondria
transmitted to daughter cells in the cell cycle are of good quality. Fusion and fission con-
tribute to this, but dysfunctional punctate mitochondria must be eliminated. There is now
good evidence that plants [74,75], as with other eukaryotes have this capacity; though the
mechanisms are similar, they are not identical [76]. Removal of dysfunctional mitochondria
and chloroplasts can be carried out by autophagy [1,76,77], known as mitophagy for mito-
chondria. Mitochondria are sequestered by autophagosomes which are able to fuse with a
vacuole, where the mitochondria are subsequently degraded. Dysfunctional mitochondria
may be recognised by excessive ROS production (O2-), or possibly, a loss of membrane
potential (∆ψm) [76,78]. Central to the autophagy process are the AUTOPHAGY-RELATED
(ATG) proteins [76,78,79], which are involved in phagophore assembly, ultimately forming
the double membrane autophagosome [78]. The phagophore membranes may originate
from the ER, aided by several ATG proteins, notably the ATG1/ATG13 complex, the
ATG5 complex and ATG8, which complexes to the phagophore membrane via phospho-
ethanolamine (ATG-PE form) [76,77]. What is implied here is that in the cell cycle is a
type of surveillance mechanism for mitophagy. However, mitophagy and its regulation
have been predominantly investigated in the context of a range of stressors, such as UV
light [80], and senescence [76–79]. Interestingly, recent work has implicated the FRIENDLY
protein, linked to mitochondrial fusion because of its clustering role, in mitophagy. It has
been shown that friendly mutants are defective in mitophagosome formation, as FRIENDLY
is not recruited to the damaged mitochondria [81].
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5.3. Massive Mitochondrial Fusion in Regenerating Protoplasts

Isolated N. tabacum protoplasts, when isolated and cultured, can be readily regen-
erated into whole plants. Prior to the first division, the mitochondria undergo MMF [7]
followed by fission (Figure 1). Essentially, the whole mitochondrial population changes
from punctate mitochondria to predominantly long tubular structures, though there are
examples of unusual tubular structures and large structures of variable shapes because of
the fusion [7,18]. Subsequent fission results in numerous (approximately 2000) punctate
mitochondria per cell. To check if this was indeed mitochondrial fusion, two isolated proto-
plasts were fused. In one protoplast, the mitochondria fluoresced green with GFP, while in
the other, the mitochondria fluoresced red with MitoTracker [18]. After protoplast fusion,
mitochondrial fusion resulted in large yellow structures as well as tubular structures.

Studies were carried out with the protoplast system to investigate mitochondrial
nucleoid heterogeneity pre- and post-fusion. In freshly isolated N. tabacum protoplasts,
prior to MMF, approximately 25% of the mitochondria did not stain with DAPI, with no
nucleoids visible. When the same analysis was performed post-fusion, almost all mito-
chondria contained nucleoids visualised by DAPI. This study showing that mitochondrial
fusion decreased nucleoid heterogeneity is consistent with the mitochondria fusion studies
by Arimura et al. in onion epidermal cells [9].

MMF was also demonstrated in cultured Medicago truncatula and Arabidopsis meso-
phyll protoplasts but not protoplasts from N. tabacum callus and BY-2 cells [18]. In the case
of the N. tabacum, M. truncatula and Arabidopsis mesophyll cells, the MMF was associated
with dedifferentiation and reprogramming, while the callus and BY-2 cells were already
dedifferentiated. It is plausible that MMF in cells starting a new asexual generation reflects
a need to maximise mitochondrial and DNA quality. Yet, what about MMF in the plant
sexual life cycle?

5.4. Massive Mitochondrial Fusion in the Shoot Apical Meristem

Seguı-Simarro et al. [10] examined mitochondria morphology in collected EM images
from the Staehelin laboratory from many Arabidopsis cell types. The EM images were
largely from root tip, stem, mature leaf, meiocyte, microspore, pollen, endosperm and
embryo. All the cells had mitochondria with the classic punctate type of morphology.
However, cells of the shoot apical meristem (SAM) and the leaf primordia possessed a large
perinuclear mass of fused mitochondria. Particularly at the latter stages of the cell cycle,
in G2 and early mitosis, they possess a large tentacular/cage-like mitochondrial structure
surrounding the nucleus and then the spindle. The large tentacular structure forms at the
G2/mitosis stage because of both fusion and growth, so mitochondrial mass doubles in
the cell cycle. After cytokinesis, each daughter cell receives a tentacular mitochondrion.
Subsequently, mitochondrial fission produces punctate mitochondria. It was concluded that
the mitochondrial changes in these SAM cells ensure high rates of mtDNA recombination
and equal partitioning of mitochondria to daughter cells [10].

Subsequently, Seguı-Simarro and Staehelin argued [82] that what was happening in
the SAM, and not root meristems, for example, was extensive mixing of the mtDNA and
mitochondrial contents. This ultimately leads to high-quality mitochondria and mtDNA in
the female gametes. In the development of the vegetative parts of the plant from the SAM,
cell lineages derived from the SAM have normal punctate mitochondria. The cell cycle in
the non-SAM cells do not have a mtDNA reticulate phase as in mammalian cells. The SAM
studies [10,82] suggest that this MMF that occurs in the SAM contributes to a form of quality
control of mitochondria for the next generation, as observed in regenerating protoplasts.

5.5. Massive Mitochondrial Fusion in the Zygote

Mitochondria in the egg cell and zygote have recently been examined in Arabidopsis.
The egg cell has a mix of punctate and tubular mitochondria. However, the zygote has
extremely long tubular mitochondria, most likely due to MMF [83]. These long tubular
mitochondria form in association with long F-actin filaments. This again emphasises the
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importance of the cytoskeleton in the fusion process. Just prior to the first asymmetric
cell division, the mitochondria fragment into small punctate mitochondria. The apical
cell inherits small, largely punctate mitochondria, while the basal cell which forms the
suspensor has the tubular mitochondria. This suggests that the punctate mitochondria are
associated with development of the embryo. In animal cells, exit from the cell cycle and
entry into differentiation may be associated with inhibition of fusion and the formation
of fragmented mitochondria [84]. There are specific examples of this. In neurogenesis,
mitochondrial fusion is associated with cell renewal, whereas cells that differentiate into
neurons have high levels of mitochondrial fission [85].

5.6. Massive Mitochondrial Fusion in Germination

Mitochondria have been studied by Paszkiewicz et al. [86] in the dry seed, through
imbibition and during germination in Arabidopsis. In the dry seed, the mitochondria are
rudimentary, with little internal membrane development and are called promitochondria.
Nucleoids are present in 90% of the promitochondria. It is feasible that the MMF that
occurs in the SAM [10,82] and in the zygote [83] contributes to the nucleoid content being
less heterogeneous in the promitochondrial population. During germination, there is MMF
in the form of tubuloreticular mitochondria that surround the nucleus, similar to what
occurs in the SAM. This structure is associated with a doubling of mitochondrial volume.
Subsequently, the tubuloreticular structure undergoes fission and the number of mito-
chondria is double the number in the dry seed. In this case, the number of mitochondria
without nucleoids decreases with nucleoids being observed in 67% of the mitochondria.
This re-establishes the heterogeneous nucleoid situation, where part of the population
of mitochondria lacks nucleoids [8,17,53,54] and “kiss and run” fusion becomes impor-
tant [9]. The germination study again points to the importance of MMF in the potential for
recombination, DNA repair and mitochondrial content mixing, as autotrophy, growth and
development are initiated.

5.7. Significance of Massive Mitochondrial Fusion

Given that the total mtDNA of the cell must be considered as a single entity, this makes
MMF or hyperfusion an important part of maintaining the integrity of the mitochondrial
genome. This means that it provides an important opportunity for all the subgenomes
to interact for recombination and DNA repair for the next generation. What is known
currently is that MMF occurs in the SAM [10,82] where flowering is initiated, in the
zygote [83] and in germination [86], which are key points in the life cycle. This is not to
say that the fusion/fission cycle involving few mitochondria is not unimportant in the cell
cycle, cell development and the functioning of the cell. In these latter cases, the importance
may be in DNA replication, and ensuring transcripts, proteins and metabolites are readily
available for the maintenance of functional mitochondria and their genomes.

While the fusion/fission cycle is of key importance for maintaining mitochondria and
their genome, there may be other roles for MMF. In plants, there is some evidence that
fusion favours high energy demand [5,49] and MMF occurs at times prior to the onset of
major development shifts. MMF also occurs prior to the first cell division on the path to
regeneration. If there is a connection between MMF and ATP production, there may be a
role for manipulating mitochondrial fusion as an approach to modulating mitochondrial
performance [49]. In mammalian cells, there is evidence that the hyperfused mitochondrial
reticulum in the G1/S stage of the cell cycle produces more ATP than any other stage of
the cell cycle [69].

6. Conclusions

The fusion and fission of plant mitochondria are crucial to maintaining the integrity
and quality of the mitochondrial genome. This is because the relatively large mitochondrial
genome must be considered on a whole-cell basis. In most species, plant mitochondria
have a heterogeneous DNA content, and a single mitochondrion does not contain a whole
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genome. The fusion process allows critical mixing to facilitate recombination repair and
reduce nucleotide changes in the critical genes required for ATP production. MMF or hyper-
fusion occurs at critical times of the life cycle, prior to flowering, in the enlarging zygote and
at germination (Figure 2). MMF is also important in plant regeneration (Figure 2). The en-
hanced mixing of mitochondrial contents may also influence ATP production. It is possible
that the MMF state boosts energy production prior to the initiation of major developmental
change. While there is a reasonable understanding of critical genes involved in fission
(such as DRP3A and 3B), understanding has lagged in the fusion process, though there are
promising recent developments [49]. Exactly how the ER and cytoskeleton contribute to
plant mitochondrial fission and fusion remains an interesting cell biology question.
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