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ARTICLE INFO ABSTRACT
Key words: Purpose: Despite COVID vaccination with ChAdOx1 ncov-19 (COVISHIELD®) (ChAdOx1 ncov-19) a large number
SARS CoV-2 of healthcare workers (HCWs) were getting infected in wave-2 of the pandemic in a cancer hospital of India. It

Whole genome sequencing
Vaccine breakthrough infections
Variant of concern

Delta variant

was important therefore to determine the genotypes responsible for vaccine breakthrough infections.

Methods & Objectives: Retrospective observational study of HCWs. Whole genome sequencing of SARS CoV-2 using
Mlumina NovaSeq was done. Mutations from both waves were compared to identify genomic correlates of
transmissibility and vaccine breakthrough infections.

Results: Vaccine breakthrough infections were seen in 127 HCWs out of 1806 fully vaccinated staff (7.03%).
Median number of HCWs infected per day in wave-1 was 0.92 versus 3.25 in wave-2. Majority of wave-1 samples
belonged to B.1 and B.1.1 lineage. Variant of concern- Delta variant (90%), and variant of interest- Kappa variant
(10%), was seen in only wave-2 samples. Total mutation observed in wave-2 samples (median = 44) was 1.8 times
than wave-1 sample (median = 24). Spike protein in wave-2 samples had 13 non-synonymous mutation as
compared to 8 seen in wave-1 samples. E484Q-vaccine escape mutant was detected in five samples of wave-2;
T478K - highly infectious mutation was seen in 31 samples of wave-2. We identified a novelcoding disruptive
in-frame deletion (c.467_472delAGTTCA, p. Glu156_Arg158delinsGly) in the Spike protein. This mutation was
seen only in wave-2 (78%, n = 39) samples.

Conclusion: The circulating virus strains in wave-2 infections demonstrated a greater degree of infectivity. There
was a significant change in the genotypes observed in wave-1 and wave-2 infections along with almost twice the
number of mutations. We noted that vaccine breakthrough infections (although mostly mild).

1. Introduction virulence, vaccine efficacy in evolving variants [2-4]. Although HCWs
have received prioritized vaccinations against this virus in India, in-

The COVID-19 pandemic has caused morbidity, mortality, socio- fections have happened in partially immunized and even those receiving
economic catastrophe, and increased healthcare burden on a global two doses of vaccine. ChAdOx1 ncov-19 (Covishield®) (Serum Institute
scale [1]. Questions have emerged with regard to transmissibility, India) has been the principal vaccine administered in the Indian
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population. The reported vaccine efficacy of ChAdOx1 ncov-19 (Cov-
ishield®) was between 91.4% and 94.9% in one study s [5]. In a study
from Belgium COVID vaccine breakthrough infections were reported
with an incidence of 11.2 per 100 person years. Vaccination with
Adenovirus vectored vaccine compared to mRNA vaccines was associ-
ated with greater risk of vaccine breakthrough infections, and natural
infection was found to be protective and was associated with less inci-
dence of vaccine breakthrough infections [6].

In our study we have examined the molecular epidemiology of SARS
CoV-2 infection among HCWs in a cancer hospital in eastern India across
the first and second wave of the pandemic. Genomic surveillance by WGS
of SARS-Co-2 provides insights into (a) transmissibility; (b) virulence; (c)
ability to evade detection by specific diagnostic tests (e.g. when RT-PCR
target genes are affected); (d) provide information about decreased sus-
ceptibility to medical therapies (e.g. monoclocal antibodies); (e) ability
to evade natural or vaccine-induced immunity (vaccine escape mutants);
(f) tracking of antigenic evolution for vaccine development; (g) virus
variant identification and characterization.

2. Objectives

To investigate: (a) whether the increase in transmissibility of infec-
tion observed in wave-2 was related to differences in viral genomic
characteristics (b) the specific regions of the viral genome that may have
changed resulting in alteration of transmissibility and vaccine break
through infections.

3. Materials and methods
3.1. Study design

Retrospective observational study which compares mutations in
SARS-CoV-2 genome in samples from wave-1 and wave-2 of the
pandemic.

Inclusion criteria: HCWs of any gender or age of this hospital with
RT-PCR confirmed SARS-CoV-2 infection of any severity including
asymptomatic positives (in wave-1). Periods of recruitment for wave-1:
April 06, 2020 to Jan 13, 2021; and for wave-2: March 31, 2021 to
May 24, 2021.

Exclusion criteria: SARS-CoV-2 RT-PCR cycle threshold value (CT)
> 30.

3.2. Sample collection, storage

Samples of nose swab and throat swab (HiMedia Laboratories,
Mumbai, India) were collected in VTM (Viral Transport Medium) and
stored at minus 80 °C till the time of processing.

3.3. COVID RT-PCR testing strategy

Wave-1: Symptomatic HCWs and high risk contacts of positive cases
(as per WHO definition).

Wave-2: Symptomatic HCWs only.

RT-PCR test methodology: Real-time PCR for the SARS CoV-2 was
performed targeting the ORFlab and N gene on respiratory samples using
the Bio-Rad CFX real-time PCR platform. RNA extraction was done using
QIAamp Viral RNA Mini Kit (Qiagen, Cat# 52,904).

3.4. Study cohort for whole genome sequencing (WGS)
Ninety-seven samples which met the inclusion criteria (47 from wave-

1 and 50 from wave-2) were randomly selected for whole genome
sequencing.
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3.5. RNA extraction, library preparation and whole genome sequencing

RNA was extracted from the VTM containing nose and throat swab.
First-strand cDNA was prepared from extracted RNA. Targeted enrich-
ment was performed by amplifying the entire SARS-CoV-2 genome using
a set of commercially available PCR primers. The final library distribu-
tion was assessed on Tape Station. The libraries were quantified using
Qubit High Sensitivity Assay and were pooled, diluted to final optimal
loading concentrations for cluster amplification on Illumina flow cell
followed by sequencing on Illumina NovaSeq® instrument to generate
150bp paired-end reads [7].

3.6. Quality control and contamination control

Sample identification was done using barcode labels. Negative con-
trols were used to rule out PCR contamination. External Quality Assur-
ance of tests were performed by the Health Department of Government of
West Bengal and Indian Council of Medical research.

3.7. Mapping of reads, variant calling, lineage, clade classification,
phylogenetic tree construction

The sequenced data of all samples were analysed using an in-house
pipeline. For the low quality read (<Q30), sequencing adapter, and
host reads (mapping to human) were filtered out. The remaining reads
were aligned to the SARS-CoV-2 reference genome downloaded from
NCBI RefSeq (NC_045512.2) using BWA v.0.7.12 aligner [8]. The depth
and the alignment percentage of the reference were calculated using
Samtoolsflagstat options.

The consensus sequence was called using samtoolsmpileup option.
Variant calling was performed using GATK (v4.1.0.0) variant caller. After
variant calling, variants with read depth (<30) and allele frequency
<0.10 were removed from further analysis.

The variants identified were then annotated to the SARS-CoV-2 genes
using SnpEff 4.5COVID19. The variant impact on genes, codon changes
and amino acid changes were added to the variant annotation. The var-
iants were further annotated using various data bases including CDC,
GISAID and GESS [9]. Lineage and clade classification were performed
using Pangolin 3.1.4 and NextCladel.5.1 respectively. Variant surveil-
lance containing non-synonymous variants for each sample was down-
loaded from GISAID database (filename =
variant_surveillance_tsv_2021_06_26. tar.gz). The gene names and posi-
tion used by GISAID were normalized to the gene model gff file that was
used for the variant annotation by SnpEff 4.5COVID19. Delta variant
(B.1.617.2) was defined by the Spike Protein Substitutions: T19R,
(V70F*), T95I, G142D, E156-, F157-, R158G, (A222V¥), (W258L*),
(K417 N*), L452R, T478K, D614G, P681R, D950 N. Kappa variant
(B.1.617.1) was identified by the Spike Protein Substitutions: (T95I),
G142D, E154K, L452R, E484Q, D614G, P681R, Q1071H.Phylogenetic
tree was constructed using NextCladel.5.1 and the Auspice 2.23.0. The
tree plot was exported as JSON for further improving the visualization.

3.8. STROBE and STROME-ID checklist

Checklists from Strengthening the Reporting of Molecular Epidemi-
ology for Infectious Diseases (STROME-ID), an extension of the STROBE
(Strengthening the Reporting of Observational Studies in Epidemiology)
was used to collect, analyse and present data [10].

3.9. COVID case definitions

Case definitions of mild, moderate and severe COVID were as per
“clinical management protocol: COVID-19 version 3 June 13, 2020.
Government of India. Ministry of Health and Family Welfare [11]. Based
on the definition and conceptual understanding provided by Zhang et al.,
in 2021 we have defined a COVID wave as an epidemiological phe-
nomenon constituting an upward and a downward period, and each
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period being sustained over a period of time. A “wave” has been distin-
guished from a “spike”- the latter being a short lived phenomenon [12].

CDC and published definition was used to define re-infection. Rein-
fection with the virus that causes COVID-19 means a person was infected,
recovered, and then later became infected again. A period of 3 months
was used to define re-infection [13,14].

3.10. Bias

Selection bias and effect of confounding was addressed through
randomization of sample selection from wave-1 and wave-2 cohort.
Study population were from same hospital to minimize heterogeneity of
exposure and infection control practices. Discovery or ascertainment bias
was addressed by checking significance of findings (virological/clinical/
epidemiological) in multiple database such NCBI, GESS, GISAID. Signif-
icance of findings were also checked by two teams independently:

3.11. Statistics and sample size calculation

The study used dichotomous endpoints: mutations present or absent
and investigated two independent cohort in wave-1 and wave-2. We
used alpha error (Type 1 error) = 5%, power = 90%, beta error (Type 2
error) = 10%, and an enrolment ratio: 1: 1 (number of samples in wave-
1 and wave-2) to ascertain minimum number of subjects for adequate
study power to be 46 in each group. Sample size calculation was done
using online calculator: https://clincalc.com/stats/samplesize.aspx
(www.ClinCalc.com). Sample size was restricted to 100 samples only
(50 samples per wave) in view of funding limitations. Statistical
methods used to calculate p values was un-paired two tailed t-test using
online calculators: https://www.graphpad.com/quickcalcs/ttest1/?
invalidNumbers=1&amp;format=50. No sensitivity analysis was done
(www.Graphpad.com).

3.12. Ethics

The study approved by institutional review board of Tata Medical
Center, Kolkata, India (reference number: 2020/Govt/33/IRB46 dated
August 14, 2021).

4. Results

The epidemiological and virological characteristics (Table 1) of
COVID 19 cases in wave 1 and 2 in India showed that the wave 1 was
significantly prolonged at the time of analysis (283 vs 55 days). The mean
number of tests positive per day was higher in wave 2 as compared to
wave 1 (13.47/day vs 5.09/day) and the mean number of HCWs who
tested positive per day was higher in wave 2 compared to wave 1 (3.25 vs
0.92; p < 0.0001). Combined proportion of moderate and severe cases
was more in wave 2 (2.24% vs 1.5%). We tested asymptomatic staff with
significant contact history (along with symptomatic staff) in wave-1 but
only symptomatic staff in wave-2. Moreover, staff vaccination had started
during wave-2. These two reasons could have contributed to less number
of staff being tested in wave-2.

After WGS of the viruses we noted that the median variant count was
more in wave 2 (44 vs 24), so were the median coding variants. We
detected five asymptomatic healthcare workers in the wave-1. All of
these asymptomatic HCWs had Clade 20 A and B.1 lineage. The rest 41
HCWs were symptomatic. Among the symptomatic HCWs in wave-1
Clade 20 A was detected in 27 cases and 14 belonged to Clade 20 B.
Twenty-six out of 41 were from non B.1 lineage. There were slightly more
number of coding and total variants in the asymptomatic group
compared to the symptomatic group. We observed that in wave-2 HCWs
who were vaccinated and had mild disease all had infections with Clade
20 A (Delta lineage 35 and Kappa lineage 5). The median number of total
variants and coding variants in wave-2 were more than in wave-1 (44 and
35 compared to 24 and 17 respectively).
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Table 1
The epidemiological and virological characteristics of the COVID cases in wave-1
and wave-2.

wave-1

wave-2

P-value
(unpaired t-test)

Start Date

End Date

No. Of Days

Total COVID
Positive HCWs

Mean no. Testis
positive per day
(HCW +
patients)

Mean no. Of HCWs
testing COVID
positive per day

Fully vaccinated
HCWs among
COVID positive

HCWs who
received one
dose of COVID
vaccine among
COVID positive

Un-vaccinated
HCWs among
COVID positive

Mean age

Male: Female
(HCW)

Asymptomatic
infection (HCW)
(PCR confirmed)

Mild illness
(HCWs)

Moderate illness
(HCW)

Severe illness
(HCW)

Moderate and
severe (HCW)

E gene median RT-
PCR CT (HCW)

S/N/RDRP gene
median RT-PCR
CT (HCW)

Cumulative
median RT-PCR
CT (HCW)

Median variant

April 06, 2020
January 13, 2021
283

261

5.09

0.92

0%

0%

100% (261/261)
31.06 years
141:120 (1.18:1)

32.2% (84/261)

66.3% (173/261)
1.5% (4/261)

0

1.5%

26

27.4

26.65

24 (14-43)

March 31, 2021
May 24, 2021
55

179

13.47

3.25

70.95% (127/179)

7.82% (14/179)

21.23% (38/179)
29.02 years
82: 97 (0.85:1)

Not assessed

97.76% (175/179)
1.12% (2/179)
1.12% (2/179)
2.24%

16.99

23.87

20.43

44 (37-58)

<0.0001

0.0076

E: < 0.001
RDRP/N/S
< 0.0001

count in the WGS
subset

Median coding 18 34
variants

We noted three sub-clusters during wave-1 (Fig. 1a) involving oper-
ation theatre staff, nursing hostel residents and post-festival peaks.

In wave-2 symptomatic vaccine breakthrough infections were seen in
127 out of 1806 fully vaccinated HCWs (7.03%). The median number of
days after which SARS-CoV-2 infection occurred after the last COVID
vaccine was 70 days for the fully vaccinated cohort and 96 days for those
who had received one dose of ChAdOx1 ncov-19 (Covishield®) vaccine.
Eight patients had evidence of re-infection in wave-2 after an episode of
infection in wave-1.

The eligibility for WGS and the exact number of tests performed have
been depicted in Fig. 1b. The distribution of the unique coding mutations
inwave 1 and 2 in SARS CoV2 genome demonstrated five types of genetic
mutations i.e. missense, frame-shift mutations, conservative in-frame
insertions, disruptive in-frame deletions and stop changes (Fig. 2,
Table 2). The commonest among these were missense mutations in
ORF1b while frame-shift mutations were very rare. In wave 2 delta
variant (B.1.617.2) was commonest, followed by Kappa (B.1.617.1). In
contrast, wave 1 had B.1 as the commonest variant (Fig. 2).
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a. Wave-1

Total staff # 2120

1

Total stafff tested for
COVID # 1082

Asymptomatic l Severe #

#84 Total staff COVID 0
Mild # Moderate #

positive # 261
173 4

Total staff samples which were
SARS-CoV-2 positive and processed
by WGS # 47

Asymptomatic Mild # Moderate # Severe #

#5 40 2
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b. Wave-2

Total staff # 2271

1

Total stafff tested for
COVID # 305

Asymptomatic l Severe #

#0 Total staff COVID 2
Mild # Moderate #

positive # 179
175 2

Total staff samples which were
SARS-CoV-2 positive and processed
by WGS # 50

Asymptomatic Mild # Moderate # Severe #
#0

49 1

Fig. 1. Staff infected with SARS-CoV-2 in wave-1 (a) and wave-2 (b). Disease severity was classified as per MoHFW guidelines (Govt. Of India).

Analysis of genes of wave 1 samples (Fig. 3) showed that maximum
mutational changes were in ORF1b followed by ORF 3a and S genes.
Wave 2 samples showed ORF1b to be the commonest site for changes
followed by S-gene (which were more common than ORF 3a changes).

Supplementary Fig. 2 shows the radial phylogenetic tree and clus-
tering of wave 2 samples. The quality of genome analysis has been
demonstrated in Supplementary Fig. 1. Supplementary Fig. 3 depicts
trend of wave specific mutation in GISAID.

5. Discussion

A typical SARS-CoV-2 virus accumulates 1-2 single-nucleotide mu-
tations in its genome per month, which is half the rate of influenza virus
and one-fourth of the rate of HIV [15]. Nucleotide deletions, unlike
substitutions, cannot be corrected by this proofreading mechanism of
SARS-CoV-2 exonuclease (ExoN), which is a factor that may accelerate
adaptive evolution to some degree.

Previous studies have shown how mutations can affect RT-PCR based
diagnostic tests. FDA reported the SARS-CoV-2 test Accula was affected
by a genetic variant at position 28,881 (GGG to AAC) [16]. We noted G >
A mutation at this position for 12 samples in wave-1 and a G > T mu-
tations in 49 samples in wave-2. Another study demonstrated that the
RT-PCR target, gene length, mutation ratio and h-index are factors which
potentially affect molecular tests. Among the targets for RT-PCR spike
gene is the longest (3819 base pairs) and E gene is the shortest (225 base
pairs). However, the mutation ratio is maximum in case of the nucleo-
capsid gene (mutation ratio is 0.558 and h-index is 44) whereas, the
mutation ratio is the least in case of RdRp gene followed by E-gene [4].

In this study, we did not find any evidence of Remdesivir resistance
mutations as previously reported (F480L, V557L & D484Y mutation of
RdRp gene). We detected five cases of missense mutation at the same site
but with different amino acid substitution [17]. The mutations which
have been associated with resistance to monoclonal antibody therapies
were also not detected (e.g K417 N/T, E484K, N501Y affect efficacies of
Caserivimab —Indevimab cocktail or that of Bamlanivimab) [18]. How-
ever, in five cases we found the mutation E484Q which is a mutation in
the receptor binding domain (RBD) and is associated with immune
escape [19]. Mutation in the receptor binding domain (RBD) of S gene
and the E484K mutation, is also associated with immune escape, reduced
susceptibility to mAbs and increased ACE2 affinity [18,20]. We also
noted 48 cases in wave-2 to have P681R mutation at the furin cleavage

site (previously reported from Uganda — A.23.1) [21]. The delta plus
variant defined by the mutation K417 N (and associated with high
transmissibility, stronger binding to receptors on lung cells and potential
reduction in mAb response) was not seen in our cohort.

Deletions in the spike protein gene have been previously reported to
be associated with antibody escape and increased infectivity. In our study
we detected two deletions in wave-2 samples: a conservative in-frame
deletion at base position 28,247 (AGATTTC) and disruptive in-frame
deletion at base position 22,028 (GAGTTCA). Previous reports sug-
gested that infection with the deletion A382 variant was associated with
lower odds of developing hypoxia requiring supplemental oxygen
compared with infection with wild-type virus [22,23]. In our study we
found that in the ORF gene was affected in 25 samples wave-2 (ORFlab
in 20 samples; ORF3a in two samples and ORF7a in 3 samples), and five
samples in wave-1 (ORF1lab gene in four, ORF3a in one).

Previous reports from this region of India has shown A2a clade to be
common. Maitra et al. reported mutations in the RDRP gene to be com-
mon, but also present were occasional mutations in S, N, ORF3a, ORFS,
ORF9, NSP3 and 5'- UTR gene [24]. We found the ORF8 deletion Asp 119
- Phel20del (AD119-F120). Deletions in the ORF8 gene reported to be
associated with milder symptoms and better prognosis [25,26].

Vaccine breakthrough infections among HCWs as seen in our study
have been previously investigated in India. Philomina et al. detailed six
cases of such infections among HCWs from Kerala, who had received the
ChAdOx1 NCOV-19 (Covishield®) vaccine as in our study [27]. The
breakthrough occurred with B.1.1.7 (four cases) and one each due to
B.1.1.306 and B.1.1. In our study 35 vaccine breakthrough cases were
due to Delta variant and 5 due to Kappa variant. Another study from the
United States reported two cases of vaccine breakthrough infections
among 417 persons who had received the second dose of BNT162b2
(Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine [28]. The strains
from the New York report were related to B.1.1.7 and B.1.526, had
deletion del 142-145, mutations at T95I, E484K, A570D, D614G, P681H,
D796H. We detected D614G mutation in all cases; P681R in 48 cases,
E484Q in five cases and deletion 156-158 in 39 cases we sequenced. In a
study from South India, the protective efficacy of two doses of COVID
vaccine was 65%. Our vaccine breakthrough infection rate was slightly
lower than that reported from Vellore (7.81% versus 9.81%) and our
breakthrough infections occurred later (70 and 96 days in our study
compared to 69 and 77 days in Vellore after receiving two or one dose of
vaccine) [29].
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Fig. 2. Contrasting difference between wave-1 and wave-2. Lineage distribution in wave-1 (a) and wave-2 (b), Distribution of mutations identified in wave-1 and

wave-2 samples (c), Total, coding and non-synonymous mutation load in wave-1 and wave-2 samples (d).
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Table 2
Distribution of unique coding mutations in wave-1 and wave-2 among the genes in SARS-CoV2 genome in our study.
Missense Frameshift Conservative in-frameinsertion Stop gained Disruptivein-frame deletion Total
Gene wave-1 wave-2 wave-1 wave-2 wave-1 wave-2 wave-1 wave-2 wave-1 wave-2 wave-1 wave-2
E 4 0 0 0 0 0 0 0 0 0 4 0
M 1 0 0 0 0 0 0 0 0 0 1 0
N 11 3 0 0 0 0 0 0 0 0 11 3
ORFlab 53 35 0 0 0 0 0 0 0 0 53 35
ORF3a 17 7 0 0 0 0 0 0 0 0 17 7
ORF6 0 0 0 1 0 0 0 0 0 0 0 1
ORF7a 3 2 0 0 1 0 0 0 0 0 4 2
ORF7b 2 1 0 0 1 0 1 0 0 0 4 1
ORF8 4 1 1 0 0 0 1 0 0 0 6 1
S 7 12 0 0 1 0 0 0 0 1 8 13
wave-1 wave-2
a. b.
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. n=1 . n=1
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Fig. 3. Mutation distribution in genes. (a) Count of unique wave specific singleton and non-singleton mutations in various genes of wave-1 (a) and wave-2 (b) samples,

(c) mutation distribution Spike (S) gene.

6. Conclusion

Our study has the following limitations: (a) small sample size; (b) very
few cases of severe/moderate illness; (c) effect of viral mutations on
treatment with Remdesivir or monoclonal antibody could not be assessed
as very few HCWs required specific treatment; (d) we did not test for
neutralizing antibodies or T-cell immunity in staff; (e) the role of host
genetics (e.g. HLA types) was not assessed.

The significance of our study are: (1) different SARS-CoV-2 lineages
caused wave-2 infections as compared to wave-1 infections, (2) the
average and total number of mutations was much more in wave-2
compared to wave-(1, 3) mutations associated with high infectivity
(T478K, P681R) and immune escape (L452R and E484Q) were detected
in wave-2 samples, (4) eight new non-synonymous mutations never
previously reported (as per GISAID database), (5) vaccine breakthrough
infections were not uncommon and occurred despite receiving two doses

of ChAdOx1 NCOV-19 (Covishield®) vaccine and even after 14 days from
the last dose of the vaccine.
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