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   Abstract: The concurrence of microorganisms in niches that are hostile like extremes of temperature, 
pH, salt concentration and high pressure depends upon novel molecular mechanisms to enhance the 
stability of their proteins, nucleic acids, lipids and cell membranes. The structural, physiological and 
genomic features of extremophiles that make them capable of withstanding extremely selective envi-
ronmental conditions are particularly fascinating. Highly stable enzymes exhibiting several industrial 
and biotechnological properties are being isolated and purified from these extremophiles. Successful 
gene cloning of the purified extremozymes in the mesophilic hosts has already been done. Various ex-
tremozymes such as amylase, lipase, xylanase, cellulase and protease from thermophiles, halothermo-
philes and psychrophiles are of industrial interests due to their enhanced stability at forbidding condi-
tions. In this review, we made an attempt to point out the unique features of extremophiles, particular-
ly thermophiles and psychrophiles, at the structural, genomic and proteomic levels, which allow for 
functionality at harsh conditions focusing on the temperature tolerance by them. 
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1. INTRODUCTION 

 The earth has a wide area of niches and ecosystems that 
are generally not habitable and referred to as extremes where 
microbial life systems sustain that need immediate attention 
of research and development. Organisms, commonly called 
extremophiles, thrive best under these extreme environmen-
tal conditions and represent the unique adaptability of primi-
tive life-forms [1]. Discussing particularly about thermo-
philes and psychrophiles, thermophiles are the organisms 
accustomed to its survival at uplifted temperature conditions. 
In contrast, psychrophiles or cryophiles are the organisms 
that proliferate at frigid temperature conditions. These organ-
isms are difficult to study because of the isolation, mainte-
nance and preservation at their optimum extrinsic tempera-
tures. It is important to mention that irrespective of the tem-
perature variations, all the macromolecules of the cell such 
as DNA, RNA, proteins, etc. should be operational and sta-
ble. One of the exciting features of these magical extremo-
philes lies hidden in the enzymes they secrete. The greater 
intrinsic stability of extremozymes than the enzymes isolated 
from its mesophilic counterparts makes them wonderful can-
didates to be used for application based industrial work. Alt-
hough the genomic, proteomic and molecular basis of their 
stability is not fully understood, significant research is un-
derway to explain their mechanism of adaptability to varia-
tions in temperatures [2]. Many reports in this area have 
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suggested that the factors responsible for the stability could 
be various bondings and interactions such as H-bond [3, 4], 
covalent bond, the composition of amino acid [5], the G+C 
content [6], tRNA composition and its folding patterns [7]. 
Pioneer efforts of some early research [8, 9] have made in-
sight into the study of the factors responsible for the thermo-
stability of proteins. The complete genome sequences of 
many hyperthermophilic archaeons, thermophiles and psy-
chrophiles have already been reported, thus determining the 
aspects of thermophilicity and psychrophilicity [10]. It has 
been studied that the structural stability of an organism de-
pends on the wide range of interactions [11], such as hydro-
gen bonding, hydrophobic and van der Waals [10]. To adjust 
the thermostability, various proteins use certain combina-
tions and permutations of these interactions [12], though 
these interactions are sometimes temperature-dependent. The 
stability of proteins in extremophiles is seen primarily 
through changes in the residues of amino acid. It has been 
observed that on the molecular surface of proteins charged 
residues (i.e., Glu, Arg and Lys) increase in thermophiles, 
while the same is in lesser quantity in case of psychrophiles 
[13]. The subsequent rise in Gly residues in psychrophiles 
increases protein stability. Genomic studies on extremo-
philes revealed that the structural composition of DNA [14] 
and the arrangements of codon-anticodon interactions [15] 
could be the promising stability factors for their stability. 
tRNA sequence and its folding patterns in the complete ge-
nome of an organism could be co-related with its optimum 
growth temperature [7] and hence would account for organ-
ism thermostability. G+C content in the tRNA of extremo-
philes has also been investigated for analyzing the differ-
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ences associated with stability at extremes of temperature [6, 
16]. Experimental evidence has suggested that the enhanced 
stability of proteins and cell membranes of thermophiles or 
stability of unique cold shock proteins and cell membrane/ 
cell wall of psychrophiles could depend on interactions with-
in proteins, DNA or on their structural stability [17-20] (Fig. 
1). Thus, it can be said that there exists an interesting rela-
tionship between OGT and various intra- and intermolecular 
interactions [12]. 

 Many biochemical mechanisms can also be related to the 
existence of extremophiles to adverse conditions, some of 
which are involvement of lipids and membranes, various 
stabilizing factors, rapid resynthesis of heat-inactivated mol-
ecules as in case of thermophiles, hyperthermophiles or halo-
thermophiles, allostery and highly charged macromolecular 
environment [21].  

 Environmental stress (high, low or moderate) also con-
trols the constitution of lipid membranes in the extremo-
philes as well as non-extremophiles. Koga, Y. (2012) re-
viewed that the proportion of some lipids increases with the 
increase in temperature. It was investigated in his report that 
in thermophiles and archaea ester linkages are not heat re-
sistant, whereas the ether lipids are stable at high tempera-
tures. Moreover, on the increase in the growth temperature, 
isofatty acids increased, whereas on lowering the tempera-
ture, anteiso fatty acids increased in the case of Bacillus spp. 
[22]. As lipids generally function in the membrane as a 
group of molecules and not as a single molecule, it is report-
ed that on changing the temperature, the organisms adapt by 
changing the acyl or alkyl side chain of their lipid membrane 
rather than changing to different lipid class [23]. 

 As mentioned above, thermostable biomolecules have 
found notable importance in the field of biotechnology; and 
this has spurred research into an organism’s capability to 
thrive best at exotic temperatures [24, 25] (Fig. 2). Extrem-
ozymes have been employed in diverse industrial applica-
tions, some of which are starch processing, cellulose degra-
dation, leather, baking and detergent industry [17]. These 
organisms also connect to the primitive forms of life present 
billion years before on our planet and help to study the evo-
lutionary process [26].  

2. STRUCTURAL DEPENDENCY ON EXTREMO-
PHILE STABILITY 

 Structure and protein sequence studies of extremophiles 
relate to its stability in comparison to its non-extremophilic 
counterparts. The sequence generally alters as a part of evo-
lution when the organism inhabits different habitats. As ex-
plained in the introduction, various structural factors such as 
hydrophobicity [10], lengthening or shortening of loops, the 
pattern of atom packing, increased or decreased surface area, 
hydrogen bonding [4] and salt bridges [10] attribute to the 
structural stability of an organism (Fig. 1). The Boltzmann 
factor defines the strength of any type of interaction relates 
to the organism’s stability as analyzed by Miyazawa and 
Jernigan (1985), the advantage of this approach is that the 
large database of the structures and the strength of tempera-
ture-dependent interactions could be studied [27].  

 For studying the stability in extremophilic protein, hy-
drophobicity is one of the main stabilizing factors in pro-
teins. It has a direct relationship with the enthalpy and entro-
py of the system, as, at room temperature where hydrophobi-
city is found to be maximum, the solvent molecules that are 
in contact with the non-polar molecules organize themselves 
in such a way that the enthalpy of the system is reduced and 
hence the entropy of the solvent decreases [28]. The enthalpy 
and entropy together contribute to the free energy of stabili-
zation, which has a relationship with the optimum growth 
temperature of an organism [29]. The relevance of entropy 
and enthalpy in thermophiles and psychrophiles is mentioned 
below. 

2.1. Thermophiles and Stability 

 When the temperature is increased above room tempera-
ture, as in the case of thermophilicity, hydrophobicity is one 
of the dominant factors that stabilize proteins of thermo-
philes [12]. The stability can be provided by a hydrophobic 
factor of a single protein or due to multiple protein chains. 
Razvi and Scholtz (2006) found that most thermophiles use 
the simple method that raises the ΔG at all temperatures as 
the principal way to increase their melting temperature [30] 
(Fig. 1). Perutz and Raidt (1975) compared the structure of 
ferredoxin from the thermophiles and mesophiles and found 
that in between the polar groups, extra salt bridges were pre-
sent in the structure of ferredoxin from thermophiles. Be-
sides this, there were more side chain-hydrogen bonds in 
thermophilic ferredoxin that jointly increased stability [8]. In 
glutamate dehydrogenase isolated from thermophile Pyro-
coccus furiosus, salt bridges form a highly stable network 
and account for the stability of the protein in contrast to the 
glutamate dehydrogenase from non-thermophile Clostridium 
symbiosum, where the salt bridges form fewer networks [10]. 
It has been reported that deleted or shortened loops [31], 
greater rigidity, small surface area to volume ratio, more 
disulphide bonds, increased intracellular ionic concentra-
tions, increased cationic proteins and supercoiling are pro-
posed mechanisms of increased thermostability [32].  

2.2. Psychrophiles and Stability 

 Similar to thermophiles, psychrophiles also have a se-
quence and structure relationship. The entropy of the system 
decreases with the decrease in temperature, explaining the 
phenomenon of psychrophilicity. For adjusting membrane 
fluidity in psychrophiles, there should be the presence of 
unsaturated and branched fatty acids chains, and the length 
of fatty acids has to be shortened [33]. Psychrophiles synthe-
size heat-labile and cold-active enzymes that have high en-
zymatic efficiency and activity at low temperatures. Experi-
mental evidence proves that psychrophilic enzymes catalyze 
the reaction at lower ΔG values than the reaction catalyzed 
by its mesophilic counterpart, suggesting that psychrophilic 
enzymes are more active [34]. It is also found that the active 
site for the binding of enzymes in the case of psychrophiles 
is heat-labile in comparison to the mesophilic enzymes. An-
other assumed structural adaptability for the catalytic action 
of the psychrophilic enzyme is that the catalytic cavity of 
psychrophile is comparatively more than mesophiles or 
thermophiles by deletions of certain residues in loops border-
ing active site [35] or by the replacement of bulky side
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Fig. (1). Stability pattern of thermophiles vs psychrophiles. (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 

 
Fig. (2). Applications of extremophiles. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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chains with smaller groups [36], thus making the active site 
more accessible to ligands. Papaleo et al. (2006) noted that 
the sites of cold stable enzymes not responsible for catalysis 
are more rigid than the mesophilic homologs [37]. All the 
weak interactions such as hydrogen bonds, proline content, 
ion pairs, etc. are minimally found and have non-polar core 
clusters, with weaker hydrophobicity to make the protein 
interior less compact. 

3. AMINO ACID COMPOSITION AND EXTREMO-
PHILE STABILITY 

 The composition of amino acid, as reported by several 
studies, is linearly related to the OGT of an organism [38]. It 
has been found that thermophilic proteins prefer to contain 
charged, aromatic and hydrophobic residues compared with 
its mesophilic proteins. Goldstein, R.A. (2007) analyzed the 
database of proteins for studying the interaction of amino 
acids from psychrophiles, thermophiles and hyperthermo-
philes [12]. When analyzed on the Ramachandran plot, the 
authors reported that the amino acids of the thermostable 
protein occur more on the helical and the sheet region [39]. 

3.1. Thermophiles and Stability 

 Jaenicke and Bohm (1998) studied the relationship of 
amino acids and stability of protein at extrinsic temperature. 
They observed in their study that when thermo-
philes/hyperthermophiles are kept at a temperature of 100°C 
or more, Val and Leu are the more thermostable amino acids 
followed by Ile, Tyr, Lys, His and apparently Asp, Glu, Arg 
and Cys are the least thermostable of all the common amino 
acids. They also compared the genome of thermophiles with 
the specific genes from mesophiles, and it was found that the 
thermophilic genome encodes for higher charged amino ac-
ids and lower polar/uncharged residues. They also observed 
that at a higher temperature, deamidation of glutamine in-
creased [40]. Goldstein, R.A. (2007) supported the study of 
Jaenicke and Bohm (1998) and reported that a marked in-
crease in the frequency of aromatic and charged amino acids 
(Tyr, Phe, Glu, Lys and Arg) was found in thermophiles and 
hyperthermophiles whereas the frequency of uncharged resi-
dues significantly decreased (Gln, Asn, His, Thr) [12]. Simi-
lar results were obtained by other workers [41, 42]. Zeldo-
vich et al. (2007) also observed a significant rise in the pres-
ence of Val, Tyr, Trp, Arg, Glu and Leu in thermophiles [5]. 
The increase in the frequency of charged residues defines the 
role of salt bridges in protein stability and its dielectric prop-
erties in the case of extremophiles [43]. Russell et al. (1994) 
studied the comparison of the amino acid of citrate synthase 
from Thermoplasma acidophilum which is a thermophile and 
Pyrococcus furiosus, a mesophile and found that as optimum 
temperature increased Ile, Tyr, Lys and Glu content in-
creased, but Asn, Gln and Cys residue decreased [35].  

3.2. Psychrophiles and Stability 

 The frequency of uncharged polar residues is declined in 
psychrophiles. Unlike thermophiles, a lesser number of 
charged and aromatic residues are observed in psychrophiles. 
Violot et al. (2005) observed that when the strength of vari-
ous interactions is decreased, the flexibility of psychrophilic 
protein increased [44]. The subsequent rise in the frequency 

of Gly is notified, which increases the stability of the protein 
by raising the entropy of the protein system. Metpally and 
Reddy (2009) found that Ala, Asp, Ser and Thr were pre-
ferred significantly while Glu and Leu were less preferred in 
psychrophiles when compared to mesophilic counterparts 
[45]. If the frequency of occurrence and alignment of pro-
teins are compared in psychrophiles, it is reported that over 
aromatic, charged and hydrophilic groups, the tiny and neu-
tral groups of amino acids are preferred. While considering 
the secondary structural elements, it is analyzed that α-
helices of psychrophilic proteomes have fewer residues in 
comparison to coil regions. Psychrophiles, when grown at 
low temperature, show the production of cold-acclimation 
proteins (CAPs) whereas no CAPs are seen when grown at a 
milder temperature [46]. These CAPs function in maintain-
ing cell cycle and growth of the organism at low tempera-
ture, though their functions are not yet fully understood. 

4. GENOMIC ADAPTATIONS FOR EXTREMOPHILE 
STABILITY 

 Comparative genomics studies on thermophiles, psy-
chrophiles and mesophiles disclose that a series of co-
ordinated changes are linked with an organism’s genome 
thriving at extreme conditions. OGT of an organism could be 
correlated with the arrangements and frequency of the pres-
ence of tRNAs, the G+C content of tRNA genes, secondary 
structures and its folding patterns. As studied before, the 
sequence and structure data study for any bacteria (be it hy-
perthermophile, thermophile, mesophile or psychrophile), 
revealed proportional linkages between OGT and DNA’s 
dinucleotide compositions. 

4.1. Thermophiles and Stability 

 It is known that the tRNA content of thermophilic organ-
isms is less as compared to the frequency of tRNAs in meso-
philes and psychrophiles (Fig. 1). Dutta and Chaudhuri 
(2010) reported that tRNAs that were found to be reduced in 
number amongst thermophiles had the anticodons of hydro-
philic (i.e., Asp, Gln, Tyr, Val, Asn, Gly) and few had hy-
drophobic residues (i.e., Met, Ile, Leu) [7]. Though there was 
no increase in the number of tRNA amongst any thermophile 
studied, some tRNAs did not alter (Ala-, Ser-, Thr-, Cys-, His-). 
tRNAs of thermophiles showed greater structural stability 
than psychrophiles and mesophiles [47]. Experimental re-
sults with a group of psychrophilic and thermophilic ge-
nomes confirmed that there was a directly proportional cor-
relation between the G+C content of tRNAs and OGT of an 
organism, though thermophilic genes corresponding to tRNA 
have been reported to exhibit a much higher G+C content in 
comparison to psychrophiles and mesophiles [14]. With the 
increase in temperature, tRNA of psychrophiles tends to fold 
its structure in such a way that it results in increasing more 
loops than stems whereas thermophiles remain folded into a 
structure that is stable at all temperature ranges, and this ten-
dency of extremophiles might be a reason for the stability of 
RNA’s secondary structure at adverse temperatures. Moreo-
ver, important to note that the G+C content of ribosomal 
RNA was linearly correlated with growth temperature, while 
the G+C content of genomic DNA hardly shows any differ-
ence in hyperthermophiles, thermophiles as well as in meso-
philes [7, 14]. It is believed that the higher G+C content in
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Table 1. Enzymes isolated from thermophilic bacteria and their industrial applications. 

Enzyme Industries Wherein Enzyme is Used Bacterial Species References 

Lipase         Baking industry, 

Cosmetic industry, 

Dairy industry, 

Detergent industry, 

Leather industry, 

Paper industry, 

Pharmaceutical industry, 

Pulp industry 

Anoxybacillus flavithermus WK1 

Geobacillus                                                                     
stearothermophilus 5  

Geobacillus sp. SBS-4S 

Geobacillus zalihae sp. Nov     

Pseudomonas aeruginosa BTS-2 

Thermosyntropha lipolytica                                                                                                  

                                                                                                                                                                                                                                                                              

[60]  

[61]  

 

[62] 

[63] 

[64] 

[65] 

Protease Baking industry, 

Brewing industry, 

Dairy industry, 

Detergent industry, 

Food and Feed, 

Pharmaceutical and Biotech industry 

 

 

 

Bacillus brevis 

Bacillus  HUTBS62 

Bacillus HUTBS71   

Bacillus sp. JB-99     

Bacillus stearothermophilus                                                                   
Chaetomium thermophilum    

Geobacillus collagenovorans MO-1                                                                  
Paenibacillus tezpurensis                                                                   
sp. nov. AS-S24-II 

Pyrodictium sp.            

Thermococcus onnurineus NA1   

Thermus aquaticus YT-1                                                                                                                  

                                                                                                                                                                          

[66] 

[67] 

[68] 

[69]                       

[70] 

[71]                                                                                                                                                                                                                                      

[72] 

 

[73] 

 

[74] 

[75]  

Xylanase    Baking industry, 

Bioprocessing of fabrics, 

Biobleaching of pulp, 

Detergent industry, 

Paper industry, 

Pulp industry, 

Waste paper recycling industry 

 

Actinomadura sp. strain Cpt20  

Anoxybacillus kaynarcensis sp.   

Bacillus halodurans    

Bacillus sp.                                                                  

Caldocellum saccharolyticum   

Dictyoglomus thermophilum   

Dictyoglomus thermophilum Rt46B.1                                                                 

 

Geobacillus sp. MT-1   

Thermoanaerobacterium                                                                 
saccharolyicum NTOU 1                                                                

Thermomyces lanuginosus                                 

                                                                                                                                                                                                                  

[76] 

[77] 

[78] 

[79] 

[80] 

[81] 

[82] 

 

[83] 

[84] 
 
[85]                                                                                                                    

 

α- Amylase                                               

Bakery industry, 

Cellulose and chitin processing industry, 

Detergent industry, 

Textile industry 

Bacillus sp. isolate A3-15      

Bacillus thermooleovorans NP54                                                              

Bacillus stearothermophilus     

Geobacillus stearothermophilus                                                            

Halothermothrix orenii                                                                     
Streptomyces sp. TO1                                                                                                                                                                                                                                

[86] 

[87] 

[88] 

[89] 

[90]   

[91]                                                                                                                                        

β- Glucosidase                                         

 

Biofuel industry, 

Biorefining industry, 

Brewing industry, 

Chemical industry 

Aureobasidium pullulans  

Bacillus thuringiensis 

Fervidobacterium islandicum  

Thermoanaerobacter brockii                                                                                                                                                            

[92] 

[93] 

[94] 

[95] 

(Table 1) contd…. 
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Enzyme Industries Wherein Enzyme is Used Bacterial Species References 

Chitinase 

 

Agriculture industry, 

Chitin modification for food and health products 

Aeromonas sp. DYU-Too7 

Bacillus licheniformis       

Bacillus sp. HSA,3-1a   

Bacillus sp. Hu1      

Microbispora sp. V2  

 

Ralstonia sp. A-471  

Silanimonas lenta   

Streptomyces roseolilacinus                                                                                                                                                                                                                                                                                                                                                                

[96] 

[97] 

[98] 

[99] 

[100] 

 

[101] 

[102]                                                                                                                                        

Cellulase 

 

Agriculture industry, 

Animal Feed industry, 

Bioethanol industry, 

Brewing industry, 

Paper  

processing industry, 

Pulp industry, 

Textile industry, 

Wine industry 

Acidothermus cellulolyticus                                                      

Clostridium thermocellum 

Clostridium thermocellum Cel9I    

 

Geobacillus pallidus       

Moorella sp.F21          

Rhodothermus marinus  

Thermobifida fusca Cel9A                                                                                                                                                                                                                                                                                             

[103]  

[104] 

[105] 

 

[106] 

[107] 

[108]  

[105] 

 

Esterase 

Detergent industry, 

Food industry, 

Paper industry, 

Pharmaceutical industry  

Alicyclobacillus acidocaldarius 

Anoxybacillus gonensis A4       

Anoxybacillus gonensis G2 

Bacillus circulans 

Caldocellum saccharolyticum   

Fervidobacterium nodosum Rt17-B1   

Thermobacillus xylanilyticus   

Thermus sp. P1074         

Thermus thermophilus HB27                                                                                                                                                                                                                                                                   

[109] 

[110] 

[111] 

[112] 

[113] 

[114] 

[115] 

[116] 

[117]                                                                                         

 

Urease 

Agriculture industry, 

Automobile industry, 

Biofuel and 

Chemical industry, 

Crop, Biorefinig 

Bacillus sp. strain TB-90         

Campylobacter laridis                                                                                                   

Campylobacter larus                                                                                                      

Campylobacter sputorum biovar paraureolyticus                                                                                                                                                  
Campylobacter sp.                                                                                                       
Streptococcus sp.                                                                    

[118] 

[119]  

[120] 

[121] 

[122] 

[123]                                        

 

thermophiles might be a mechanism by which the organism 
facilitates intramolecular stabilization of the RNA secondary 
structure. As discussed, a direct connection subsists between 
DNA’s dinucleotide compositions and growth temperature, 
so changes in dinucleotides are way good than alterations in 
mononucleotides (G+C content). The reason for this is that 
altering the dinucleotide sequence may produce different sets 
of DNA sequences, those codes for amino acids [14]. It is 
also proposed that all the genes and proteins might acquire 
stability toward temperature in bacteria, and for this, the di-
nucleotide composition of DNA would be biased in such a 

direction that an overall increase in charged residues oc-
curred at the protein level.  

 When the uracil content of 16S rRNA was considered, it 
was found that it had an inverse correlation with OGT, i.e., 
as the temperature increased, A:U base pair content of RNA 
decreased [48]. Thus, 16S rRNA’s uracil content acted as a 
useful reader of OGT in thermophiles and psychrophiles. It 
is found that rRNA stems also had some mismatched base 
pairs and on the thermodynamic grounds, as the temperature 
increased, G:U mismatches that are less stable are selected
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Table 2. Enzymes isolated from psychrophilic bacteria and their industrial applications. 

Enzyme Industries Wherein it is Used Bacterial Species References 

Lipase Baking industry, 

Cosmetic industry, 

Dairy industry, 

Detergent industry, 

Leather industry, 

Paper industry, 

Pharmaceutical industry, 

Pulp industry 

Acinetobacter calcoaceticus LP009 

Acinetobacter sp. RAG-­‐1 

Moraxella sp. 

Pseudomonas aeruginosa NCIM 2036 

Pseudomonas sp. B11-1 

 

Psychrobacter glacincola 

Psychrobacter immobilis B10 

Psychrobacter sp. TA144 

Psychrobacter okhotskensis 

[124]  

[125] 

[126] 

[127] 

[128]  

 

[129] 

[130] 

[131] 

[132] 

α-Amylase Bakery industry, 

Cellulose and chitin processing industry, 

Detergent industry, 

Textile industry, 

Wine industry 

Aeromonas veronii NS07  

Alteromonas  haloplanktis 

 

Pseudoalteromonas haloplanktis 

Pseudoalteromonas haloplanktis TAC 125 

 

[133] 

[134] 

 

[135, 136] 

[137] 

 

Protease Baking industry, 

Brewing industry, 

Dairy industry, 

Detergent industry, 

Food and feed, 

Pharmaceutical and Biotech industry 

 

 

Alteromonas sp. 

Bacillus sp. 

Bacillus sp. 158 

Clostridium sp. LP3 

Colwellia sp. NJ341 

Clostridium schirmacherense 

Flavobacterium YS-80 

Halomonas sp. 

Pseudoalteromonas sp. NJ276 

Pseudomonas strain DY-A 

Pseudomonas fluorescens 114 

Streptomyces sp. 

Rheinheimera sp. 

[138] 

[126] 

[139] 

[140] 

[141] 

[140] 

[142] 

[138] 

[141] 

[143] 

[144] 

[145] 

[138] 

β-galactosidase 

 

Biofuel, 

Biorefining, 

Brewing industry, 

Chemical industry 

 

Arthrobacter psychrolactophilus 

Arthrobacter sp. SB 

Bacillus sp.  

Bacillus subtilis KL88  

Carnobacterium piscicola BA  

Paenibacillus sp. strain C7 

Pedobacter cryoconitis 

Pseudoalteromonas haloplanktis 

Shewanella atlantica 

Shewanella canadensis 

[146] 

[147] 

[54] 

[148] 

[149] 

[150]  

[151] 

[152] 

[153] 

 

(Table 2) contd…. 
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Enzyme Industries Wherein it is Used Bacterial Species References 

Xylanase Baking industry, 

Bioprocessing of fabrics, 

Biobleaching of pulp, 

Detergent industry, 

Fruit juice processing, 

Paper industry, 

Pulp industry, 

Waste paper recycling industry 

Clostridium strain PXYL1 

Flavobacterium sp. 

Flavobacterium frigidarium  

Glaciecola mesophila KMM 241 

Paenibacillus curdlanolyticus B6 

 

Paenibacillus sp. KIJ1 

Pseudoalteromonas haloplanktis 

 

[154] 

[155] 

[156] 

[157] 

[158] 

 

[159] 

[160] 

Cellulase Agriculture industry, 

Animal feed industry, 

Bioethanol industry, 

Brewing industry, 

Fruit juice processing, 

Paper  

processing industry, 

Pulp industry, 

Textile industry, 

Wine industry 

Arthrobacter sp. 

Cadophora malorum 

Fibrobacter succinogene 

Flavobacterium sp. 

Geomyces sp. 

Paenibacillus sp. 

Pedobacter sp. 

Pseudoalteromonas haloplanktis 

Rhodotorula glutinis 

Shewanella sp. G5 

[161]  

[162]  

[163] 

 

 

Chitinase 

 

Chitin modification for food and health products Aeromonas veronii CD3  

Alteromonas sp. strain O-7 

Arthrobacter sp. TAD20  

Glaciozyma antarctica PI12 

Moritella marina  

Verticillium lecanii A3 

Vibrio sp. Fi:7 

[164] 

[165] 

[166] 

[167] 

[168] 

[169]  

[170] 

Esterase Detergent industry, 

Food industry, 

Paper industry, 

Pharmaceutical industry, 

 

Oleispira antarctica RB8 

Oleispira antarctica 

Pseudoalteromonas arctica 

Pseudomonas sp. B11-1 

Psychrobacter sp. Ant 300 

Streptomyces coelicolor A3 

 

[171] 

[172] 

[173]  

[174] 

[175] 

[176] 

 
over A:U pairs, which are more stable [49]. Studies have 
been conducted to see if changing the content of uracil has 
any relationship with rRNA stability as RNAs show sensitiv-
ity to chemical hydrolysis at a temperature of more than 
50ºC [50]. For the stability of RNAs at low temperature, 
Dalluge et al. [51] observed various modifications that main-
tained the conformational flexibility of RNA. 

4.2. Psychrophiles and Stability 

 In psychrophiles, it is found that the tRNA content is 
higher in comparison to its thermophilic counterpart (Fig. 1). 
As the temperature of the psychrophilic organism is in-
creased, its tRNA folds in an unstable structure that has more 
loops than stems. It is also observed that the low temperature 
strengthens the relationship between the double helix and the 

supercoiled state of DNA. The presence of nucleic acid-
binding protein, which plays a central role in relieving the 
adverse effects of low temperature on psychrophiles, has 
been analyzed [51, 52]. 

5. APPLICATIONS REVEALED BY EXPLORING 
EXTREMOPHILES 

 The isolation and characterization of the extremophilic 
prokaryotes have proven that these organisms have engross-
ing metabolic features and fascinating evolutionary past [53]. 
The novel methods for extremophile’s isolation, characteri-
zation and the utilization of molecular tools for analyzing 
and understanding their phylogeny and diversity paved the 
way for searching organisms with diverse applications in 
research, health, evolution and biotech industries (Fig. 2).  



104    Current Genomics, 2020, Vol. 21, No. 2 Kohli et al. 

 Lately, a novel perspective towards genome sequencing 
has opened the doors for the investigation of these magical 
organisms for various academic, researches, industrial and 
biotechnological applications. Most organisms, specifically 
pointing hyperthermophiles and thermophiles, inhabit close-
ly to “universal ancestor” of all extant of life on Earth. Thus, 
their origin under stressed conditions would give useful hints 
on the evolution of our planet and, likewise, others in the 
universe. Extremophiles, as explained in the introduction, 
produce extremely stable enzymes known as extremozymes, 
whose catalytic properties are used in conditions that were 
initially nominated as unsuited and harsh [54]. Extrem-
ozymes are of particular interest in several industrial pro-
cesses like baking, saccharification [55], detergent, pharma-
ceutical, food, beverage or textile industries [56] (Fig. 2). 
These enzymes are evolved by nature and do not require 
manipulations to get adapt to temperature, solvent-tolerance, 
or other extremities in comparison to enzymes tailored syn-
thetically from non-extremophiles. Some examples of en-
zymes isolated from thermophiles and psychrophiles, along 
with their sources and the industries wherein they are used, 
are listed in Tables 1 and 2, respectively. 
 Extremophiles have also shown applications in the pro-
duction of single-cell protein (SCP), bioremediation, petro-
leum industry, biomining, biosensors, medicines and antibi-
otic production. Raja et al., (2010), isolated Dactyl sporan-
gium from Rohtang hill soil and found that it produces a pro-
teinaceous substance, which showed antimicrobial activity 
against streptomyces and thus acted as an antibiotic [57]. 
The species of Bacillus and Geobacillus that can degrade 
hydrocarbon can be effectively used for bioremediation.  

FUTURE WORK AND CONCLUDING REMARKS 

 In summary, current knowledge of extremophiles is 
scarce, and very few of them are cultivable in the defined 
environment. More development in gene expression studies, 
like developing new heterologous systems, will increase the 
investigation of microbial diversity [58]. More novel ex-
tremozymes with diverse catalytic activity can be isolated, 
characterized and purified if their gene expression libraries 
are screened with fast and accurate detection technologies. 
Studies are going on to discover microbial communities in 
the environment, once considered to be harsh for any form of 
life to exist [59]. With the advancements of new techniques, 
remote areas such as ice-covered ocean and deep-sea could 
be explored; organism could be tapped at structural, genomic 
and proteomic levels, and could be exploited to provide a 
precious resource for biotechnology and industry.  
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