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A crisis continues to brew within the pharmaceutical research and development
(R&D) enterprise: productivity continues declining as costs rise, despite ongoing,
often dramatic scientific and technical advances. To reverse this trend, we offer
various suggestions for both the expansion and broader adoption of modeling
and simulation (M&S) methods. We suggest strategies and scenarios intended
to enable new M&S use cases that directly engage R&D knowledge generation
and build actionable mechanistic insight, thereby opening the door to enhanced
productivity. What M&S requirements must be satisfied to access and open the
door, and begin reversing the productivity decline? Can current methods and
tools fulfill the requirements, or are new methods necessary? We draw on the
relevant, recent literature to provide and explore answers. In so doing, we identify
essential, key roles for agent-based and other methods. We assemble a list of
requirements necessary for M&S to meet the diverse needs distilled from a
collection of research, review, and opinion articles. We argue that to realize its
full potential, M&S should be actualized within a larger information technology
framework—a dynamic knowledge repository—wherein models of various types
execute, evolve, and increase in accuracy over time. We offer some details of the
issues that must be addressed for such a repository to accrue the capabilities
needed to reverse the productivity decline. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Pharmaceutical research and development (R&D)
is in the midst of a productivity decline. Unified,

transdisciplinary, in silico modeling and simulation
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(M&S) methods are viewed broadly as a promising
countermeasure. Agent-based (AB) modeling is a
phrase used currently to identify relatively young
modeling methods that utilize software agents. We
review and present evidence that AB methods
will be essential contributors to successful M&S
countermeasures.

TRI-FOCUS: AGENT-BASED M&S, R&D,
AND EXPLANATORY MECHANISMS

The development of agent modeling tools and the
availability of increasingly detailed, varied, and abun-
dant data coupled with advances in computation
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have made possible a growing number of agent-
based modeling and simulation (AB M&S) appli-
cations across a variety of non-biomedical domains
and disciplines. To illustrate, we identify early1–15

and more recent16–32 use cases. Macal and North33

provide additional examples and a tutorial on AB
M&S methods. Within the biomedical domain, AB
M&S is a relatively new approach for studying sys-
tems composed of interacting components, some of
which can be autonomous. The methods are used pri-
marily to gain insight into mechanisms responsible
for phenomena of living systems. We cite early34–40

and more recent41–56 examples of such applications.
Amigoni and Schiaffonati57, An et al.58, and Edel-
man et al.59 provide biomedically-focused reviews.
Several applications exemplify the expanding vari-
ety of applications relevant to the pharmaceutical
sciences.46,60–72

Pharmaceutical science stakeholders agree that
there is a crisis within the broad pharmaceutical R&D
domain (private and public): productivity continues
to decline, even in the face of dramatic scientific and
technical advances accompanied by a data deluge,
especially at the molecular level. A flurry of recent
reviews and commentaries73–102 discuss the problems
from several different perspectives and offer strate-
gies and scenarios for how M&S methods can and
are being used to enhance productivity. The different
perspectives include pharmacometrics [including
translational and physiologically based pharma-
cokinetics–pharmacodynamics (PBPK), and disease
progression M&S], quantitative and systems pharma-
cology, and model-based drug development. Given the
apparent fit between designed uses of AB M&S meth-
ods and the multifarious problems cited in the reviews
that can benefit from computational M&S methods,
it is surprising that only two of the citations men-
tion AB M&S methods. No examples are presented
within those citations of any current use of AB M&S
methods within pharmaceutical companies. Does that
situation signal ripe opportunity for AB M&S meth-
ods to add new value beyond that delivered using
the established methods? That question, although
provocative, is premature because one should not
try to force-fit a particular M&S method to a partic-
ular set of problems. We should first evaluate where
and how the cited domain experts envision M&S
methods being used to reverse the productivity trend.
We can then select those M&S methods that enable
those uses.

The cited experts anticipate shifting focus from
analysis of data to discovery and challenge of
explanatory mechanisms. They see M&S becoming
integral and essential to envisioned discovery and

development processes that are dramatically more
productive in part because of improvements in use
of M&S methods across all R&D activities. Yet they
also make clear that the established practice is to
select one or more modeling tools, drawn primarily
from those already in use,75 to address the particular
problem at hand. The practice is the same independent
of stage in the R&D process. Various scientists, often
separated in time and space across R&D processes,
integrate the derived information. Anticipating that
having M&S integrated across R&D activities can
improve productivity, what new demands are placed
on M&S methods? We show why multifaceted,
networked M&S use cases require drawing from
an expanded computational modeling method and
tool repertoire. Can current methods and tools fulfill
the requirements? No. We justify that answer and
discuss why AB and more advanced M&S methods
are essential. It becomes clear that an analog (see Box
1) based knowledge repository will be needed. We
identify M&S method requirements, and that brings
into focus additional M&S use cases that we believe
the repository’s framework will likely need to enable.

BOX 1

DEFINITIONS

Actor: an entity identifiable by an observer
as a cause of an effect; an entity that participates
in a process (plays a part); in computer science
it is a mathematical model of computation
that treats actors as the universal primitives: in
response to a received message, an actor can
make local decisions, create more actors, send
messages, and determine how to respond to the
next message received.

Agent: a software object that can schedule
its own events (within an analog, it is quasi-
autonomous); it senses and is part of its
environment; it pursues and can revise an agenda
within a larger script; some of its attributes and
actions may be designed to represent biological
counterparts, whereas others will deal with
issues of software execution.

Agent-based: something formulated with
or built up from agents; in this context, it
identifies a simulation model in which quasi-
autonomous agents are key components. Terms
that are often synonymous within the M&S liter-
ature include individual-based and multi-agent.
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Framework: a carefully crafted assemblage
of tools, devices (some software, some hardware,
and occasionally even some wet-ware), usage
protocols, good practices, etc., governed by a set
of component interoperability standards. Upon
satisfying use cases and listed requirements,
we expect the framework to be an extensible,
distributed, open, and loosely coupled (yet
unified from the user’s perspective).

Analog: a software device that has (some)
aspects and attributes that are similar to
those of its R&D referent yet can exist and
operate in isolation and in the absence of its
R&D counterpart; in biomedical M&S, a model
implemented in software that, when executed,
produces phenomena that mimic one or more
attributes measured or observed during referent
wet-lab experiments. In this context, most
analogs will be suitable for experimentation.

In silico experiment: it is precisely analo-
gous to a wet-lab experiment. An analog is a
hypothesis: the mechanism produced upon exe-
cution by interacting components will result in
phenomena, often at different scales, that are
similar, or not, to prespecified wet-lab phenom-
ena. Measurement of features during execution
enables testing the hypothesis. That activity is an
in silico experiment.

Analog based knowledge repository: easily
accessible, organized framework feature. Its
content is an up-to-date instantiation of all
relevant mechanistic knowledge in an accessible,
easily understood, observable, and interactive
form. It contains annotated records of analogs
(current and falsified), their mechanisms, how
they were composed plus the rationale, along
with records of in silico experiments. All use
cases (see ‘Paramount use cases’ subsection)
can be achieved by employing the analog
based knowledge repository. We envision
domain experts making go/no-go decisions
after interactive exploration of many scenarios
(simulations) within the repository.

MODELING, SIMULATION, AND THE
PRODUCTIVITY CRISIS

Ideally, one should begin any M&S project without
bias for any particular model types or methods.103

Selecting M&S methods or tools in advance of
specifying uses cases can constrain and even bias
thinking about explanatory mechanisms. Hence, the
first task is to clearly identify near and longer term

expectations. Among the questions to be answered are
these: what are the problems? What questions need
to be answered? What new knowledge is sought and
how will it be used? What decisions must be made?
When are the deadlines? What resources are available?
etc. Within pharmaceutical R&D, these questions are
complicated by the nested, networked, multi-year,
evolving nature of the overall enterprise. Scientific
insight achieved at an early stage may be critical down-
stream (e.g., during dose ranging studies or clinical
trials), and early planning for that prospect may influ-
ence selection of M&S methods in important ways.
Yao et al.102 illustrate the variety of relationships and
common computational methods that support them
(see Figure S1 in Supporting Information).

Consider a model and method judged appro-
priate for a particular discovery or early development
problem. The insight sought is intended to be useful for
downstream as well as for current decision-making.
Can the model, method, and information be easily uti-
lized as needed within a tight time window at a down-
stream go/no-go decision juncture? If doing so proves
problematic because of differences in models, meth-
ods, and/or tools, or perhaps because of inadequate
records of analogs and (more notably) their in silico
experiments, etc., uncertainties and delays increase
unnecessarily along with the risk of a flawed decision.
The situation is complicated further by a larger, press-
ing, overarching need: reverse the declining trend in
productivity.

The cited experts make the case that M&S
methods are essential to simultaneously increasing
productivity of therapeutic drug development, and
facilitating the recursive cycle of new knowledge
buildup aimed at improved quality care. Accepting
that position, we view the enterprise as a
networked, experiment-intensive system that begins
small (significantly left on the Systems Information
spectrum in Figure 1). As R&D progresses, the
system evolves and expands. It becomes a large,
distributed, multiscale, multi-aspect M&S challenge.
For a particular aspect of the system, its location on
the Systems Information spectrum in Figure 1 inches
to the right. In what variety of ways do the cited
experts envision M&S methods being used? Answers
are provided in Supporting Information-Use Cases; a
sample of answers is provided in Box 3. We propose
a set of seven paramount use cases that are derived
from and subsume those particular use cases. We then
present five requirements, which we argue must be
satisfied to enable achieving those paramount use cases
efficiently. We discuss M&S methods that will enable
a unified M&S approach to satisfy those requirements.
To our knowledge, such an analysis has not been done.
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FIGURE 1 | A particular analog use case can be characterized by an
approximate location on each of the four lower spectra. Spectrum
location along with specifics about how and for what the simulation
model will be used within the larger R&D context, determine which
M&S methods are most appropriate for a given use case. Within a
pharmaceutical R&D context, a use case includes details of the specific,
biology-focused wet-lab experiment that analog execution is intended
to model in some way. Depending on use case location on the spectra,
an analog can be located anywhere along a spectrum of software
devices (models) ranging from synthetic (all components designed to be
plugged together and are thus replaceable) to purely inductive models.
System Information includes current conceptual knowledge about the
mechanisms on which wet-lab experiments focused. As the R&D
process advances, evidence will shrink the space of possible
mechanisms. The result will be a set of plausible analog mechanisms
supported by validation evidence. Later, that set too will shrink. The
result will be a smaller set of likely mechanisms (those that have
survived several falsification experiments). An R&D project’s product
can be successful without being able to designate key mechanisms as
either actual or likely. Actual mechanisms are typically known for
engineered systems, but are typically lacking in therapeutics. Grounding
is discussed in Box 2; additional information is provided as Supporting
Information. Conditions on the far right of the bottom four spectra are
supportive of models (typically, continuous equations) that rely
exclusively on absolute grounding. Hunt at al.104 make the case that
when left of center on one or more of the bottom three spectra, models
should rely more on relational grounding. When on the far left, early
stage, purely qualitative M&S is still useful and productive: it facilitates
goal-oriented research efforts by clarifying (unifying) current thinking
about referent phenomena. Such models would typically be coarse grain
and use relational grounding. Spectra colors were selected arbitrarily.

We argue that such an examination is necessary and
essential to discover strategies capable of restoring
and enhancing productivity.

INTEGRATIVE MANAGEMENT OF
KNOWLEDGE AND UNCERTAINTY
Knowledge integration is an essential, paramount
use case. For this discussion, we limit attention to
knowledge relevant to the primary R&D project
focus: the particular disease, morbidity, or health
issue; the biologic or chemical entity treatment
intervention; the pharmacological, toxicological, and
clinical outcomes that are consequences of treatments;
and the variety of mechanisms (even when vague)
that are offered to explain those phenomena. We
ignore other important categories of knowledge that
can impact go/no-go decisions, but the approach
and framework described below can be expanded
to include them. Examples of those categories
include regulatory science; chemistry, manufacturing,
and control; human resources; accessible contract
services; etc.

The cited reviews discuss roles of various com-
putational models and methods in knowledge integra-
tion. However, we explain below that little knowl-
edge actually resides in those models. Much of the
mechanistic insight resides within mental models,
and that presents a problem: mental model differ-
ences, similarities, and inconsistencies are difficult,
and often impossible to ascertain. Mental models
are subject to their own forms of error introduc-
tion and propagation. Increasing reliance on syn-
thetic analogs (defined below under Mechanism-Based
Approach) presents advantages because they can
evolve into executable representations of what we
know (or think we know) about biological systems.
Those representations are called executable biolog-
ical knowledge embodiments64,65,104 and dynamic
knowledge representations.34,58,60,61,105–109 Such exe-
cutions are suitable for knowledge discovery.58,108,109

Knowledge embodiment is made feasible because
synthetic analogs provide concrete instances of that
knowledge rather than analytic descriptions of con-
ceptual representations. When an analog is exe-
cuted, it demonstrates when, how, and where our
knowledge matches or fails to match referent sys-
tem details, which enables and facilitates knowledge
discovery.58,108,109

For current knowledge and beliefs to be useful
(especially in a social context like shared model usage,
validation, and falsification), it must be embedded in
an analog and visible to the user (which is often not the
case now). Analogs help build schemata for knowledge
(and ignorance) representation, which can provide a
mechanism for the curation and maintenance of the
embedded knowledge. Users must be able to readily
identify the knowledge and be able to discuss it,
rely on it, dispute it, and falsify it (or not), all
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while reflecting on how that knowledge impacts the
project. To achieve these capabilities, most, if not all,
modeling activities and all mechanism representations
will need to take place within a framework of the
type described in Box 1 and discussed below. The
R&D project related content of that framework will
become part of an interactive, analog based knowledge
repository.

It should be noted that knowledge is not
embedded in the any of the variety of pharmacometric
or systems pharmacology models identified in
the reviews.73–102 Model refers specifically to the
equations used to describe the referent aspects,
dynamics, and features75,79,84–90,93,95 as implemented
in software. As documented by An105,107 and Hunt
et al.64,104 embedding knowledge in pharmacometric
and ordinary differential equation (ODE) models
is challenging, if not problematic. Equations are
typically used to describe patterns in data. The
associated conceptual models do reflect knowledge,
but it exists separate from the equations. Humans
interpreting the I/O of the cited equations use prose
and sketches to provide the semantic grounding
for those models in terms of both the idealized,
conceptual model and knowledge of the referent
system. That semantic grounding is done manually,
and is separate from the equations and their software
implementations. Hence, neither knowledge nor
semantics is embedded in those equations. However,
the equation models are typically encapsulated within
‘ready to use’ software tools and packages. Bouzom
et al.75 lists and describes the more frequently used
general and constrained tools and packages. The
builders, especially of the constrained, domain-
focused tools and packages, invest considerable effort
in collecting, organizing, and enabling use of domain
knowledge, information, and data related to a variety
of model use cases. So doing considerably lowers
the barrier to model parameterization and scenario
exploration. The preceding points are expanded
upon in Supporting Information using two concrete
examples (Box 2).

Acknowledging and Reducing Uncertainty
We focus on uncertainties directly associated with
the mechanistic theories on which the project is
based. At the start of a typical project, uncertainty
is pervasive. Consequently, projects typically begin
considerably left in Figure 1 Uncertainty and System
Information spectra. Uncertainty sources are varied
and plentiful. They need to be identified, annotated,
and updated. As the project advances successfully, we
inch to the right on both the System Information and
Uncertainty spectra. Productivity-enhancing M&S

BOX 2

ANALOG GROUNDING ISSUES

Grounding issues must be addressed to satisfy the
listed requirements. Key issues discussed in detail
by Hunt et al.104 are summarized in Support-
ing Information. The units, dimensions, and/or
objects to which a variable or model constituent
refers establish groundings. Absolute grounding:
variables, parameters, and input–output (I/O) are
in real-world units. Relational grounding: vari-
ables, parameters, and I/O are in units defined
by other system components. Relational ground-
ing requires a separate analog-to-referent map-
ping model. To satisfy requirements, a spec-
trum of model classes, methods, and groundings
(illustrated in Figure 1) will be needed: abso-
lute grounding occupies one extreme; relational
grounding occupies the other.

Absolute grounding provides simple, inter-
pretive mappings between simulation output,
parameter values, and referent data. How-
ever, complex issues must be addressed each
time one of the following occurs: expand the
model to include additional phenomena; com-
bining models; and/or model context changes.
Expansions are challenging, even infeasible,
when center-left in Figure 1. Reusability is hin-
dered in part because the conflated semi-
mechanistic, equation-based model and the
model-to-referent mapping model have differ-
ent use cases.

Analogs must evolve (become more com-
plicated) as R&D advances and new mechanistic
insight accumulate. That evolution will require
changing, adding, and removing component
linkages within analogs. We recommend keep-
ing most component groundings relational. So
doing facilitates component replacement, lim-
iting any one component formulation solely
to its coupling with the others. Any compo-
nent can be replaced at will as long as the
minimal I/O interface requirements are met.
Starting with relationally grounded analog com-
ponents allows the modeler to iterate progres-
sively from qualitative to quantitative validation.

methods must facilitate and increase the pace of
that movement in real time. We can infer that new
M&S methods will be needed that are capable of
generating new knowledge without requiring new wet-
lab experiments. We can also infer that they must also
be capable of explorartion and advanced selection of
strategies to reduce uncertainties systematically in real
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BOX 3

CLUSTERED EXAMPLES OF SPECIFIC M&S
USE CASES

These examples (selected randomly) were drawn
from those listed in Supporting Information-Use
Cases. They illustrate the diversity and scope of
particular envisioned73–102 M&S use cases.

Knowledge integration
Quantitatively address questions concern-

ing the functional relationship between prog-
nostic factors, dosage, and outcomes.86,93,96

Integrate the basic components to describe
and understand the complex interplay between
the pharmacology of drug action and (patho-)
physiological systems.85,93

Management of uncertainty
Account for uncertainty in the underlying

assumptions and thus resulting prediction of
drug effects.76,91

Decision support
Document decision-making from discovery

through development to regulatory filing and
improve answering postfiling questions and
approval, as well as life cycle management of
the asset.96

Provide a decision-making tool for select-
ing effective and safe doses, optimizing study
sample sizes, evaluating alternative trial designs
and making rational go/no-go decisions based
on the probability of achieving predefined study
goals.75,78,79,91,96,97

Preclinical and clinical development
Facilitate design and/or selection of lead

compounds, selection of the first-in-human
dose, early clinical trial design, and proof-of-
concept studies of experimental drugs and drug
combinations.74,75,82,83,85,102

Simulate outcomes of alternative study
designs before the experimental investiga-
tion commences—incorporating different doses
and/or different patients and computing the
probability of a successful trial given the charac-
terized patient population and proposed treat-
ment regimens.75,78,86

Predict the toxic potential of chemicals and
human adverse effect, and generate hypotheses
about the putative molecular mechanisms of
chemical-induced injury.94,99

Drug-disease modeling
Use to understand the relationship

between drug effect and the natural progression
of the underlying disease.76,85,91,93

Describe macrophysiological processes
within a particular disease state and use to
understand likely modulation of those processes
with specific interventions.73

Drug–drug interaction, special populations
Guide investigations in pediatric, the

elderly and other special populations.76,84,88–91,95

Identify and assess complex drug-drug interac-
tions early in drug development so that clinical
studies could be planned or prioritized to assess
the risk.79

Prediction
Allow for extrapolation of the PK proper-

ties across species and compounds.85,86,89,95

Ultimately predict human PK from in
silico, in vitro, and physicochemical data.83

time in parallel with advancing wet-lab experiments.
Preference must be given to M&S methods that can
do both.

Reliance on computational models that simply
abstract away uncertainties is counterproductive: so
doing does yield simple, easily managed models, which
can be useful for particular use cases, but it also
adds a new source of uncertainty. The core source of
uncertainty is the experimental evidence on which the
project’s mechanistic theories are based (in the context
of all other available knowledge and insight), and we
recognize that current theory at a particular project
stage is just one drawn from a space of possible or
plausible mechanistic theories.

Studies conducted by Amgen110 and Bayer
HealthCare111 found that published, preclinical, sci-
entific findings that were important to their R&D
efforts could be confirmed in only 11–25% of cases. A
rule-of-thumb among early-stage venture capital firms
is that at least 50% of published studies, even those
in top-tier academic journals, cannot be repeated.112

Consequently, there is significant risk that the evi-
dence supporting the conceptual mechanistic models
on which the project is based is flawed (even if
the theory proves reasonably correct). Even when
experiments are repeated, variability of results can be
considerable. Rarely can measurements made on cell
culture models be mapped quantitatively 1:1 to com-
parable measures made on animal models. Similarly,
animal model phenomena rarely map 1:1 to human
counterparts. Hence, there is considerable uncertainty
about how results from different experiments can or
should be mapped to—and thus influence—the con-
ceptual mechanistic models on which project scientists
are relying. Such uncertainty and mapping dilem-
mas present problems for those using conventional
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inductive, equation-based models (typically ODEs)
of the type discussed in the cited reviews. Model-
ers understand the issues: when using such methods,
they would prefer to be on the far right of Figure 1.
The conventional strategy is to request more data.
So doing postpones mechanistic modeling. Unfortu-
nately, it may be necessary for the project to advance
beyond the next few go/no-go decision points before
the requested data begins to come available. While
waiting for the required data, the accepted strategy
for dealing with uncertainty issues is to abstract them
away: if we make particular simplifying assumptions,
we can create an idealized, hypothetical mechanis-
tic scenario that, if fully validated, will place us on
the right side of Figure 1 where inductive, predictive
models can be reliable. In doing so, model-grounding
issues, discussed below, are typically ignored. As the
project advances, there is no straightforward way to
‘add back’ the various uncertainties abstracted away,
even if they could be measured, or undo the simplifying
assumptions.

Analogs are particularly useful in managing
uncertainty because they can be used to simulate pos-
sible and plausible mechanisms when center-left on
the three lower Figure 1 spectra (although our focus
here is on uncertainty, other elements that are often
also abstracted away, such as biological or experi-
mental details, may also be handled more concretely
by analogs). An analog’s mechanism is a conse-
quence of components interacting during execution.
Monte Carlo variations in component specifications,
rules specifying interactions, and parameterizations
can cause phenomena generated during each execu-
tion to be unique. That process simulates the non-
deterministic nature of biological phenomena. That
variety can also represent uncertainty about genera-
tive mechanisms, experimental variability, and intra-
and interindividual variability. The challenge then
becomes to follow a disciplined protocol, as done in
Sheikh-Bahaei and Hunt71, Hunt et al.109, and Lam
and Hunt113, to identify and apply constraints in con-
junction with in silico experimentation (see Box 1) to
systematically shrink the space of acceptable Monte
Carlo variations. Having multiple, equally satisfactory
analogs of the same referent is an acknowledgment
and representation of uncertainties that can shrink
but not vanish.

Avoiding Information Loss, ‘Warts and All’,
is Essential
A product of modeling efforts cited in the reviews, irre-
spective of model type, is derived measures that are
recorded for use by others. Examples include mean

predicted ED50 (±SD), clearance, half-life, volume
of distribution, etc. Examples described in Support-
ing Information-Use Cases73–102 illustrate that derived
measures acquired during an early R&D stage can
influence the perspective taken or focal aspect of inter-
est at a later stage. However, derived measures are
lossy (information is lost). Features present in the raw
experimental observations are lost. Contextual infor-
mation, including experiment method details, assay
information, etc., may also be lost. Information loss is
a concern: later, it may prove critical. Similar to issues
discussed above, it becomes increasingly infeasible
to recover lost information. Today, preventing such
information loss can be challenging: proper measures
are required to preserve, manage, and transfer infor-
mation. During a project’s lifetime (and thereafter), it
requires attention to those preservation details across
different functional groups through each development
stage, from preclinical to postmarketing. The risk
of critical information loss increases for conceptual
model descriptions enriched with quantitative, mech-
anistic, pharmacological, physiological, and systems
biology details that do not readily reduce to simple,
mathematical or statistical descriptions.

Despite the above concerns, we stress that
derived measures along with highly abstracted mod-
els are essential: researchers need them. They provide
a much needed bridge from particular and specific
concrete modeling to the more powerful general-
ized models from which researchers will develop the
theory for therapy controlled normal-to-morbid or
diseased-to-normal transitions. For this reason, the
framework must facilitate access to, and the analog
based knowledge repository must house, curate, and
facilitate access to analogs, metadata, and much of the
experimental observations from which the metadata
were derived.

Consider measures derived from multiple differ-
ent models separated in time, combined and extended
beyond their original model use cases, and how they
may influence downstream conceptual models used
for go/no-go decision-making. Conceptual models can
be expected to push the go/no-go decision in one
direction. A quite different direction may result if
all the original models, including those that at an
earlier time were judged ‘failures’, could be re-run
together to directly inform decision makers when
that decision is required. An analog based knowl-
edge repository fulfilling the requirements presented
below will guard against information loss and knowl-
edge distortion. Having intuitive, easily understood
analogs will reduce dependency on, and usefulness
of, lossy, derived measures to inform domain experts’
conceptual models.
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EFFECTIVE DECISION-MAKING
SUPPORT REQUIRES A UNIFIED
FRAMEWORK

Today, domain experts rely primarily on their
own conceptual models—informed, of course, by
computational models—to make go/no-go decisions.
Improved productivity can be achieved by changing
that relationship: domain experts make go/no-go
decisions after using simulations to explore many
scenarios within a computational framework built
and equipped specifically for scenario exploration
in addition to enabling the multiple M&S methods
needed to satisfy the requirements below. It will
be the ‘framework’ within which all model use
cases occur. We envision the framework becoming
an analog based knowledge repository: an up-to-
date instantiation of all accumulated, new, and
proprietary mechanistic knowledge in an accessible,
easily understood, observable, and interactive form.
As a consequence, R&D project team members will
have reduced dependency on the difficult to challenge
conceptual mechanistic models of current, past, and
no longer available domain experts.

Current experiment records and/or protocols
capture and preserve some current, underlying, mech-
anistic conceptualizations, however, that contextual
information is typically decoupled from data and can
become unavailable in subsequent phases of devel-
opment. A good practice will be that information
is documented and provided as part of annotation
within the framework. It will not be ancillary, as
in OpenABM.115 In order to effectively incorporate
data, especially wet-lab data across discovery and
development stages for future use, automated capabil-
ities will be needed that enable and facilitate metadata
annotations, which may include biological, anatomi-
cal, and physiological details across biological scales.
Of course, the framework will also provide methods
for storage, curation, composition, and execution of
analogs representing what is known about domain-
specific referent systems. Its core constituents (specific
items) will be data, semantic relationships, workflow
actions, and computational components. There will
also be a variety of derived constituents including
data sets, semantic networks (e.g., XML ontologies),
workflows, plus analogs and their components. Under
Resources, we list currently available tools that can
be used to organize and complete all of the preceding
tasks.

As an example of a knowledge repository
decision support use case, consider a task to
estimate the likelihood of success for a clinical trial
given a compound and cohort sample specifications.

The following may seem futuristic, yet tools
for enabling all capabilities (listed under Web
Resources) are in use today within different domains.
The project’s inter-disciplinary team, including
regulatory scientists, statisticians, programmers,
regulatory staff, etc., populate the knowledge
repository with experimental protocols (Workflows
under Resources), experimental data sets, analog
mechanisms (Executable models under Resources)
representing the cohort and compounds, and maps
between the terms (objects, methods, variables,
parameters, graphs, etc.) used in all these elements.
Software agents and actors within the repository
simplify the process. A user specifies a set of
objectives or criteria for a successful (or unacceptable)
clinical trial outcome and assembles at least one
analog that might plausibly generate data satisfying
the objectives. Repository agents facilitate the
composition by periodically checking the consistency
and completeness of the evolving analog. The
user then executes the analog according to study
design workflow(s). Execution results will exhibit
the systemic causation and variability generated by
fine-grain, networked events embedded in analog
components. Repository agents will compare and
contrast the results to the objectives and present
the user with similarity scores validating or falsifying
analogs. Repository agents may also present a suite
of alternatively composed analogs consistent with the
data, ontologies, and workflows previously installed.
Similarity scores provide a rudimentary estimate of
the likelihood of success for the clinical trial. Further
execution and similarity scores of alternative analogs
provide refinement of and confidence (or the lack
thereof) in those estimates. Note that because we
are left of center in Figure 1, the approach avoids
assuming the existence of a perfectly accurate analog.
Any analog that achieves all face validation targets
and satisfies the various similarity measures will be
considered valid (until falsified). We envision all of
the preceding being completed within hours.

As a technical note, an analog may contain
components based on different formalisms. Some may
be graph theoretic. Some may use ODEs. Others will
be (or will use) agents. The preceding discussions
illustrate that referring to the modeling activities
as being AB is misleading. Agent-directed or agent-
oriented are more accurate descriptions.114

FROM PARTICULAR TO PARAMOUNT
M&S USE CASES

We worked through each of the cited reviews and
commentaries73–102 and identified more than ninety
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general and specific M&S use cases. Although each
article presented its assessment from a particular
perspective, there was, as might be expected,
considerable overlap in specific use cases. That
overlap guided and facilitated clustering them into
seven categories that span all pharmaceutical R&D
activities. Given use cases, we sought general
requirement statements that would subsume two or
more uses within each category. They are listed in the
subsequent section.

Paramount Use Cases
The following are called paramount M&S use cases
because they subsume the particular use cases in
Supporting Information-Use Cases clustered under the
following seven categories.

Knowledge Integration
Given multiple organizational perspectives (disease
state, prognostic factors, drug characteristics, cohort
variability, disease progression, drug effects, timelines,
budgets, etc.) and multiple data sets (qualitative
and quantitative; some possibly incommensurate)
from various experiments and experimental models,
solve for a collection of alternative, composable,
explanatory mechanisms parameterized by, and
validated against, available data. Here, ‘solve’ is
defined as applying constraints within an iterative
protocol (see e.g., Tang and Hunt116, Park et al.117,
Engelberg et al.118) to shrink a set of possible
mechanisms into a much smaller set of plausible
(supported early by qualitative validations) and
incrementally more likely mechanisms (supported by
quantitative validation).

Use collected mechanisms to assemble concrete,
consistent, comprehensive, clinically relevant ‘stories’
about the co-evolution, during and following
treatment, of subject (multiscale), the condition
being treated, and treatment as well as (absorption,
distribution, metabolism, and elimination) ADME
plus response monitoring in the case of a drug. In
this context, a story is the narrative created during
simulation, and a simulation results from executing
an in silico experiment. There are several reasons
why a good simulation story is important.119,120

Use assembled stories to discover and make explicit
potential conflicts, voids, and ambiguities within an
analog based knowledge repository, thereby providing
immediate predictive and analytical use, while
bringing into focus paths for repository improvement.

Management of Uncertainty
Present for in silico experimentation, plausible mech-
anisms exhibiting variability, both composite and

singular, that are qualitatively and quantitatively simi-
lar to that seen (or expected) in laboratory experiments
or clinical trials, including matching changes in vari-
ability across different cohorts and study designs.
Use simulations to estimate probability of achieving
clinical target efficacy outcomes, and when feasible,
estimate probability of specified, undesired effects.

Decision Support
Present contextualized assemblies of plausible mech-
anisms parameterized to provide an evidence-based
justification for componentized estimates of likeli-
hood of success at critical stages within the devel-
opment process. Use the assemblies and their stories
to estimate efficacy and safety windows, including
confidence intervals, and to demonstrate sample sizes
within appropriate population cohorts needed for con-
straining study outcomes to within those windows.

Preclinical and Clinical Development
Preclinical and clinical development along with
postmarketing uses are covered by requirements listed
above and below.

Drug-disease Modeling
Solve for plausible mechanism composites satisfying
multiple long-term aspects of diseases, drug effects
and fates within cohorts, placebo effect, and disease
modifying interventions. Use those mechanisms to
predict compound behavior (PK) within contexts of
interest, including hypothetical mechanisms for lack
of adherence, dropout, and multiple drug interaction.

Drug–drug Interaction, Special Populations
Solve for plausible mechanism composites of
compound interactions of interest, including time-
dependent inhibition, induction, and competition
between a parent compound and its metabolites.
Solve for plausible mechanism composites for various
cohorts (animals, children, and adults) based on
classifications of compound behavior in each cohort.
Hypothesize and build mechanism translation maps
between analog cohorts (e.g., between adults and
children). Use plausible translation maps to design
clinical trials for human cohorts.

Prediction
Solve for plausible mechanism composites by multi-
objective search within constraints defined by fine-
grained classifications of cohorts (particular attributes
at multiple levels and scales) and compounds (e.g.,
particular physicochemical properties), including their
formulation, across model types (in vitro to in
vivo, animal to human). Use the plausible solutions
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to predict the outcomes of precise and particular
regimens on individually characterized cohorts, both
across (translation) and within model types.

REQUIREMENTS

To enable all paramount use cases, the framework
must enable, and analog systems must meet, these five
requirements.

1. An analog’s components and spaces will be
concrete (enabling knowledge embodiment),
wherein its details will be directly defined
by its use cases. Analog components will be
somewhat modular, in schedule as well as
state. So doing helps accomplish the following
framework activities.

a. It enables defining and annotating com-
ponent- and module-to-biological coun-
terpart mappings, making them explicit,
intuitive, and easily understood. It enables
experimentation on concrete analogs. It is
essential for wet-lab R&D scientists and deci-
sion makers to easily follow, interpret, and
comment, unassisted, on simulation details.
For that, the embodied knowledge needs to be
easily accessible, which requires transparency
in representation and execution—form and
function.

b. It enables making modules quasi-auto-
nomous and thus more biomimetic.65,104

Analog components composing virtual cells,
organs, animal models, and ultimately
individuals, must exhibit some level of
autonomous behavior in order to improve
similarity with biological counterpart pheno-
types, while increasing their explicative and
predictive utility.

c. Components can be adapted easily to rep-
resent different past and future experiment
designs and protocols.

d. It is straightforward to change mechanistic
detail (granularity, resolution) to simulate
additional attributes or experiments. It
facilitates scaling (translation, morphing)
among in silico experimental systems to
represent transitions from in vitro to animal
models, from animal model to human
cohorts, and from normal health to morbid.

e. It enables reusing analogs and components
along with their embedded knowledge, for

study of new chemical entities (or biologics)
and new intervention scenarios under
similar or different morbidity constraints or
epigenetic influences.

f. It facilitates verification through unit testing,
where each component can be tested in
isolation as well as in the composed analog
context.

g. It facilitates versioning, where each compo-
nent can evolve independent of other compo-
nents.

h. It enables building trust in surviving analogs
by accumulating direct in silico-to-wet-lab
validation evidence, where measures taken
during in silico experiments are mapped
quantitatively to counterpart measures taken
during wet-lab experiments. So doing
reduces reliance on derived measures, which
can mask information loss, assumptions,
and uncertainty removal. Many of those
validation exercises will rely extensively on
pharmacometrics and conventional modeling
methods.

i. It facilitates archiving analog and mechanism
evolution along with in silico experiment
successes and failures within the framework.
The latter is particularly important. When
an analog or in silico experiment fails in
some way, we acquire new knowledge,
e.g., a feature of an analog mechanism
thought to have a particular in vitro
biological counterpart, does not. However,
in a different context, that mechanism or
some variant may prove useful.

2. Components and spaces can be assembled
easily to simulate current, past, and future
laboratory or clinical experiments. Generating
many alternative, plausible, testable (through
in silico experimentation) components for each
function/structure and then selecting against
those that fail, is needed to insure generation
of new knowledge. So doing helps accomplish
two framework activities.

a. It becomes increasingly easy to construct
(plug together) and explore alternative
mechanistic hypotheses and intervention
scenarios. It facilitates contrasting their
predictions during simulation. So doing
can help avoid dictating ‘best methods’
prematurely. The latter keeps the door open
for yet-to-be-stated M&S use cases while
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increasing opportunities for serendipitous
insight and/or discovery.

b. It becomes increasingly easy to con-
struct multiscale, multiresolution, multi-
attribute analogs (eventually individualized
virtual patients) composed of heteroge-
neous (form, function, methods, formalisms,
etc.) components.

3. Simulation experiments are feasible in the
presence and absence of chemical entity
objects (hereafter, CE-objects). They are also
feasible in the presence of multiple CE-objects.
Components within analogs can recognize
different CE-objects and adjust their response
accordingly.

4. Coarse grain (from the perspective of biological
organization) phenomena will derive mostly
from local component interactions at a finer
grain (local includes a living entity’s immediate
environment). When required, finer grain
mechanisms can respond to coarser grain
phenomena.

5. Semi-automated modeling methods are needed
to more rapidly complete three critical activities:

a. Conduct in silico experimentation to explore
and shrink spaces of competing mechanis-
tic hypotheses plus alternative mechanism
instantiations and parameterizations.

b. Use cross-model validation methods (based
on quantitative similarity measures) to dis-
cover parsimonious options to increase and
decrease component and analog granular-
ity when milestones change and when new
questions require new use cases, which neces-
sitates changing targeted attributes and/or
shifting attention to new aspects and phe-
nomena.

c. Discover testable hypotheses about how
changes in clinical, field, or laboratory
measures may be linked mechanistically to
observed or observable changes in partic-
ular biological level phenomena, especially
molecular-level phenomena.

MECHANISM-BASED APPROACH

New projects are typically initiated based on
evidence (even if limited) supporting conceptual
mechanistic models (morbidity or disease progression,
cause-effect, pharmacology, clinical outcomes, etc.)

that often include hypothesized molecular targets.
There are large gaps in the mechanistic knowledge
landscape that must be filled strategically to facilitate
making ‘correct’ go/no-go decisions. The mechanistic
landscape spans cell cultures, model organisms, and
humans. It also spans pharmacology, toxicology,
disposition, metabolism, and more. Today, no one
member of the R&D enterprise has a comprehensive
‘view’ of that landscape, yet it is clear from the cited
experts that full knowledge of the current state of that
landscape and what can be predicted from it is needed
at each go/no-go decision juncture. Knowledge of—or
use of one or more features on—that mechanism
landscape is common to all identified model use
cases.

The ability to navigate, use, and leverage
current mechanistic insight is a common feature
of all paramount use cases. Enabling those use
cases requires transitioning from models that are
separate and distinct computational (or diagrammatic)
descriptions of conceptual representations (e.g.,
the systems biology, PBPK, and pharmacodynamic
models discussed in the cited reviews) to concrete
instances of that knowledge. Doing so is feasible
using synthetic analogs of mechanisms.65 We create
analogs by combining (plugging together) specific
elements, often varied and diverse, so as to
form a coherent biomimetic whole. The analog
is synthetic because it is a software mechanism
constructed from extant, autonomous components
(in this case, executable software components)
whose existence and purpose are independent of
the model or mechanistic landscape that they
comprise. The expectation is that, upon execution,
the interacting elements and components—the
mechanism undergoing simulation—will exhibit event
sequences and outcomes that are measurably
similar to counterpart mechanisms within the
corresponding wet-lab experiments that will be
used to validate the analog. See Yan et al.119,
Lam and Hunt113, Tang and Hunt116, Engelberg
et al.118, and Park et al.118, for validated examples
of synthetic analogs and their mechanisms, all
designed for use center-left on the three lower
Figure 1 spectra.

Exploratory Iteration
One final, critical capability is needed in order to
enable the remaining paramount use cases. It must be
straightforward to repeat any simulation experiment
using a different compound, set of compounds, or no
compound. So doing can be accomplished most easily
by building analogs using object-oriented software
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methods and using different mobile objects to map
to different compounds of interest. We require that
objects representing drugs can be added (or not) and,
when ‘inactive’, their presence will not interfere with
any already validated mechanism. Examples of that
approach are provided in Sheikh-Bahaei and Hunt71,
Lam and Hunt113, Park et al.118, Yan et al.121, and
Sheikh-Bahaei et al.122 In those reports, one CE-
object maps to a very small amount of referent
compound in a small aliquot of measurable material
taken from a referent wet-lab experiment, such as
culture media, blood, tissue, etc. In time, these
CE-objects will carry information that distinguishes
one from another, such as structure specifications,
particular physicochemical properties, affinities for
biological substrates, etc. It follows that any analog
component that might feasibly interact with a CE-
object must be able to ‘read’ structure specifications
and particular physicochemical properties, and use
that information to adjust (or not) its interactions
with that object.

To enable the latter, analog components will
need to be ‘intelligent’ (able to use artificial intelligence
methods): they will be programmed with the results of
many earlier validation and falsification experiments
and can—absent user intervention—arrive at a
customized parameterization that determines how
they will interact with a new CE-object. To illustrate,
imagine that analogs of each of a battery of in vitro
model systems have achieved degrees of validation
for ten compounds. One analog’s referent is an in
vitro system used to characterize metabolic profiles
and predict human metabolic clearance. Focus on that
analog: upon validation, for each mechanistic event,
it retains its parameterizations for all ten CE-objects.
The project team needs an answer to this question.
Given three, competing, new chemical entities, are
their expected metabolic clearance values within a
target range? Each analog component, for each unique
mechanistic event, can use available framework tools,
follow a provided protocol, and construct a predictive
map from the space of selected structure specifications
and particular physicochemical properties to the
space of validated parameterizations. We extend the
mapping to the three new compounds and arrive
at unique analog parameterizations for each CE-
object counterpart. We then conduct analog clearance
experiments using each of the three CE-objects. We
use the results to predict wet-lab clearance measures.
Sheikh-Bahaei and Hunt71 described a prototype
example of such a protocol. With a knowledge base
of only ten compounds, we would have only limited
trust in those predictions. However, we would expect
to have more trust after doing the same using a

knowledge base of fifty compounds. At that stage
we could begin characterizing families of compounds
as well as particular molecules. As more information
is embedded, the knowledge repository increasingly
facilitates the work of the domain expert.

The same basic approach can be used to
explore expected outcomes of in silico toxicology
experiments, experiments in analogs of animal disease
models, and even analogs of normal and special
human cohorts. There would be no technical barriers
to simulation experiments that explore possible
drug–drug interactions.

Beyond Paramount Use Cases
Figure 1 helps to bring into focus important challenges
faced by any new, high risk, high gain pharmaceutical
R&D project. It can be characterized as being left
of center on the bottom three spectra. A task
is to acquire just enough new information and
knowledge (move right in Figure 1) to make better-
informed, ‘good’ go/no-go decisions sooner within
budget constraints and in the face of considerable
uncertainty. The expectation is that simulations
will use available knowledge to provide essential
information and/or guidance moving forward. To do
so, M&S methods must be engaged at the start of
the project. Otherwise there will be considerable risk
that M&S efforts will lag behind wet-lab efforts. The
logical beginning scenario would be to pull together
components from models successfully supporting
more mature projects, modify them as appropriate,
and assemble them to begin being synergistic with
wet-lab experiments. Even when the new effort is far
left in Figure 1 spectra, speculative and qualitative
analogs can be constructed to help researchers think
clearly, explicitly, and concretely about the referent
and design specific, well-focused wet-lab experiments.
That scenario is an example of model use cases beyond
those that directly support product development and
approval. It also speaks to requirements, covered by
those above, which have apparently not yet been
considered.

A related, also essential use case will occur
once a new product has been approved: revisit the
process in silico (from start to finish) to explore
alternative R&D, knowledge acquisition paths that
would have been more time, cost, and/or knowledge
effective. To do so will require simulating phases
of the R&D process, including various wet-lab
experiments performed or not. Such exploratory
simulation may seem futuristic, but it is easy to
believe that, with such capabilities, the field will
have achieved dramatic productivity gains and that
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is the objective. These additional M&S use cases
illustrate that future development of simulation
models must take place within a common framework,
if the simulations are expected to make a lasting
contribution to the knowledge base. Simulated
R&D activities will be analogs of past or future,
real or considered R&D activities. None of the
analogs used, however, will be fully detailed or
fully validated. Because we will be center-left on
the bottom three Figure 1 spectra, we know that
they will (always) be flawed in ways yet to be
determined. Those flaws will be hidden by built-in
uncertainties.

Simulations that support and add plausible
detail to early conceptual models, such as hybrids
of systems biology, PBPK, and pharmacodynamic
models, will be useful. Simulation models that can
also falsify aspects of those conceptual models, earlier
rather than later, will be especially valuable because
hypothesis falsification, not validation, generates the
new knowledge that will be needed for making go/no-
go decisions.123,124 Enabling mechanism falsification
in addition to mechanism validation is another,
important use case not specifically identified in the
cited reviews. Falsification of an analog requires that
its mechanism be concrete and particular.65 Plausible
conceptual mechanisms, especially those that are more
complicated, can in theory be falsified using wet-lab
experimentation, but doing so can be challenging and
time- and resource-intensive.

Analog Based Knowledge Repository and
AB Models
Representing within a knowledge repository the
variety of data structures, experimental observations,
and documented biological phenomena that may
influence go/no-go decisions during the R&D
projects is beyond the scope of any one model
of computation (MoC). A successful analog based
knowledge repository will require the co-existence
of multiple, occasionally inconsistent, yet equally
valid, models of the same referent(s), as has
been done within other domains.125 Inconsistency
robustness126 is important to the aspect-oriented
nature of scientific M&S.65,104,127 The management
of inconsistent models is part of the strategy
for integrating MoCs into a coherent knowledge
repository. The choice of underlying MoC for any
particular activity is driven by the focal aspects
or model (analog or component) use cases. Variety
in aspects is better realized by variety in MoCs.
For example, a dataflow MoC can co-exist with
a discrete event analog of a mouse cancer model,

the former representing a functional relationship
between high volume population-oriented variables
(like concentration in a PBPK model) and the
latter representing mechanistic relationships between
unique, biomimetic components. For the foreseeable
future, such a repository will not, itself, be AB, but
it will be partially agent-directed.115 Agents such
as Experiment Agents used in our work118,128–130

follow protocols and perform tasks exactly analogous
to those human modelers perform: set up and
execute various models (analogs, modules, etc.) and
use pharmacometric methods. Drawing on work
from Lee and colleagues125,131,132, we anticipate no
restrictions being placed on MoCs, except where
required for managed composition, execution, and
analysis as has been done with Ptolemy II125 for
M&S distributed computing scenarios. Depending on
use case requirements, analogs may be realized by
any given MoC, including continuous-time systems,
ABMs, ODEs, systems and process networks, Stream
X-Machines, etc.

Conclusion
An eruption of recent articles, including those
cited,73–102 is focusing attention on the declining
productivity crisis stressing pharmaceutical R&D.
The hundred plus authors of the more than
thirty cited reviews and commentaries argue from
different perspectives (pharmacometrics, quantitative
and systems pharmacology, model-based drug
development, etc.) for expanded use of M&S
methods as the primary means to reverse the
downward productivity trend. They describe more
than ninety particular M&S use cases. The Box 3
includes particular examples. They were merged into
paramount use cases listed above. We made the case
that facile realization of those use cases will require
use of an analog based knowledge repository that
fulfills five requirements. AB M&S methods will play
important roles along with those methods already
in use, but additional capabilities and methods are
required. Importantly, there are no technology gaps.
The five requirements can be satisfied by the tools
listed under Resources, which are in use within other
domains.

Reversing the productivity decline requires
rethinking how M&S methods can and should be used
within the larger R&D process. It requires shifting
focus from analysis of data to discovery of explanatory
mechanisms. The latter, conditioned paramount use
cases, requires implementing the requirements listed
above. As illustrated in Figure 1, and as explained in
Hunt et al.104 and Supporting Information, so doing
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requires increased reliance on relational grounding
and diminished reliance on absolute grounding. It
also requires being clear about how computational

models are being used and continuously exploring
how barriers to participation in M&S activities can
be lowered.
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WEB RESOURCES

Listed below are available, open-source tools of the type that can be used now to begin satisfying the listed
interactive Knowledge Repository requirements.
Databases

PostgreSQL (relational): http://www.postgresql.org/
ZOBD: http://zodb.org/
NoSQL: http://nosql-database.org/
RDF/SPARQL: http://www.w3.org/TR/rdf-sparql-query/

Data [de]composition
R: http://www.r-project.org/
HDF: http://www.hdfgroup.org/HDF5/

Semantics
Protoge: http://protege.stanford.edu/
Ontopia: http://www.ontopia.net/
Jena: https://jena.apache.org/
Pellet: http://clarkparsia.com/pellet/∼(complete)
Racer: http://www.sts.tu-harburg.de/∼r.f.moeller/racer/ (complete)
Hermit: http://hermit-reasoner.com/

Executable models
Code

Eclipse: http://eclipse.org/
Netbeans: http://netbeans.org/

Graphical programming
Ptolemy II: http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm
NetLogo: http://ccl.northwestern.edu/netlogo/
ArgoUML: http://argouml.tigris.org/

Modeling infrastructure
JAMES II: http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii
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http://ptolemy.berkeley.edu/publications/papers/03/overview/overview03.pdf.
http://www.postgresql.org/
http://zodb.org/
http://nosql-database.org/
http://www.w3.org/
http://www.r-project.org/
http://www.hdfgroup.org/
http://protege.stanford.edu/
http://www.ontopia.net/
http://clarkparsia.com/pellet/~
http://www.sts.tu-harburg.de/
http://hermit-reasoner.com/
http://eclipse.org/
http://netbeans.org/
http://ptolemy.eecs.berkeley.edu/ptolemy
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CC3D: http://www.compucell3d.org/
MASON: http://cs.gmu.edu/∼eclab/projects/mason/

Actor model133

Erlang: http://www.erlang.org/
Scala: http://www.scala-lang.org/node/242

Workflow
Kepler: http://kepler-project.org/
Taverna: http://www.taverna.org.uk/
Galaxy: http://galaxyproject.org/
Triana: http://www.trianacode.org/

Graphs
NetworkX: http://networkx.lanl.gov/
JUNG: http://jung.sourceforge.net/
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