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Abstract

Tumors contain multiple subpopulations of genetically distinct cancer cells. Reconstructing

their evolutionary history can improve our understanding of how cancers develop and

respond to treatment. Subclonal reconstruction methods cluster mutations into groups that

co-occur within the same subpopulations, estimate the frequency of cells belonging to each

subpopulation, and infer the ancestral relationships among the subpopulations by construct-

ing a clone tree. However, often multiple clone trees are consistent with the data and current

methods do not efficiently capture this uncertainty; nor can these methods scale to clone

trees with a large number of subclonal populations.

Here, we formalize the notion of a partially-defined clone tree (partial clone tree for short)

that defines a subset of the pairwise ancestral relationships in a clone tree, thereby implicitly

representing the set of all clone trees that have these defined pairwise relationships. Also,

we introduce a special partial clone tree, the Maximally-Constrained Ancestral Reconstruc-

tion (MAR), which summarizes all clone trees fitting the input data equally well. Finally, we

extend commonly used clone tree validity conditions to apply to partial clone trees and

describe SubMARine, a polynomial-time algorithm producing the subMAR, which approxi-

mates the MAR and guarantees that its defined relationships are a subset of those present

in the MAR. We also extend SubMARine to work with subclonal copy number aberrations

and define equivalence constraints for this purpose. Further, we extend SubMARine to per-

mit noise in the estimates of the subclonal frequencies while retaining its validity conditions

and guarantees. In contrast to other clone tree reconstruction methods, SubMARine runs in

time and space that scale polynomially in the number of subclones.

We show through extensive noise-free simulation, a large lung cancer dataset and a

prostate cancer dataset that the subMAR equals the MAR in all cases where only a single

clone tree exists and that it is a perfect match to the MAR in most of the other cases.
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Notably, SubMARine runs in less than 70 seconds on a single thread with less than one Gb

of memory on all datasets presented in this paper, including ones with 50 nodes in a clone

tree. On the real-world data, SubMARine almost perfectly recovers the previously reported

trees and identifies minor errors made in the expert-driven reconstructions of those trees.

The freely-available open-source code implementing SubMARine can be downloaded at

https://github.com/morrislab/submarine.

Author summary

Cancer cells accumulate mutations over time and consist of genetically distinct subpopu-

lations. Their evolutionary history (as represented by tumor phylogenies) can be inferred

from bulk cancer genome sequencing data. Current tumor phylogeny reconstruction

methods have two main issues: they are slow, and they do not efficiently represent uncer-

tainty in the reconstruction.

To address these issues, we developed SubMARine, a fast algorithm that summarizes all

valid phylogenies in an intuitive format. SubMARine solved all reconstruction problems in

this manuscript in less than 70 seconds, orders of magnitude faster than other methods.

These reconstruction problems included those with up to 50 subclones; problems that are

too large for other algorithms to even attempt. SubMARine achieves these result because,

unlike other algorithms, it performs its reconstruction by identifying an upper-bound on

the solution set of trees and the amount of noise in the estimates of the subclonal frequen-

cies. In the vast majority of cases we checked, i. e. an extensive noise-free simulation, a lung

cancer and a prostate cancer dataset, this upper bound is tight: when only a single solution

exists, SubMARine converges to it every time. When multiple solutions exist, our algorithm

correctly recovers the uncertain relationships in 71% of cases.

In addition to solving these two major challenges, we introduce some useful new

concepts for and open research problems in the field of tumor phylogeny reconstruction.

Specifically, we formalize the concept of a partial clone tree which provides a set of con-

straints on the solution set of clone trees; and provide a complete set of conditions under

which a partial clone tree is valid. These conditions guarantee that all trees in the solution

set satisfy the constraints implied by the partial clone tree.

This is a PLOS Computational Biology Methods paper.

Introduction

Tumors contain multiple major subpopulations of genetically distinct cancer cells [1, 2]. The

evolutionary history of a cancer can be reconstructed using the allelic frequencies of the clonal

and subclonal mutations in one or more bulk samples of a single cancer. Multiple samples

from the same individual’s cancer can be either spatially distinct [3] or longitudinal [4, 5].

Clonal mutations are present in all profiled cancer cells and were inherited from their most

recent common ancestor; subclonal mutations are those that are present only in some, or one,

of the subpopulations. Subclonal reconstruction algorithms infer the ancestral relationships

among the subpopulations by constructing a clone tree; the genotypes of individual subpopula-

tions can then be determined using this tree. These trees contribute to a better understanding
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of cancer development and response to treatment [6, 7] by helping to identify key steps in can-

cer progression [8, 9].

Clone trees are directed, rooted trees whose nodes correspond to different subclones, where

directed edges link parental subclones to their direct descendants. A subclone is a group of cells

descended from a single founder cell; and corresponds to a subtree (or clade) of the phylogeny

of the cancerous subpopulations. Methods to construct clone trees assume that these cells all

inherit the mutations present in the founder cells unless those mutations are removed from

the cell through a copy number loss of its genomic locus. Subclones are associated with a set of

subclone-defining mutations which are present in this founder cell but not in its parental sub-

clone. The root of the tree, called the germline, represents the embryonic cell, which is the

founder of all cancer cells (and all other cells in the body). In most, but not all cancers, there is

a single cancerous subclone that is the ancestor of all the others; this special subclone is called

the clonal population and it is associated with the cancer’s clonal mutations.

Although there has been substantial progress in developing algorithms to build clone trees

from bulk tumor samples [10–22]; two key challenges remain: scaling algorithms to clone trees

with many subclones and efficiently capturing uncertainty in the clone trees. These challenges

persist even when mutation allele frequency measurements are very precise. Here we address

these two challenges. First, we assume perfect accuracy in the allele frequencies and derive an

algorithm called SubMARine. It runs in polynomial-time and for an input set of subclonal fre-

quencies, it summarizes an upper bound on the solution set of clone trees using a partial clone

tree, a new data structure that defines the ancestral relationships between the pairs of sub-

clones. Second, we introduce a noise buffer into SubMARine that permits noise in the subclo-

nal frequencies. When SubMARine is unable to find a valid partial clone tree assuming

precisely measured frequencies, it identifies a uniform noise buffer, which is the upper bound

on subclonal frequency error necessary to allow in order to find a valid partial clone tree.

Optionally, SubMARine can reduce this uniform upper bound in a subclone and sample-spe-

cific way.

Contributions. Here we introduce and formalize the notion of a partially-defined clone

tree, or partial clone tree for short. This representation is a partial solution to a clone tree

reconstruction problem that defines a subset of the pairwise ancestral relationships between

the subclones, as well as a set of possible parents for each subclone. A partial clone tree is not a

tree itself, but it implicitly defines a set of clone trees, i. e., all those trees that (i) are consistent

with the ancestral relationships defined in the partial clone tree and (ii) select their parents

from the possible parent set. The partial clone tree is thus a polynomial-space representation

of a potentially exponentially-sized set of clone trees.

We also introduce a special partial clone tree: the Maximally-Constrained Ancestral Recon-
struction, or MAR for short, which provides a complete summary of pairwise ancestral rela-

tionship constrained by the input data. Specifically, when multiple clone trees provide

identically good fits to the mutation allele frequency data, the MAR captures all (and only) the

pairwise ancestral relationships shared by this solution set of clone trees.

Additionally, we describe a polynomial-time algorithm, SubMARine, that produces the sub-
MAR, which approximates the MAR. The ancestral relationships defined in the subMAR are

guaranteed to be subset of those present in the MAR. Through extensive noise-free simulation

and two large real-world datasets, we demonstrate that the subMAR almost always perfectly

recovers the MAR. In particular, when the MAR represents a single clone tree solution, the

subMAR matches it in all our experiments. On the real-world datasets, SubMARine also repro-

duces the clone trees found using expert-driven reconstructions or much slower algorithms

and identifies minor errors made by the experts. SubMARine is designed not only for the basic

clone tree reconstruction problems commonly addressed by other approaches, but also for
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more complex problems that are less often considered. The basic problems include only simple

somatic mutations (SSMs), which are single nucleotide variants (SNVs) and small insertions

and deletions (indels), and clonal copy number aberrations (CNAs). The extended version of

SubMARine also considers subclonal CNAs. Notably, SubMARine runs in less than 70 seconds

on a single thread with less than one Gb of memory on all datasets presented in this paper,

including ones with up to 50 subclones.

Although the standard noise-free version of SubMARine is immediately applicable to many

real-world clone tree reconstruction problems without modification, we introduce a noise-buff-

ered version of SubMARine. This version estimates a minimum deviation from the input fre-

quencies required for a valid partial clone tree to exist. We describe strategies to use noise-

buffered SubMARine to explore the space of clone trees with good fits to the input frequencies.

Background

To define CNAs, the genome is divided into segments, with neighboring segments having dif-

ferent allele-specific average copy numbers in one or more samples. CNA reconstruction algo-

rithms identify these segments and infer the average allele-specific copy numbers within them

[23, 24]. However, fewer algorithms indicate the evolutionary relationship among the CNAs

[10, 14, 22, 25]. SSMs are quantified experimentally by reporting their variant allele frequencies

(VAFs) in each sample as estimated by short-read sequencing. These VAFs can be transformed

into estimates of the cellular frequency of the SSMs by accounting for clonal CNAs in the sam-

ple influencing this transformation [26]. SSMs can be grouped into subclones based on these

inferred cellular frequencies, thus estimating the associated subclonal frequencies in each sam-

ple [27–29]. With some modifications, similar algorithms can also be used to group CNAs into

subclones [30–32]. The accuracy of the cellular frequency estimates, CNA reconstructions,

and subclonal groupings depends heavily on the sequencing depth, degree of aneuploidy, and

purity of the samples [33]. However, even under the best of conditions, when there is high

accuracy in all of these, there remain substantial challenges in clone tree reconstruction.

S1 Fig shows a clone tree that solves a clone tree reconstruction problem by representing

the ancestral relationships among the subclones. The solution to a clone tree reconstruction

problem is a valid clone tree for the following input, which can be derived from a subclonal

reconstruction problem: K subclones (including the germline); their subclonal frequencies in

each of N samples, represented by the subclonal frequency matrix � 2 RK�N
; L CNAs assigned

to segments, subclones and parental alleles; and J SSMs assigned to segments and subclones.

A clone tree is valid if it satisfies the tree, the lost allele, and the sum constraints. The tree

constraint simply requires the clone tree, thus the ancestral relationships, to be consistent with

an arborescence (i. e., a directed tree whose edges all point away from the root) whose root is

the germline. The lost allele constraint, which applies to both CNAs and SSMs, insists that

mutations cannot occur on segments lost in an ancestral cell (see Section I in S1 Text for more

details). Finally, because subclones represent subtrees (or clades) of phylogenies, the subclonal

frequencies of a subclone must be larger than or equal to the sum of frequencies of its children

in all samples, hence a sum constraint [11, 15] on the frequencies must hold in the clone tree:

�ðk; nÞ �
X

k0 is child of k

�ðk0; nÞ for all n 2 f0; 1; . . . ;N � 1g;

where 0� ϕ(k, n)� 1 is the frequency of subclone k in sample n.

The basic clone tree reconstruction problem considers only SSMs and clonal CNAs and,

as such, only needs to consider ϕ when searching for valid clone trees. This problem was

shown to be NP-complete [11]. The extended clone tree reconstruction problem, introduced
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here, requires additional input, including an impact matrix M. We introduce the extended

problem in Section “Extended SubMARine: Clone tree reconstruction with subclonal CNAs”.

Previous work. Often, multiple clone trees solve a clone tree reconstruction problem

because the input data does not provide sufficient constraints to select a single solution [12, 15,

34]. The theoretical implications of this were first formally studied in [35, 36]. When there are

multiple solutions, clone tree reconstruction algorithms invent other criteria to select a single

solution [13, 21, 34] or they report a (hopefully) representative subset of the solution set [10,

14, 15, 18, 20]. Other methods simply enumerate all possible clone tree solutions [11, 12, 19];

however, because the solution space of clone trees grows exponentially with the number of

subclones, these enumeration methods are limited to problems with a small number of

subclones.

Given multiple clone trees as input, some methods identify a single [37] or multiple [38]

representative consensus trees in order to capture topological features of the solution space.

However, a single consensus tree cannot represent ambiguity in the data, and optimal selection

of multiple consensus trees is NP-hard [38]. Furthermore, these methods already require the

potentially exponentially-sized solution set of clone trees to be enumerated as input. In fact,

already the problem of counting the number of valid solutions to the basic clone tree recon-

struction problem is #P-complete [36].

Partial clone trees

A partial clone tree defines some but, generally, not all of the pairwise ancestral relationships

between subclones. A defined relationship either requires one of the subclones to be an ances-

tor of the other, or requires that the subclone not be an ancestor of the other. Thus, a partial

clone tree can be represented with an ancestry matrix Z 2 {1, 0, −1}K×K, where:

Zðk; k0Þ ¼

1 if subclone k is an ancestor of subclone k0

0 if subclone k is not an ancestor of subclone k0

� 1 if subclone k is a possible ancestor of subclone k0 ðaka undefinedÞ

8
>>><

>>>:

A (full) clone tree completes a partial clone tree if its implied pairwise ancestral relationships

are consistent with the defined (i. e. non-negative) entries in Z. A partial clone tree thus implic-

itly represents the set of clone trees that complete it. Hence, a partial clone tree can be used to

solve the Maximally-Constrained Ancestral Reconstruction Problem:

Problem 1 (Basic maximally-constrained ancestral reconstruction problem). Given the

subclonal frequency matrix ϕ of a basic clone tree reconstruction problem t, identify the pair-

wise ancestral relationships between subclones present in all valid clone trees.

The basic maximally-constrained ancestral reconstruction (MAR) is the unique partial

clone tree that solves this problem by defining the maximal set of all of the ancestral relation-

ships shared by the solution set of clone trees for t, and leaving undefined all relationships that

vary within the solution set (Fig 1). Note, however, that this does not necessarily mean that all

clone trees that complete the MAR are solutions of t; but often they are (S2 Fig). Note also that

the partial clone trees produced by SubMARine also include a possible parent matrix τ, which

further constrains the space of completing clone trees (see Section “SubMARine: Approximat-

ing the MAR” and Section III.2 in S1 Text for more details); however, this matrix is not

required in the definition of the MAR.

Partial clone trees generalize ancestry graphs (or evolutionary constraint networks) used by

previous algorithms [11, 12, 19] as a starting point for enumerating all valid clone trees. An

ancestry graph is a directed, acyclic graph (DAG), in which two subclones k and k0 are
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connected by an edge if k is a possible parent of k0. In these graphs, k is a possible parent of k0 if
there exists no sample n such that ϕ(k, n)< ϕ(k0, n) (applying one aspect of the sum constraint)

and if k0 does not contain any mutation that is already lost in k. Clone trees can be enumerated

as spanning trees with a Gabow-Myers-based algorithm [39]; they are valid if the sum con-

straint is satisfied for each subclone and all its children. Ancestry graphs can be represented by

a partial clone tree where Z(k, k0) = −1 whenever an edge connects k to k0, and where Z(k, k0) =

0 otherwise. However, the semantics of a partial clone tree, which represents constraints on

the ancestry, are not the same as the ones of an ancestry graph, which connects children to pos-

sible parents. Hence, not every ancestry matrix Z with only 0 and −1 entries corresponds to an

ancestry graph. Also, when a partial clone tree is represented as a DAG, not every spanning

tree satisfying the sum constraint completes Z (Section II.1 in S1 Text). Here, we extend this

earlier work to include ancestry relationships that must be present (i. e., Z(k, k0) = 1). Doing so

allows us to not only more highly constrain the space of clone trees but also to propagate an

initial set of defined ancestral relationships in Z to infer other ancestral relationships that must

appear in the MAR. We describe SubMARine, an algorithm that allows this propagation, in

Section “SubMARine: Approximating the MAR”.

Applying validity constraints to partial clone trees

A key contribution of this paper is the observation that the validity constraints for clone trees

can be applied to partial clone trees in order to rule out, or rule in, some pairwise ancestral

relationships. In addition to the sum constraint, which is already applied in the construction of

ancestry graphs, SubMARine enforces the tree constraint on Z. This allows to rule in certain

ancestral relationships, i. e., identify pairs of subclones k and k0 where Z(k, k0) = 1. Doing so

Fig 1. Example of a MAR for a basic maximally-constrained ancestral reconstruction problem. (A) The subclonal frequency

matrix ϕ for the germline with index 0 and three subclones with indices 1-3 with their frequencies in two samples. (B) Set of valid

clone trees that fit ϕ. (C) The MAR summarizing the two clone trees, represented as ancestry matrix Z. Whenever subclone k is an

ancestor of subclone k0 in both clone trees of (B), Z(k, k0) = 1. If k is not an ancestor of k0 in both clones trees, Z(k, k0) = 0. If k is an

ancestor of k0 in one clone tree but not in the other, as for subclones 2 and 3, Z(k, k0) = −1. (D) The MAR drawn as a partial clone

tree. Solid edges connect parents to their definite children (Eq (2)), dashed edges connect possible parents to their possible children

(Definition 1 in Section III.5 in S1 Text). (E) A partial clone tree that does not equal the MAR. Here, subclone 1 is only a possible

ancestor of subclone 2, although subclone 1 is the definite ancestor in both clone trees in (B). Hence, the defined set of ancestral

relationships is not maximal.

https://doi.org/10.1371/journal.pcbi.1008400.g001
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permits us to define, for some subclones, a set of definite child subclones they have in every

solution to a basic clone tree reconstruction problem t; which places further constraints on Z.

The tree constraint requires the clone tree to be an arborescence with the germline as the

root. If we define clone 0 as representing the germline, we can immediately set Z(0, k) = 1 for

k> 0 because the root is the ancestor of all nodes in the arborescence. This first consequence

of the tree constraint is called the germline constraint. To simplify our presentation, we also

assume that subclones 1 to K − 1 are sorted in decreasing order of their average subclonal fre-

quencies across samples. As an obvious consequence of the sum constraint, this ensures that

Z(k, k0) = 0 whenever k0 � k. Another consequence of the tree constraint arises from the fact

that although all arborescences correspond to a unique, fully defined ancestry matrix Z; not all

fully defined Z matrices correspond to arborescences. To ensure a given Z does represent such

a tree, i. e., that it is transitive and each node has exactly one parent, it suffices to require that

all the elements in Z satisfy a single partial tree constraint (see Section II.2 in S1 Text for

details):

Zðk; k0Þ ¼ Zðk; k00Þ if Zðk0; k00Þ ¼ 1; for k < k0 < k00: ð1Þ

SubMARine can thus apply this constraint to partial clone trees to define an element of Z
whenever Z(k0, k00) = 1 and either Z(k, k0) = −1 or Z(k, k00) = −1 but not both.

To assist in applying the sum constraint to partial clone trees, we define a set of definite chil-

dren of a subclone k. The definite children of a subclone k, χ(k), are the set of subclones whose

parent can only be k given the defined entries in Z:

wðkÞ ¼ fk0 j Zðk; k0Þ ¼ 1g n fk0 j 9 k� such that Zðk; k� Þ 6¼ 0 and Zðk� ; k0Þ 6¼ 0g: ð2Þ

In other words, a subclone k0 is a definite child of subclone k if k is its ancestor, and k0 has

no other (possible) ancestors that are (possible) descendants of k. (For Fig 1, the germline has

only one definite child, which is subclone 1. Subclone 1 has subclone 2 as definite child, sub-

clone 3 is a possible child of both subclones 1 and 2.) Thus, we can formulate the generalized

sum constraint based simply on the set of definite children of a subclone:

�ðk; nÞ �
X

k02wðkÞ

�ðk0; nÞ for all n 2 f0; 1; . . . ;N � 1g: ð3Þ

Note that when there are no undefined states in Z, χ(k) is simply the set of all children of k.

The lost allele constraint can be applied without any changes to a partial clone tree (Section

II.3 in S1 Text).

Given these extended definitions of the validity constraints, we can now deem a partial

clone tree to be valid if it satisfies the germline, generalized sum, lost allele, and partial tree

constraints. We here note two things. First, the MAR is valid per construction (Section II.4 in

S1 Text). Second, when Z contains undefined states, some subclones have multiple possible

parents and are not definite children of any subclone, hence these subclones are not consid-

ered in the generalized sum constraint. Thus, it is possible that a valid partial clone tree has no

valid completions (S3 Fig).

SubMARine: Approximating the MAR

SubMARine is a polynomial-time algorithm that constructs the subMAR, which is a partial

clone tree that approximates the MAR. Here we describe the basic SubMARine algorithm,

which approximates the solution to the basic maximally-constrained ancestral reconstruction

problem. In the following section, we describe the extended version of SubMARine.
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For a basic clone tree reconstruction problem t, the subMAR has three important proper-

ties, which we prove in this section: it is unique, its defined ancestral relationships are a subset

of those in the MAR, and as such, all valid clone trees of t are completions of the subMAR.

SubMARine takes as input the subclonal frequency matrix ϕ of a basic clone tree recon-

struction problem t, and builds a partial clone tree by creating an ancestry matrix Z (Algorithm

1 and S4 Fig). Initially, this matrix contains only undefined ancestral relationships. By applying

inference rules derived from the validity constraints, SubMARine updates undefined values to

defined ones whenever necessary, i. e. whenever undefined values violate constraints (Table 1).

In a preprocessing phase, SubMARine applies the germline rule, setting Z(0, k) = 1 for all

k> 0. Furthermore, all entries Z(k0, k), with k0 � k, are set to 0 resulting from the sorting of

subclones in decreasing order of their average subclonal frequencies across samples and as a

consequence of the generalized sum constraint. Note that when multiple subclones have the

same average subclonal frequencies, these are sorted according to user-provided IDs. Then,

the main phase of the algorithm begins by applying the crossing rule that sets Z(k, k0) = 0 for k
< k0 whenever a sample n exists such that ϕ(k, n)< ϕ(k0, n), as also required by the sum con-

straint. Afterwards, the last part of the generalized sum rule is propagated with our Subpoplar

algorithm, which also propagates the partial tree constraint. This algorithm identifies definite

children and rules out possible children. Its propagations lead to updates on Z and on the set

of possible and definite parents of each subclone, which is tracked in the possible parent matrix

τ. This tracking is necessary because the generalized sum rule can exclude possible parents for

a subclone without requiring specific pairwise ancestral relationships (i. e., a subclone k that

cannot be a possible parent of subclone k0 can still be its possible ancestor). Whenever Subpo-

plar updates a relationship because of the generalized sum rule, the partial tree rule is propa-

gated. When no more relationships can be defined through the inference rules, Z converged

and is output as the subMAR, together with the possible parent matrix τ. Sections III.1 and

III.2 in S1 Text provide more detailed descriptions of SubMARine and Subpoplar, along with

an analysis of their polynomial runtime.

Algorithm 1 Functional description of the SubMARine algorithm in basic mode.

Input: subclonal frequency matrix � 2 RK�N

Output: ancestry matrix Z, possible parent matrix τ
▷set 1’s through germline constraint and 0’s through trivial rela-

tionships of generalized sum constraint

Table 1. Overview of inference rules derived from the germline, generalized sum and partial tree constraint.

inference rule functional description impact application

germline rule Z0 fgerm(K) Z(0, k) = 0 8 K > k> 0 once

generalized sum

rules

i) trivial

relationships

Z0  fsumtriv
ðKÞ Z(k0, k) = 0 8

K > k 0 � k � 0

once

ii) crossing rule Z0  fsumcr
ð�Þ Z(k, k 0) = 0 (Eq (9) in Section III.1 in S1 Text) once

iii) Subpoplar Zt+1, δt+1, ψt+1, τt+1 

fsumsubp
ðK; �;Zt; dt; ψt, τt)

Z(k, k 0) = 0 if Eq (3) is violated when k 0 was a child of k and k has no other

(possible) descendants that are possible parents of k 0, Z(k, k 0) = 1 if Eq (3) is not

violated when k 0 became a child of k and k 0 has no other possible parents than k

once, and then every time a

relationship is updated

partial tree rule Zt+1 fptree(Zt) Z(k, k 0) = 1 or Z(k, k 0) = 0 depending on two other defined relationships (Eq (1)) once, and then every time a

relationship is updated

For explanation of available frequency δ, definite parent vector ψ and possible parent matrix τ see Section III.2 in S1 Text. Z is the ancestry matrix, ϕ the subclonal

frequency matrix and K the number of subclones. Indices k and k0 refer to subclones ordered by their average frequencies.

https://doi.org/10.1371/journal.pcbi.1008400.t001
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1: Z0  initializeCloneTree(K)
▷set 0’s through crossing rule (Eq (9), Section III.1 in S1 Text) of

generalized sum constraint
2: Z1  Z0 [ fsumcr ð�Þ
▷set 1’s and 0’s through generalized sum rule with Subpoplar

algorithm
3: Z2, τ2  useSubpoplar(K, �, Z1)
4: return Z2, τ2
initializeCloneTree(K):
5: Z f� 1g

K�K
[ fgermðKÞ [ fsumtriv

ðKÞ
6: return Z
useSubpoplar(K, �, Z):
7: initialize δ, ψ, τ
8: while Z did not converge do
9: Z; d;c; t fsumsubp

ðK; �;Z; d;c; tÞ

10: Z  fptree(Z)
11: return Z, τ

Note that SubMARine always converges because only undefined values are updated to

defined ones and their number is finite. At convergence, Z represents a valid partial clone tree.

If the subclonal frequency matrix ϕ does not support a valid partial clone tree—if, for example,

one inference rule requires Z(k, k0) = 0 and another requires Z(k, k0) = 1, then SubMARine ter-

minates and indicates the pair (k, k0) having a validity constraint violation. If the violation

results from the generalized sum rule, this may be because the subclonal frequencies are not

measured precisely but are actually inferred from noisy mutational frequencies. To address

this issue, we describe a noise-buffered version of SubMARine in Section III.3 in S1 Text. In

polynomial time, this version uses a binary search to find a minimum uniform noise buffer,

which is a value that is added to the available frequencies of all parental subclones in order to

permit a valid partial clone tree. Starting from the subMAR computed with this uniform

buffer, SubMARine can also find a set of subclone- and sample-specific noise buffers and its

corresponding subMAR, such that all completing clone trees use the lowest possible buffer. If

the data allows, this set can be found in polynomial time. Otherwise, a depth-first search is

necessary.

If the user decides to specify additional ancestral relationships for Z, they are added after

the preprocessing phase, followed by a propagation of the partial tree rule (S4 Fig and Section

III.1 in S1 Text). Furthermore, the partial tree rule is already propagated when applying the

crossing rule. As additional input, clonal CNAs and SSMs can be provided. SubMARine

checks then whether any SSMs are assigned to deleted segments and thus invalidate all clone

trees through violating the lost allele constraint (Section III.4 in S1 Text). If this is not the case,

the algorithm can proceed as previously described.

Correctness. As described previously, the inference rules used by SubMARine change only

undefined ancestral relationships to defined ones and only when, given all of the other defined

relationships, one of the two possible defined ancestral relationships causes a violation of the

validity constraints. So, given a starting set of defined relationships associated with a clone tree

reconstruction problem t, each relationship defined by one of SubMARine’s inference rules is

required in all valid clone trees that solve t. Thus, the subMAR’s defined relationships are a

subset of those in the MAR.

The constructed subMAR, given the subclonal frequency matrix ϕ of t, is unique because

the order in which the inference rules get applied does not matter as long as all rules are

applied and propagated until convergence. It is easy to show that the order of application is

unimportant. Imagine a case where SubMARine generates two different subMARs, both start-

ing from the same initial set of defined relationships, but that differ due to the order in which
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the inference rules were applied. Because each subMAR’s defined relationships are a subset of

those in the MAR, so long as the MAR is defined (i.e., there is at least one valid and complete

clone tree solution), all pairwise relationships that differ between these two subMARs are

defined in one subMAR and undefined in the other. None of SubMARine’s inference rules

depend on an undefined relationship in order to update another undefined relationship. As

such, there must be a path of inference rules linking all defined relationships shared by the two

subMARs to each defined relationship unique to one of the two subMARs. Because this path

exists, and the relationship is undefined in one of the two subMARs, the inference rules have

not been propagated to convergence in the subMAR where the relationship is undefined.

Ergo, so long as the inference rules are propagate to convergence, and the MAR is defined, two

subMARs generated from the same starting point, using the same rules, are identical. As such,

the subMAR is unique.

In summary, because (i) all ancestral relationships defined in the subMAR are a subset of

those in the MAR and (ii) the subMAR is unique, all valid clone trees of t are completions of

the subMAR.

SubMARine is implemented in Python and can be downloaded at https://github.com/

morrislab/submarine. Next to the algorithm, we provide an implementation of a depth-first

search to enumerate the set of valid subMAR-completing clone trees and an upper bound on

the size of this set (see Section III.5 in S1 Text for a derivation of this bound).

Extended SubMARine: Clone tree reconstruction with subclonal

CNAs

The extended version of SubMARine propagates inference rules like the basic version but is

designed specifically to include subclonal CNAs. For example, unlike the basic version, it prop-

agates the lost allele rule; because whether or not the lost allele constraint is satisfied depends

on the choice of clone tree. Its subMAR, which we call the extended subMAR, defines not only

the set of valid clone trees but also a set of equivalent ones and approximates the extended max-
imally-constrained ancestral reconstruction problem defined below. Two clone trees are equiva-

lent if they fit the experimental data equally well and if the same set of subclonal CNAs has the

same impact on the mutant copy numbers of the same set of SSMs. Given subclonal frequen-

cies and the assignment of SSMs and clonal CNAs to subclones, as in the basic version of Sub-

MARine, the data fit does not depend on the ancestral relationships in the clone tree [20].

However, with subclonal CNAs, ancestral relationships can influence data fit. Specifically, sub-

clonal CNAs change the VAFs of SSMs by altering their mutant copy numbers per cancer cell

but only if 1) the subclonal CNA is in a descendant subclone, 2) the SSM is in the segment

affected by the CNA and 3) the SSM is on the same parental allele, i. e., it has the same phase,

as the CNA. As such, changing the ancestral relationship between an SSM-containing subclone

and a CNA-containing one, can change the fit of the clone tree to the experimentally-mea-

sured VAF data. Note that because we model the change in CNA state, rather than the absolute

copy number, the data fit to the experimental-derived average copy numbers of segments is

not affected by the clone tree, see Section IV.1 in S1 Text for details. We represent the impact

of CNAs on SSMs in an impact matrix M 2 f0; 1g
J�L

, where J is the number of SSMs and L
the number of CNAs:

Mðj; lÞ ¼

(
1 if the mutant copy number of SSM j is changed by CNA l;

0 otherwise:
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As an aside, defining M requires us to assume each SSM is unique, i. e., we make an infinite

sites assumption, otherwise we would not be able to select which version of the SSM is

impacted by the CNA. Given the above, if two clone trees with the same subclonal frequencies

and mutation assignments imply the same impact matrix, they also have equal data fit and are

thus equivalent. Note that it is possible but exceptional rare, for two clone trees to have the

same data fit but not the same impact matrix (see Section IV.2 in S1 Text for an example).

As indicated above, a CNA changes an SSM’s mutant copy number only under specific con-

ditions; thus the impact matrix M requires the presence and absence of specific ancestral rela-

tionships and SSM phases. These conditions, the equivalence constraints, are formally

described in depth in Section IV.3 in S1 Text and their derived inference rules are propagated

by extended SubMARine.

In the extended clone tree reconstruction problem, one is given a subclonal frequency

matrix ϕ; L CNAs assigned to subclones, segments and parental alleles; J SSMs assigned to seg-

ments and subclones; as well as an impact matrix M; and is required to find a valid clone tree

with subclonal CNA impacts that match M. Given the input of an extended clone tree recon-

struction problem t, the extended maximally-constrained ancestral reconstruction problem

is to identify the pairwise ancestral relationships between subclones present in all valid clone

trees that solve t and are thus equivalent. The extended MAR is the unique partial clone tree

that solves this problem by defining all, and only, the ancestral relationships as well as SSM

phases shared by the solution set of valid and equivalent clone trees for t.
Like the basic subMAR, the extended subMAR has three important properties for an

extended clone tree reconstruction problem t: its defined ancestral relationships and SSM

phases are a subset of those in the extended MAR, it is unique, and consequently, all valid and

equivalent clone trees of t are completions of the extended subMAR (see end of Section IV.6 in

S1 Text for more details).

As input, the extended version of SubMARine takes the subclonal frequency matrix ϕ,

CNAs as copy number changes (i. e., gains or losses) assigned to subclones, segments and

parental alleles, SSMs assigned to segments and subclones, and the impact matrix M of an

extended clone tree reconstruction problem (S5 Fig). Copy number changes, subclones, seg-

ments and alleles of the CNAs can be provided by subclonal CNA reconstruction methods [12,

14, 22, 25]. The impact matrix M can be easily derived from an existing subclonal reconstruc-

tion—then SubMARine generalizes from one clone tree to the set of valid and equivalent ones

—but in some cases it can also be inferred without a subclonal reconstruction (Section “Con-

clusion and discussion”). For extended SubMARine the input CNAs have to satisfy a monoto-

nicity restriction, which ensures that each segment contains only copy number changes of the

same direction per allele (see Section IV.4 in S1 Text for details). In brief, this condition guar-

antees that once an allele is lost, no update of undefined ancestral relationships can prevent

this loss from happening (e. g. by increasing the copy number of the allele before the loss), and

hence no subsequent updates to Z can remove conditions that used the lost allele rule to previ-

ously define an element of Z. This guarantees that all defined values in the subMAR set by

propagating inference rules are present in the extended MAR. Note that copy neutral loss of

heterozygosity (LOH) events can still be modeled because the restriction permits one of the

parental alleles to be lost, and the other one to be gained.

Briefly, like the basic version of SubMARine, the extended version builds a partial clone

tree by propagating the germline, generalized sum and partial tree rule and using the Subpo-

plar algorithm (S5 Fig). Furthermore, extended SubMARine propagates the equivalence and

lost allele rules, and phases some SSMs in order to satisfy the underlying constraints (S1 Table

and S1 Algorithm). In addition to user-defined ancestral relationships, the extended version of

SubMARine can also take SSM phases as input. Extended SubMARine converges when no
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ancestral relationship or SSM phase can be propagated anymore. As SubMARine in basic ver-

sion, the extended version always converges. Its result is an extended subMAR, consisting of

the ancestry matrix Z, the possible parent matrix τ and the SSM phasing πs. An example of

extended SubMARine and a detailed description of the algorithm, including an analysis of its

polynomial runtime, can be found in Sections IV.5 and IV.6 in S1 Text.

Results

Here, we evaluated SubMARine by applying it to simulated basic and extended clone tree

reconstruction problems, thus without and with CNAs; and by applying it to data from the

large, multi-sample TRACERx study [40, 41] and a CNA-containing prostate cancer study

[42].

Simulated data without noise

Section V.1 in S1 Text provides a detailed description of the creation of our noise-free simu-

lated datasets. In brief, we generated a dataset without CNAs containing 600 subclonal recon-

structions, evenly divided between those with 5, 20 and 50 subclones (plus the germline); and

another dataset with clonal and subclonal CNAs containing 1800 subclonal reconstructions,

each with 20 subclones. The CNA-containing subclonal reconstructions are evenly divided

among nine groups of simulations where we try all combinations of the number of segments,

selected from 10, 20, and 40, and the number of CNAs, selected from 10, 20, and 40. In each of

the CNA-containing datasets, we randomly assigned CNAs as copy number changes to sub-

clones, segments, and parental alleles, ensuring that a deletion is only allowed once per seg-

ment and allele on a given tree branch. We also randomly assigned 200 SSMs to subclones,

segments, and parental alleles, considering the impact of subclonal CNAs. For both types of

datasets and each parameter combination, we draw 10 random subclonal reconstructions for

each of 1 to 20 samples, resulting in 200 subclonal reconstructions for each parameter

combination.

SubMARine constructed each subMAR (basic or extended) in less than 70 seconds using a

single thread with less than one GB of memory. On average, increasing the number of samples

or decreasing the number of subclones decreases uncertainty in a clone tree [35, 36]. The

implied ambiguity in the subMAR solutions shows the same behavior when applied to our

simulations (S6, S7 and S8 Figs). Including CNAs in our simulations further decreases uncer-

tainty (S6 and S8 Figs) due to the additional implied ancestral constraints. Notably, in all but

one simulations with twelve and more samples, the resulting subMAR had no undefined

ancestral relationships, indicating that it had found the single clone tree solution to the recon-

struction problem.

We then assessed how accurately SubMARine’s subMARs matched the actual ambiguity in

the solution sets of clone trees fitting the 2400 clone tree reconstruction problems. Because

each solution set is a subset of the clone trees completing the subMAR, we used a depth-first

search (DFS) algorithm that incorporated the subMAR and the Subpoplar algorithm to enu-

merate these solution sets. Note that because not all spanning trees complete the subMAR

(Section II.1 in S1 Text), we do not use the Gabow-Myers-based algorithm previously

employed for this task [11, 12, 19]. For 1795 of the 2400 clone tree reconstruction problems,

the subMARs were completely defined, so they only had a single clone tree solution. Among

the remaining 605 problems, none of the problems predicted to have multiple solutions by

SubMARine had only a single clone tree solution. So, in 100% of problems with a single solu-

tion, SubMARine identified that solution. Of the remaining 605 problems, in 64 cases, our

DFS algorithm did not complete its enumeration in less than 120h on a single thread.
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For 70.9% of the 541 clone tree reconstruction problems for which we were able to fully

enumerate the solution set, and that SubMARine predicts to have> 1 clone tree solution, the

subMARs precisely matched the MAR. For all 2336 subMARs, for which we could compute

their MAR, we computed the recall of defined relationships, i. e., the proportion of the non-

trivial defined ancestral relationships (those for subclones k and k0 where 0< k< k0) recovered

from the MAR. Trivial ancestral relationships are those with which Z is initialized in the pre-

processing phase of SubMARine. As Fig 2 illustrates, the more constrained the clone tree

reconstruction problem is by a higher number of samples, the higher is the recall. The presence

of CNAs has no influence on the recall (S9 Fig). With CNAs, there is 100% recall with eleven

or more samples, without CNAs, this is true for ten or more samples.

As Fig 3 illustrates, it may be possible to assess when the subMAR is a perfect match to the

MAR. For the dataset without CNAs, all subMARs with 5 subclones have 100% recall (Fig 3A)

as do the vast majority of subMARs with less than 50 undefined relationships (Fig 3B and 3C).

Fig 2. Recall of defined ancestral relationships for dataset (A) without and (B) with CNAs. We computed recall based on the non-trivial

ancestral relationships. Columns in (A) usually have 30 data points, columns in (B) 90. The last column in each subfigure shows all results for (A) 10

and (B) 11 and more samples since each subMAR achieved a recall of 100%. For the 64 subMARs for which the DFS could not enumerate all valid

(and equivalent) completing clone trees, we did not compute the recall because we do not know the ground truth. Hence, column 1 of (A) contains

only 13, column 2 20, column 3 21 and column 4 27 values, and column 1 of (B) contains only 65 values.

https://doi.org/10.1371/journal.pcbi.1008400.g002

Fig 3. Empirical cumulative density functions (CDFs) of subMARs equaling and differing the MAR for (A)–(C) dataset without CNAs and

(A) 5, (B) 20 and (C) 50 subclones, and (D) dataset with CNAs and 20 subclones. Not included are subMARs that do not contain any undefined

ancestral relationships (and thus have found the single clone tree solution and equal the MAR), and those for which the DFS did not finish. The p-

values are computed with a Kolmogorov-Smirnov test. (C) The empirical CDF for subMARs differing the MAR reaches the value of 1.0 at 864

undefined relationships. ctrp’s: clone tree reconstruction problems.

https://doi.org/10.1371/journal.pcbi.1008400.g003
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For the dataset with CNAs, predicting when a subMAR has 100% recall is less straightforward

as there is less than perfect recall with as few as 10 undefined relationships in the subMAR (Fig

3D). However, in the CNA-containing cases, the DFS is feasible to apply for subMARs with

less than 50 undefined relationships as it was done in less than 100 seconds (S10 Fig).

Simulated data with noise

Next, we assessed the performance of SubMARine on simulated data where we estimated the

subclonal frequencies from read counts. As such, these frequencies contain an estimation

error or noise. For performance assessment, we created a dataset containing 5400 subclonal

reconstructions where count data was generated nine times from each of the 600 noise-free

subclonal reconstructions with 5, 20, and 50 subclones and without CNAs from Section “Sim-

ulated data without noise”. Each time, we used a different parameter combination of the num-

ber of SSMs per subclone and the total read count per SSM locus, resulting in seven different

effective read depths (30, 100, 300, 1000, 3000, 10000, 30000), were two parameter combina-

tions let to an effective read depth of 300 and two to 3000. For each subclone, its estimated fre-

quency is based on variant read counts sampled from appropriate Binomial distributions (see

Section V.2 in S1 Text for more details).

We applied SubMARine in basic mode with the option of using a noise buffer on the sub-

clonal frequency matrices of all 5400 subclonal reconstructions. Since some of the subclonal

reconstructions had multiple subclones with the same average subclonal frequencies across

samples and SubMARine then simply sorts them according to their user-provided IDs, we pro-

vided SubMARine with subclonal IDs corresponding to the order of sorted subclones of the

noise-free datasets. SubMARine built each subMAR in less than 35 seconds using a single

thread with less than one GB of memory. Higher effective read depth provides more precise

estimates for the subclonal frequencies, and as expected, S11 Fig shows that higher effective

read depths increase the proportion of subMARs not requiring a noise buffer, and the propor-

tion for which a set of subclone- and sample-specific noise buffers could be found directly

without a depth-first search. With higher effective read depth, the maximum value in the noise

buffer set becomes also smaller (S12 Fig). Note that for datasets with only one sample, a noise

buffer is never necessary because a linear valid clone tree exists always.

In general, uncertainty in the subMAR also decreases with increasing effective read depth

(S13 Fig), however, there are some key differences between the noisy simulations and the

noise-free ones. In general, like in the noise-free case, increasing the number of samples

decreases uncertainty, but how quickly this decrease occurs depends on the effective read

depth and the number of subclones (S14, S15 and S16 Figs). However, in contrast to the noise-

free case, when the effective read depth is below some cutoff that depends on the number of

subclones, increasing the number of samples does not decrease uncertainty in the reconstruc-

tions. For example, for 50 subclones and an effective read depth of 100, adding more samples

does not improve the reconstruction, while at the same effective read depth level for 5 sub-

clones, no uncertainty in the reconstruction exists for eleven or more samples. Note that

although subMAR uncertainty is only an upper bound on uncertainty in the MAR, it is possi-

ble that this is a general property of clone tree reconstruction problems.

To assess the accuracy of SubMARine’s reconstructions on the noisy data, we compared

each subMAR to the MAR of the corresponding noise-free subclonal reconstruction. Similar

to the noise-free case, we computed the recall of defined ancestor-descendant relationships.

However, because noise can change the ordering of the subclones, we considered more entries

in the ancestry matrix Z when computing the recall (Section V.3 in S1 Text). In addition, in

the noisy case, it is possible that the subMAR contains defined ancestor-descendant
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relationships not present in the noise-free MAR for the subclonal reconstruction, which cre-

ates false positive defined ancestor-descendant relationships. Here, we distinguish two types of

false positives, where either the corresponding ancestor-descendant relationship in the noise-

free MAR is undefined (deemed falsely defined) or where it is defined differently (deemed dif-
ferently defined), and compute their percentage of error (Section V.3 in S1 Text). As before, we

evaluate the performance of SubMARine only on those datasets for which we were able to

build the MAR (Section “Simulated data without noise”). As shown in Fig 4, with increasing

effective read depth, the recall increases while the two errors decrease. Note that the differently

defined relationship error decreases more rapidly with increasing effective read depth than the

falsely defined error (S17 Fig). By comparing recall, false positive errors, and sample-depen-

dent reconstruction uncertainty with the noise-free cases (S14, S15, S16 and S18 Figs), we can

define sufficient effective read depth levels for which noisy data is nearly equivalent to noise-

free data. For 5 subclones and an effective read depth of 300, the mean recall does not differ

from the one of the noise-free data, and the false positive error of differently defining a rela-

tionship in the subMAR is nearly 0. Furthermore, the proportions of subclones with uncertain

parentage is not worse than in the noise-free dataset. Hence, an effective read depth of 300 for

5 subclones seems to be sufficient in order to construct a subMAR that represents the true

underlying MAR well. For 20 subclones, an effective read depth of 10000 is preferable and for

Fig 4. Mean recall and percentage of false positive errors for effective read depth. With increasing effective read depth of 30, 100, 300, 1000,

3000, 10000, and 30000, the recall increases and the false positive errors of defining a relationship that is defined differently or undefined in the

MAR decreases.

https://doi.org/10.1371/journal.pcbi.1008400.g004
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50 subclones of 30000 or more. Note that effective read depth is the required read depth if each

subclone is represented by only a single SSM; more SSMs correctly assigned to the subclones

proportionally decrease the required read depth per SSM.

TRACERx data

We next applied SubMARine to a large, multi-sample dataset drawn from the TRACERx study

[41], consisting of mostly primary tumors of 100 patients with early-stage non-small-cell lung

cancer (NSCLC). Previously, PyClone [28] was used for each patient to identify mutation clus-

ters, which correspond to subclones, and CITUP [34] was used to infer clone trees by exhaus-

tively exploring all possible trees and reporting those with the highest likelihood. In Section

V.4 in S1 Text, we describe how we arrive at 88 patients with two to 15 subclones from two to

seven tumor samples, on which we apply the basic version of SubMARine (S2 Table).

For each patient, SubMARine constructed the subMAR in less than 40 seconds on a single

thread with less than one Gb of memory. For 42 patients, we did not use a noise buffer

because their subclonal frequencies supported a valid partial clone tree; 37 of those have a

subMAR that describes only a single tree. S19 Fig shows the five subMARs with undefined

ancestral relationships. All five subMARs were identical to their MARs. In order to build a

valid partial clone tree for the other 46 patients, we computed subclone- and sample-specific

noise buffer sets (Section III.3 in S1 Text). For 45 of these patients, the noise buffer sets

could be found in polynomial time. Only for one patient (CRUK0016), an exhaustive search

had to be applied; it found the MAR and the noise buffer set in less than 2 seconds. The max-

imum values in the noise buffer sets range from 0.01 to 0.7 (S20 Fig), with a median of 0.14.

Only one patient required a buffer greater than 0.5 (S21 Fig), this could be caused by infinite

sites violations [43] or an undetected CNA. With the noise buffers, SubMARine identifies 42

additional subMARs that describe a single tree. For three of the four remaining patients,

SubMARine finds subMARs with one, three and seven uncertain values being perfect

matches to their MARs. The MAR of the remaining patient CRUK0016 contains nine unde-

fined values.

We next compared SubMARine’s partial clone trees with those clone trees reported in the

TRACERx paper (p.31–p.174 of the Supplementary Appendix 1 of the work of Jamal-Hanjani

et al. [41]). All but the trees for six patients were generated by CITUP. Full details of this

comparison are provided in S2 Table. CITUP, as used by Jamal-Hanjani et al., exhaustively

enumerates all clone trees, up to ten subclones. As such, for three patients (CRUK0032,

CRUK0062 and CRUK0065) with more than ten subclones, CITUP could not be run and the

authors constructed trees manually. Note that for these three patients, SubMARine identified

subMARs in less than 40 seconds. For each tree, CITUP infers a set of subclonal frequencies

that are close to the input frequencies and for which the associated clone tree is valid. Trees

are ranked based on how close the input and inferred frequencies are, as assessed using a like-

lihood function. This function is maximized when the input frequencies already support a

valid clone tree. As such, for the 42 patients which did not require a noise buffer, CITUP

should find the same trees as SubMARine, assuming that only the most likely trees were

reported. However, for six of the 42 patients, Jamal-Hanjani et al. report more trees. None of

these additional trees were valid with the unaltered frequencies (see S22 Fig for an example).

In 29 of the 46 cases requiring a noise buffer, the subMAR perfectly matches the trees

reported by Jamal-Hanjani et al. Of the remaining 17 cases, in 13 cases, the valid trees com-

pleting the subMAR are a subset of the reported ones and in four cases, there is no overlap

between reported and completing trees; however, the trees differ only in up to three parent-

child relationships.
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Prostate cancer dataset

Finally, we applied SubMARine to a multi-sample metastatic prostate cancer dataset of Gun-

dem et al. [42]. This dataset contains SSMs (both SNVs and indels) and CNAs from primary

tumors and metastases of ten patients derived through whole genome sequencing (WGS), with

some SSMs being validated through targeted deep sequencing. The ten patients each had

between two and ten WGS samples. After detecting mutations and identifying subclones via

clustering using a Dirichlet process mixture model [2, 44], Gundem et al. collected some fur-

ther deep, targeted sequencing data to confirm the presence of all subclones in their assigned

samples. They used the WGS and targeted data to infer cancer cell fractions (CCFs) for each

subclone in each sample.

Gundem et al. constructed a clone tree for each patient by manually applying the pigeon-

hole principle [2], which is an inference rule implied by the sum constraint, to these raw CCFs.

In all cases, they needed to alter the CCFs in order to find ones that were consistent with a

valid clone tree, we call these new CCFs the adapted CCFs.

To test SubMARine, we applied it to these prostate cancer data in two ways. First, we

applied SubMARine in basic mode to the raw and adapted CCFs to determine whether the

manual reconstructions would be the same as those found via our automated procedure. Sec-

ond, because the data also contains CNAs, we applied SubMARine in extended mode. How-

ever, to do so, we needed to use a method that assigns CNAs to subclones, as this was not done

by Gundem et al.

Applying SubMARine to either the reported raw or adapted CCFs gives nearly exactly the

same trees, with differences coming largely because SubMARine does not require each cancer

to have a single clonal population. To apply SubMARine, we converted the CCFs into subclo-

nal frequencies by multiplying the CCFs with the reported purity (Section V.5 in S1 Text).

Doing so permits clone trees to have multiple independent cancerous populations descending

from the germline (i. e., to be multi-tumors). Indeed, even computing CCFs in the first place

assumes that a clonal population exists. SubMARine built the partial clone trees for each

patient and each input data in less than 2 seconds on a single thread with less than one Gb of

memory. There were five patients—A10, A12, A17, A21, A32—where the clone trees recovered

by SubMARine exactly matched those reported by Gundem et al., regardless of whether the

subclonal frequencies were based on the raw or on the adapted CCFs. When based only on the

raw CCFs, SubMARine also recovered the same clone tree for patient A31, and when based

only on the adapted CCFs for patient A34, including uncertain parentage for one subclone.

For the clone trees of the remaining patients (S23 Fig and S3 Table), some of the differences

resulted because, unlike Gundem et al., SubMARine permits multi-tumors. In two cases, A22

and A29, this results in additional uncertainty in the clone tree. In one case, A24, SubMARine

finds a multi-tumor solution that is a better fit to the raw and the adapted CCF data than the

Gundem et al. solution. In another case, A31 based on the adapted CCFs, SubMARine finds

uncertainty in the clone tree that was missed by the manual procedure used in Gundem et al.

Finally, in only one case, A34 based on the raw CCFs, the adaption of the CCFs by Gundem

et al. changes the structure of the best fitting clone tree. Thus, in general, we conclude that Sub-

MARine could have been applied to the raw CCFs and completely replaced the manual proce-

dure used by Gundem et al. This would have brought nearly the exact same results except that

it would have made fewer minor errors in the construction of the clone trees.

To use SubMARine in extended mode, we needed subclonal assignments for the CNAs.

Because Gundem et al. do not provide this information, we had to redefine the subclones and

applied PhyloWGS [10] to the CNAs and the subset of the SSMs from Gundem et al. that were

publicly available (Section V.6 in S1 Text). These SSMs constitute only those present in the
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coding regions. Note further that Gundem et al. attempt to correct CCFs of SSMs for CNAs,

however, their correction assumes that all cancer cells with an SSM have the same number of

mutated alleles [44], which is not necessarily the case. Also, note that most CNA callers,

including the one used by Gundem et al., are inaccurate when more than one CNA affects a

region. As such, we used the PhyloWGS parsing mode that excludes SSMs in these multiple

CNA regions, and only attempted clone tree reconstruction for those patients for whom less

than half of their SSMs got excluded: A10, A12, A17, A24 and A34. For all the reason we men-

tion above, the redefined subclones were not a perfect match to the Gundem et al. subclones.

Hence, for the reported PhyloWGS tree with the highest likelihood we chose for each patient,

we computed a mapping based on SNV assignment and subclonal frequencies between the

subclones defined by PhyloWGS and those reported by Gundem et al. (Section V.6 in S1 Text

and S4 Table). Because PhyloWGS does not phase SSMs in regions of copy number change,

we computed the phasing with the highest likelihood in order to derive CNA influence on

SSMs, which is needed for SubMARine.

SubMARine built the subMAR for each patient in less than 7 seconds on a single thread

with less than one Gb of memory. Since we use the subclonal frequencies of the inferred clone

trees from PhyloWGS as input, no noise buffer was necessary. Despite all of the differences in

subclone construction between PhyloWGS and Gundem et al., our constructed partial clone

trees largely match the ones reported by Gundem et al. (compare S24 Fig with Fig 2 of Gun-

dem et al., and S3 Table). However, generally speaking, the PhyloWGS-output-based clone

trees had more uncertain ancestor-descendant relationships; expect for patient A17, for which

all relationships were defined. For patient A17, we could also match all, and for patient A34, all

but one of PhyloWGS’ subclones to the ones reported by Gundem et al. For these two patients,

our partial clone trees resemble the reported ones best. Nevertheless, for all patients, the

defined relationships between matched subclones never contradict the relationships reported

by Gundem et al., however, SubMARine identifies new uncertain relationships unreported in

Gundem et al. So, in conclusion, for the Gundem et al. dataset, adding CNAs directly to the

clone trees did not change the reconstructions significantly and in addition permits to infer

the evolutionary relationships between CNAs and SSMs. In the future, with more precise sub-

clonal CNA reconstruction methods, these subclonal CNAs can be used by SubMARine to

infer more detailed clone trees.

Conclusion and discussion

Here we have introduced SubMARine, a polynomial-time algorithm that computes the sub-
MAR, a partial clone tree that is a simple, partial solution to the NP-complete problem of find-

ing a valid clone tree for a subclonal frequency matrix ϕ. Despite that the subMAR is only an

approximation, in all cases, when there is only a single clone tree solution, assuming precisely

measured subclonal frequencies, SubMARine identifies it. Indeed, the subMAR only fails to

capture the vast majority of the non-trivial ancestral relationships in the MAR when the recon-

struction problem is severely under-constrained by the input data; and often these cases can be

diagnosed by examining the subMAR. Notably, SubMARine also solves a potentially much

more difficult extension of the basic clone tree reconstruction problem that includes subclonal

CNAs (see also [45]). Furthermore, SubMARine permits the addition of user-defined ancestral

constraints and SSM phasing, which could come from single cell or long read sequencing data.

Additionally, we introduced a noise-buffered version of SubMARine to deal with imprecise

subclonal frequencies. This version identifies the minimum uniform deviation from the input

subclonal frequencies in order to prevent violations of the generalized sum rule and thus per-

mits a valid partial clone tree for an input dataset. However, the uniform noise buffer can, in
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some circumstances, generate highly uncertain subMARs when only a single (or small num-

ber) of input frequencies cause violations. To combat this issue, SubMARine attempts to iden-

tify a set of subclone- and sample-specific noise buffers in polynomial time. We are unable to

provide guarantees that a given subMAR contains a valid, complete clone tree, nor can we

guarantee that a uniform noise buffer can be made into a subclone- and sample-specific set of

buffers in polynomial-time. As such, we introduce a depth-first search algorithm that is

guaranteed to find the MAR with subclone- and sample-specific noise buffers if a valid, com-

plete clone tree exists. However, among the reconstruction problems we considered, the com-

binatorial search is rarely needed for real-world problems or for well-specified simulated

problems (i.e., those with few clone tree solutions).

Assuming precisely measured subclonal frequencies, SubMARine was able to construct the

subMAR for nearly half of the TRACERx data where subclones were defined by mutation clus-

tering. For the rest of the data, SubMARine could construct the subMAR using subclone- and

sample-specific noise buffer sets. The noise-buffered version of SubMARine still requires an

ordering of the subclones to initialize; the computation of this ordering does not consider the

noise buffer and may be the source of differences between the solution sets reported by Sub-

MARine and by CITUP on the TRACERx data.

When applying SubMARine on subclonal frequencies based on the adapted and raw CCFs

of the prostate dataset by Gundem et al., we were able to identify some minor errors made in

the previously expert-driven clone tree reconstructions. We showed that the partial clone trees

based on the raw CCFs are similar to the ones based on the adapted CCFs, hence SubMARine

applied to the raw CCFs would have been able to replace the manual procedure used by Gun-

dem et al.

The partial clone tree introduced in this work is a particularly useful summary in domains,

e. g. cancer therapy, where false positive claims on the evolutionary history of a tumor can

have drastic consequences. Here, a conservative assessment of uncertainty is far superior to a

random or representative single clone tree solution. Thus, an important use of SubMARine is

generalizing a single clone tree—produced, e. g. through Monte Carlo sampling—to the set of

valid and equivalent clone trees. As shown with the PhyloWGS clone trees produced with the

Gundem et al. data, given a clone tree, one can easily derive the subclonal frequency matrix ϕ;

as well as defining the impact matrix M when SSM and CNA assignments are given. SubMA-

Rine can then identify the equivalence class of trees with equally good fits, thereby enhancing

methods that give single or sampled solutions to a reconstruction problem.

Uncertainty in the actual values of the subclonal frequencies can give rise to incorrect

reconstructions; SubMARine can be extended to address this challenge. Currently, when using

noise buffers, SubMARine attempts to find the minimal deviation from the input subclonal

frequencies necessary to find a valid partial clone tree. However, this could lead to overconfi-

dence if there are other similar frequency deviations which give rise to different clone tree

solution sets; this can be addressed using SubMARine in at least three ways. One solution

would be to simply increase the size of the noise buffer (or buffer set) returned by SubMARine,

and rerun it with higher-than-necessary buffers. One could also sample small amounts of

noise and add these directly to the input subclonal frequencies; and combine subMARs result-

ing from multiple samples into a single one. Uncertainty between clone tree reconstructions

can also be caused by differences in the clustering of mutations into subclones. As such, Sub-

MARine can be used to enhance mutation clustering (or clone tree reconstruction) algorithms

that output multiple solutions by applying SubMARine separately to each solution and merg-

ing the subMAR as above—however, this requires identifying a mapping between subclones.

These approaches could thus be used to permit SubMARine to characterize the set of clone

trees with nearly equivalent data fits; this may be especially important for datasets with low
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purity or low sequencing depth where the input subclonal frequencies are likely to deviate the

most from the actual ones.

There are a number of potential further extensions of this work. It may be possible to define

the impact matrix M without a full subclonal reconstruction by adapting some of the pairwise

comparisons technique developed in [45]. Indeed, it is possible to infer M directly for subclo-

nal CNAs that are clonal in some, but not all, samples.

A potential drawback of SubMARine is the monotonicity restriction on the subclonal

CNAs; note that this constraint is both more and less limiting than the infinite allele assump-

tion previously applied to subclonal CNAs [45]. In particular, it effectively rules out incorpo-

rating clonal whole genome duplications (WGD) that appear in many cancers. It may be

possible to extend SubMARine to incorporate clonal WGDs by expanding the number of

potential phases for an SSMs.

There are a number of unanswered theoretical questions raised by this work. First, it is

unclear what the hardness of the MAR reconstruction problem is. Because a MAR exists only

if there is at least one valid clone tree solution, it seems likely that MAR reconstruction is at

least as hard as the problem of finding a single clone tree solution. However, it is not clear

whether this hardness changes under the assumption that a valid clone tree exists. Neither of

these two questions are addressed by SubMARine. Also SubMARine approximates the MAR

but provides no guarantees about its approximation factor. It would be useful to provide such

guarantees, if they exist.

Finally, SubMARine could also be viewed as an extension of methods that perform haplo-

typing via perfect phylogeny [46, 47]. In quadratic time, these methods solve a special case of

the basic clone tree reconstruction problem, in which all elements of the subclonal frequency

matrix ϕ are either 0, 0.5, 1. Furthermore, they provide a complete, polynomial-space sum-

mary of all valid clone trees. Their summary methods could be generalized and applied to the

possible parent matrix τ produced by Subpoplar.

Supporting information

S1 Fig. Example of a clone tree with three subclones and the germline. Subclonal frequencies

are indicated with ϕ0, . . ., ϕ3; assuming that there are two samples given, their values could be

ϕ0 = (1, 1), ϕ1 = (0.9, 0.8), ϕ2 = (0.5, 0.3), and ϕ3 = (0.4, 0.35). Edges between subclones indicate

ancestral relationships, with the germline being an ancestor of all subclones and subclone 1

being the ancestor of subclones 2 and 3. Colorful bars indicate alleles of different segments; here,

the two alleles of two segments are shown, with segment 1 having the dark gray and the light

blue alleles, and segment 2 having the light gray and dark blue alleles. Two SSMs are assigned to

subclone 1, one to the blue allele of segment 1 and one to the gray allele of segment 2. The SSMs

are inherited by the descendants of subclone 1. Furthermore, two CNAs are assigned to the sub-

clones, shown as copy number changes. One copy number duplication of the gray allele of seg-

ment 2 is assigned to subclone 2, duplicating the SSM lying on it. One copy number loss of the

blue allele of segment 1 is assigned to subclone 3, deleting with it the SSM of this segment.

(PDF)

S2 Fig. Partial clone tree where one completing clone tree is not a solution to the basic

clone tree reconstruction problem t. Given t with subclonal frequency matrix ϕ = (1, 0.7, 0.3,

0.2)T, this partial clone tree is its MAR. Six clone trees complete the MAR, however, only five

of them are valid. The clone tree in which the germline is a parent of subclones 2 and 3 does

not satisfy the sum constraint and hence is not a solution to t.
(PDF)
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S3 Fig. Valid partial clone tree without a valid completion. Example of a valid partial clone

tree given the subclonal frequency matrix ϕ = ((1.0, 1.0), (0.6, 0.6), (0.4, 0.4), (0.39, 0.37), (0.38,

0.38), (0.37, 0.39))T. Subclones 1 and 2 are definite children of the germline. Subclones 1 and 2

do not have definite children because their ancestral relationships to subclones 3, 4 and 5 are

undefined. In a completion without undefined relationships, either subclone 1 or 2 would

have to have two definite children. However, given the frequencies in ϕ, subclones 1 and 2 can

have only one definite child without violating the generalized sum constraint. Thus, there

exists no valid full completion of this valid partial clone tree.

(PDF)

S4 Fig. Overview of SubMARine in basic mode. The basic version of SubMARine takes the

subclonal frequency matrix ϕ as input to build the ancestry matrix Z. In a preprocessing phase,

the germline rule is introduced by setting Z(0, k) = 1 for all k> 0. Also, all trivial relationships

are set to 0 (Z(k, k0) = 0 for k0 � k) as a consequence of the generalized sum constraint. Then,

the main phase starts by using the crossing rule (Eq (9), Section III.1 in S1 Text), which also

follows from the generalized sum constraint. The generalized sum rule itself and the partial

tree rule are propagated by using Subpoplar until the ancestry matrix converged and no more

relationships can be defined. Then, SubMARine outputs the ancestry matrix Z together with

the possible parent matrix τ, created by Subpoplar. When the user defines additional con-

straints on Z, these are also input to SubMARine. They are applied after the preprocessing

phase, followed by a propagation of the partial tree rule. This rule is also propagated now when

using the crossing rule. The reason is that with the entries set by the user, Z can contain 1’s in

other positions than the first row, possibly requiring updates of undefined relationships. With-

out user-defined constraints on Z, 1’s in other rows can be set only in Subpoplar, hence the

partial tree rule needs to be applied only at that stage. When the user provides clonal CNAs

and SSMs as input, the lost allele constraint is checked before starting the preprocessing phase.

Whenever a constraint cannot be satisfied, SubMARine terminates and indicates which sub-

clonal relationship led to the conflict.

(PDF)

S5 Fig. Overview of SubMARine in extended mode. The extended version of SubMARine

takes the subclonal frequency matrix ϕ, CNAs as copy number changes in the matrices ΔCA

and ΔCB, assigned to subclones, segments and parental alleles in the vectors λc, σc and πc,

SSMs assigned to segments and subclones in the vectors σs and λs, and the impact matrix M as

input to build the ancestry matrix Z and the SSM phasing vector πs. At first, the monotonicity

restriction is checked to hold on the CNAs. Then, in the preprocessing phase, the germline

rule is introduced and trivial relationships (Z(k, k0) = 0 for k0 � k) are set. Afterwards, SubMA-

Rine starts the main phase, ensuring that the partial tree rule is applied each time a relationship

is updated. First, the equivalence rule based on Eq (13) in Section IV.3 in S1 Text is propa-

gated, leading to 1’s in Z, together with those equivalence and lost allele rules that update SSM

phasing. Second those equivalence and lost allele rules that lead to 0’s in Z and the crossing

rule are used. Third, the general sum rule is propagated with Subpoplar, which also applies the

equivalence, lost allele and partial tree rules whenever necessary. The method converges, when

no more subclonal relationships and SSM phases can be updated. The output consists of the

ancestry matrix Z, the SSM phasing vector πs and the possible parent matrix τ, created by Sub-

poplar. The user can also define additional constraints on Z and on πs. Both types of con-

straints are applied after the preprocessing step and before the main phase starts. When user-

constraints on Z are set, the partial tree rule is already propagated before the main phase.
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Whenever a constraint cannot be satisfied, SubMARine terminates and indicates what led to

the conflict.

(PDF)

S6 Fig. Proportion of subclones with uncertain parentage for (A) dataset without CNAs

and (B) dataset with CNAs. A subclone has uncertain parentage when it has multiple

possible parents in the possible parent matrix τ. Line shows mean and gray area standard

deviation.

(PDF)

S7 Fig. Proportion of subclones with uncertain parentage for dataset without CNAs con-

taining (A) 5, (B) 20 and (C) 50 subclones. A subclone has uncertain parentage when it has

multiple possible parents in the possible parent matrix τ. Line shows mean and gray area stan-

dard deviation.

(PDF)

S8 Fig. Proportion of subclones with uncertain parentage for dataset with CNAs contain-

ing 20 subclones and different numbers of CNA events and segments. (A)–(C) 10 segments,

(D)–(F) 20 segments, (G)–(I) 40 segments, (A), (D), (G) 10 CNAs, (B), (E), (H) 20 CNAs, (C),

(F), (I) 40 CNAs. A subclone has uncertain parentage when it has multiple possible parents in

the possible parent matrix τ. Line shows mean and gray area standard deviation.

(PDF)

S9 Fig. Recall of defined ancestral relationships for datasets without and with CNAs and

20 subclones. The recall is computed based on the non-trivial ancestral relationships. The p-

value is computed with a Mann-Withney U test. The left column contains 193 data points and

the right 1775.

(PDF)

S10 Fig. Runtimes of the depth-first search (DFS) to enumerate all valid (and equivalent)

clone trees completing a subMAR, sorted by the number of undefined ancestral relation-

ships in the subMARs. We terminated searches exceeding a maximal runtime of 120 h. We

used two versions of the DFS to enumerate clone trees for different subMARs for the dataset

without CNAs. The first version is a naïve, recursive one and the second version is an

improved, iterative and also faster one, which we provide with SubMARine. Hence, if using

the second version to enumerate the clone trees of all subMARs, the overall runtime could be

improved. Note that for all subMARs on which the search did not termindate in 120 h, as well

as for all subMARs of the dataset with CNAs, we already used the faster version.

(PDF)

S11 Fig. Distribution among the different noise buffer statutes. There are three different

noise buffer statuses: Either no noise buffer is needed to build a subMAR, the subclone- and

sample specific buffer set can be found in polynomial time, or the uniform buffer is used. The

datasets with an effective read depth of 300 and 3000 contain 1200 subMARs, all others 600.

(PDF)

S12 Fig. Maximum values in the noise buffer sets for different effective read depths. Values

for subMARs that could be built without a noise buffer are included as 0.

(PDF)

S13 Fig. Proportion of subclones with uncertain parentage for dataset with noise and dif-

ferent effective read depths. A subclone has uncertain parentage when it has multiple possible

parents in the possible parent matrix τ. Line shows mean. The lowest line for an effective read
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depth of infinity shows the mean uncertain parentage of the corresponding noise-free simu-

lated data.

(PDF)

S14 Fig. Proportion of subclones with uncertain parentage for dataset with noise, 5 sub-

clones and different effective read depths. A subclone has uncertain parentage when it has

multiple possible parents in the possible parent matrix τ. Blue line shows mean and blue area

standard deviation of uncertain parentage on noisy data. Orange line shows mean of corre-

sponding noise-free data.

(PDF)

S15 Fig. Proportion of subclones with uncertain parentage for dataset with noise, 20 sub-

clones and different effective read depths. A subclone has uncertain parentage when it has

multiple possible parents in the possible parent matrix τ. Blue line shows mean and blue area

standard deviation of uncertain parentage on noisy data. Orange line shows mean of corre-

sponding noise-free data.

(PDF)

S16 Fig. Proportion of subclones with uncertain parentage for dataset with noise, 50 sub-

clones and different effective read depths. A subclone has uncertain parentage when it has

multiple possible parents in the possible parent matrix τ. Blue line shows mean and blue area

standard deviation of uncertain parentage on noisy data. Orange line shows mean of corre-

sponding noise-free data.

(PDF)

S17 Fig. False positive errors of (A) falsely defining a relationship in the subMAR that is

undefined in the noise-free MAR and (B) differently defining a relationship in the sub-

MAR.

(PDF)

S18 Fig. (A), (D), (E) Recall and (B), (D), (F) false positive error of differently defining a

relationship in the subMAR for (A), (B) 5, (C), (D) 20, and (E), (F) 50 subclones. Orange

thick bars show the mean recall and percentage of error of the noise-containing data, horizon-

tal orange lines in (A), (C), (E) show the mean recall of the noise-free data. Note that the recall

of the noise-free data was calculated by considering only the entries of the upper right triangle

of the ancestry matrix Z, while for the noise-containing datasets also the entries of the lower

left triangle were considered.

(PDF)

S19 Fig. SubMARs for five patients from the TRACERx cohort. Shown are the subMARs

that contain undefined ancestral relationships. They are identical to their MARs. Subclonal

indices are taken from the TRACERx mutation clusters.

(PDF)

S20 Fig. Maximum values in the minimum noise buffer sets for 46 patients of the TRA-

CERx cohort.

(PDF)

S21 Fig. (A) Subclonal frequencies and (B) partial clone tree built by SubMARine for

patient CRUK0078 of the TRACERx study. Subclonal indices are taken from the TRACERx

mutation clusters. Both subclones 2 and 5 are children of subclone 1. However, they have a
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subclonal frequency of 0.81 and 0.89, respectively, in sample 2. Hence, a noise buffer of 0.7 is

necessary.

(PDF)

S22 Fig. (A) Subclonal frequencies and (B) one clone tree built by CITUP in the TRACERx

study for patient CRUK0095. Subclonal indices are taken from the TRACERx mutation clus-

ters. Given the shown subclonal frequencies and the clone tree, the sum constraint is not satis-

fied because Z(2, 3) = 1 although ϕ(2, 1) < ϕ(3, 1). Hence, CITUP must have inferred other

subclonal frequencies.

(PDF)

S23 Fig. Partial clone trees built by SubMARine based on raw and/or adapted CCFs of

Gundem et al. The grey boxes show the parts of the partial clone trees that differ in Gundem

et al., where for patient A22, the dark brown subclone with ID 23 is a child of the grey subclone

with ID 2, for patient A24, the light blue subclone with ID 13 is a child of the orange subclone

with ID 9, for patient A29, there is no uncertainty, the grey subclone with ID 5 is the parent of

the dark pink subclone with ID 4 and the light blue subclone with ID 2, subclone 4 is the par-

ent of the gold subclone with ID 3, and subclone 2 is the parent of the dark green subclone

with ID 1, for patient A31, the light brown subclone with ID 7 is the child of the dark purple

subclone with ID 3, and for patient A34, the darkbrown subclone with ID 11 could either be a

child of the orange subclone with ID 18 or of the blue subclone with ID 20, and the pink sub-

clone with ID 7 is a child of the light green subclone with ID 22. Note that the partial clone tree

for patient A22 based on the raw CCFs does not contain uncertainty for subclone 8, other than

in the tree reported by Gundem et al. Also note that the partial clone tree for patient A29 based

on the raw CCFs does not allow the light blue subclone with ID 2 to be a parent of the dark

green subclone with ID 1. Colors and subclonal IDs are taken from Gundem et al.

(PDF)

S24 Fig. Partial clone trees built by SubMARine based on PhyloWGS’ output. For patient

A10, subclone 13 is a possible child of all other subclones and the germline. Subclonal IDs are

taken from the PhyloWGS trees. The colors are taken from Gundem et al. and show the map-

ping of PhyloWGS’ subclones to the ones in Gundem et al. For patient A12 and A17, we

mapped multiple PhyloWGS’ subclones to the same subclone of Gundem et al. and in patient

A17, we mapped two Gundem et al. subclones to subclone 2 of PhyloWGS. Subclones with a

black stroke and grey filling could not be mapped to any Gundem et al. subclone. The letters

below and next to the subclones show in which samples the subclones have a frequency higher

than or equal to 0.1; ancestral subclones without an explicit labling combine the labeling of

their descendants.

(PDF)

S1 Table. Overview of inference rules derived from the lost allele and equivalence con-

straints.

(PDF)

S2 Table. SubMARine results on the TRACERx data.

(XLSX)

S3 Table. SubMARine results on the Gundem et al. data.

(XLSX)

S4 Table. Mapping between PhyloWGS and Gundem et al. subclones.

(XLSX)
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S1 Algorithm. Functional description of the SubMARine algorithm in extended mode.

(PDF)

S1 Text. Supporting information on the lost allele constraint, on partial clone trees, on

SubMARine in basic and extended mode, and on the results.

(PDF)

S1 Data. Excel spreadsheet containing the underlying numerical data for Figs 2–4, S6–S18,

and S20 Fig.

(XLSX)
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Supervision: Gunnar Rätsch, Jens Stoye, Quaid Morris.

Visualization: Linda K. Sundermann, Jeff Wintersinger.

Writing – original draft: Linda K. Sundermann, Quaid Morris.

Writing – review & editing: Linda K. Sundermann, Jeff Wintersinger, Gunnar Rätsch, Jens

Stoye, Quaid Morris.

References
1. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogene-

ity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine.

2012; 366:883–892. https://doi.org/10.1056/nejmoa1113205. PMID: 22397650

2. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The life history of

21 breast cancers. Cell. 2012; 149(5):994–1007. https://doi.org/10.1016/j.cell.2012.04.023. PMID:

22608083

3. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and

dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010; 467(7319):1109. https://

doi.org/10.1038/nature09460.

4. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute

myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012; 481(7382):506. https://doi.

org/10.1038/nature10738. PMID: 22237025

5. Schuh A, Becq J, Humphray S, Alexa A, Burns A, Clifford R, et al. Monitoring chronic lymphocytic leuke-

mia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood,

The Journal of the American Society of Hematology. 2012; 120(20):4191–4196. https://doi.org/10.

1182/blood-2012-05-433540. PMID: 22915640

6. Blagden SP. Harnessing pandemonium: the clinical implications of tumor heterogeneity in ovarian can-

cer. Cancer Genetics. 2015: 49. https://doi.org/10.3389/fonc.2015.00149. PMID: 26175968

PLOS COMPUTATIONAL BIOLOGY Reconstructing clone trees with SubMARine

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008400 January 19, 2021 25 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008400.s029
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008400.s030
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008400.s031
https://doi.org/10.1056/nejmoa1113205
http://www.ncbi.nlm.nih.gov/pubmed/22397650
https://doi.org/10.1016/j.cell.2012.04.023
http://www.ncbi.nlm.nih.gov/pubmed/22608083
https://doi.org/10.1038/nature09460
https://doi.org/10.1038/nature09460
https://doi.org/10.1038/nature10738
https://doi.org/10.1038/nature10738
http://www.ncbi.nlm.nih.gov/pubmed/22237025
https://doi.org/10.1182/blood-2012-05-433540
https://doi.org/10.1182/blood-2012-05-433540
http://www.ncbi.nlm.nih.gov/pubmed/22915640
https://doi.org/10.3389/fonc.2015.00149
http://www.ncbi.nlm.nih.gov/pubmed/26175968
https://doi.org/10.1371/journal.pcbi.1008400


7. Tang M, Zhao R, van de Velde H, Tross JG, Mitsiades C, Viselli S, et al. Myeloma Cell Dynamics in

Response to Treatment Supports a Model of Hierarchical Differentiation and Clonal Evolution. Clinical

Cancer Research. 2016; 22(16):4206–4214. https://doi.org/10.1158/1078-0432.ccr-15-2793. PMID:

27006493

8. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-cancer analysis of the

extent and consequences of intra-tumor heterogeneity. Nature Medicine. 2016; 22(1):105–113. https://

dx.doi.org/10.1038%2Fnm.3984. PMID: 26618723

9. Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, et al. The evolutionary history

of 2,658 cancers. Nature. 2020; 578(7793):122–128. https://doi.org/10.1038/s41586-019-1907-7.

PMID: 32025013

10. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. PhyloWGS: reconstructing subclonal

composition and evolution from whole-genome sequencing of tumors. Genome Biology. 2015; 16(1):35.

https://doi.org/10.1186/s13059-015-0602-8. PMID: 25786235

11. El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ. Reconstruction of clonal trees and tumor composi-

tion from multi-sample sequencing data. Bioinformatics. 2015; 31(12):i62–i70. https://doi.org/10.1093/

bioinformatics/btv261. PMID: 26072510

12. El-Kebir M, Satas G, Oesper L, Raphael BJ. Inferring the mutational history of a tumor using multi-state

perfect phylogeny mixtures. Cell Systems. 2016; 3(1):43–53. https://doi.org/10.1016/j.cels.2016.07.

004. PMID: 27467246

13. Hajirasouliha I, Mahmoody A, Raphael BJ. A combinatorial approach for analyzing intra-tumor hetero-

geneity from high-throughput sequencing data. Bioinformatics. 2014; 30(12):i78–i86. https://doi.org/10.

1093/bioinformatics/btu284. PMID: 24932008

14. Jiang Y, Qiu Y, Minn AJ, Zhang NR. Assessing intratumor heterogeneity and tracking longitudinal and

spatial clonal evolutionary history by next-generation sequencing. Proceedings of the National Acad-

emy of Sciences. 2016; 113(37):E5528–E5537. https://doi.org/10.1073/pnas.1522203113. PMID:

27573852

15. Jiao W, Vembu S, Deshwar AG, Stein L, Morris Q. Inferring clonal evolution of tumors from single nucle-

otide somatic mutations. BMC Bioinformatics. 2014; 15(1):35. https://doi.org/10.1186/1471-2105-15-

35. PMID: 24484323

16. Malikic S, McPherson AW, Donmez N, Sahinalp CS. Clonality inference in multiple tumor samples

using phylogeny. Bioinformatics. 2015; 31(9):1349–1356. https://doi.org/10.1093/bioinformatics/

btv003. PMID: 25568283

17. McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, et al. Divergent modes of clonal

spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nature Genetics. 2016; 48

(7):758–769. https://doi.org/10.1038/ng.3573. PMID: 27182968

18. Niknafs N, Beleva-Guthrie V, Naiman DQ, Karchin R. Subclonal hierarchy inference from somatic muta-

tions: Automatic reconstruction of cancer evolutionary trees from multi-region next generation sequenc-

ing. PLOS Computational Biology. 2015; 11(10):e1004416. https://doi.org/10.1371/journal.pcbi.

1004416. PMID: 26436540

19. Popic V, Salari R, Hajirasouliha I, Kashef-Haghighi D, West RB, Batzoglou S. Fast and scalable infer-

ence of multi-sample cancer lineages. Genome Biology. 2015; 16(1). https://doi.org/10.1186/s13059-

015-0647-8. PMID: 25944252

20. Satas G, Raphael BJ. Tumor phylogeny inference using tree-constrained importance sampling. Bioin-

formatics. 2017; 33(14):i152–i160. https://doi.org/10.1093/bioinformatics/btx270. PMID: 28882002

21. Strino F, Parisi F, Micsinai M, Kluger Y. TrAp: a tree approach for fingerprinting subclonal tumor compo-

sition. Nucleic Acids Research. 2013; 41(17):e165–e165. https://doi.org/10.1093/nar/gkt641. PMID:

23892400

22. Sundermann LK. Lineage-Based Subclonal Reconstruction of Cancer Samples [dissertation]. Bielefeld

University; 2019. Available from: https://pub.uni-bielefeld.de/record/2935248.

23. Chen H, Bell JM, Zavala NA, Ji HP, Zhang NR. Allele-specific copy number profiling by next-generation

DNA sequencing. Nucleic Acids Research. 2015; 43(4):e23–e23. https://doi.org/10.1093/nar/gku1252.

PMID: 25477383

24. Favero F, Joshi T, Marquard AM, Birkbak NJ, Krzystanek M, Li Q, et al. Sequenza: allele-specific copy

number and mutation profiles from tumor sequencing data. Annals of Oncology. 2015; 26(1):64–70.

https://doi.org/10.1093/annonc/mdu479. PMID: 25319062

25. Zaccaria S, Raphael BJ. Accurate quantification of copy-number aberrations and whole-genome dupli-

cations in multi-sample tumor sequencing data. Nature Communication. 2020; 11(1):4301. https://doi.

org/10.1038/s41467-020-17967-y. PMID: 32879317

PLOS COMPUTATIONAL BIOLOGY Reconstructing clone trees with SubMARine

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008400 January 19, 2021 26 / 28

https://doi.org/10.1158/1078-0432.ccr-15-2793
http://www.ncbi.nlm.nih.gov/pubmed/27006493
https://dx.doi.org/10.1038%2Fnm.3984
https://dx.doi.org/10.1038%2Fnm.3984
http://www.ncbi.nlm.nih.gov/pubmed/26618723
https://doi.org/10.1038/s41586-019-1907-7
http://www.ncbi.nlm.nih.gov/pubmed/32025013
https://doi.org/10.1186/s13059-015-0602-8
http://www.ncbi.nlm.nih.gov/pubmed/25786235
https://doi.org/10.1093/bioinformatics/btv261
https://doi.org/10.1093/bioinformatics/btv261
http://www.ncbi.nlm.nih.gov/pubmed/26072510
https://doi.org/10.1016/j.cels.2016.07.004
https://doi.org/10.1016/j.cels.2016.07.004
http://www.ncbi.nlm.nih.gov/pubmed/27467246
https://doi.org/10.1093/bioinformatics/btu284
https://doi.org/10.1093/bioinformatics/btu284
http://www.ncbi.nlm.nih.gov/pubmed/24932008
https://doi.org/10.1073/pnas.1522203113
http://www.ncbi.nlm.nih.gov/pubmed/27573852
https://doi.org/10.1186/1471-2105-15-35
https://doi.org/10.1186/1471-2105-15-35
http://www.ncbi.nlm.nih.gov/pubmed/24484323
https://doi.org/10.1093/bioinformatics/btv003
https://doi.org/10.1093/bioinformatics/btv003
http://www.ncbi.nlm.nih.gov/pubmed/25568283
https://doi.org/10.1038/ng.3573
http://www.ncbi.nlm.nih.gov/pubmed/27182968
https://doi.org/10.1371/journal.pcbi.1004416
https://doi.org/10.1371/journal.pcbi.1004416
http://www.ncbi.nlm.nih.gov/pubmed/26436540
https://doi.org/10.1186/s13059-015-0647-8
https://doi.org/10.1186/s13059-015-0647-8
http://www.ncbi.nlm.nih.gov/pubmed/25944252
https://doi.org/10.1093/bioinformatics/btx270
http://www.ncbi.nlm.nih.gov/pubmed/28882002
https://doi.org/10.1093/nar/gkt641
http://www.ncbi.nlm.nih.gov/pubmed/23892400
https://pub.uni-bielefeld.de/record/2935248
https://doi.org/10.1093/nar/gku1252
http://www.ncbi.nlm.nih.gov/pubmed/25477383
https://doi.org/10.1093/annonc/mdu479
http://www.ncbi.nlm.nih.gov/pubmed/25319062
https://doi.org/10.1038/s41467-020-17967-y
https://doi.org/10.1038/s41467-020-17967-y
http://www.ncbi.nlm.nih.gov/pubmed/32879317
https://doi.org/10.1371/journal.pcbi.1008400


26. Dentro SC, Wedge DC, Van Loo P. Principles of reconstructing the subclonal architecture of cancers.

Cold Spring Harbor Perspectives in Medicine. 2017; 7(8):a026625. https://doi.org/10.1101/

cshperspect.a026625. PMID: 28270531

27. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architec-

ture and tracking the spatial and temporal patterns of tumor evolution. PLOS Computational Biology.

2014; 10(8):e1003665. https://doi.org/10.1371/journal.pcbi.1003665. PMID: 25102416

28. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal popula-

tion structure in cancer. Nature Methods. 2014; 11(4):396. https://doi.org/10.1038/nmeth.2883. PMID:

24633410

29. Zare H, Wang J, Hu A, Weber K, Smith J, Nickerson D, et al. Inferring clonal composition from multiple

sections of a breast cancer. PLOS Computational Biology. 2014; 10(7):e1003703. https://doi.org/10.

1371/journal.pcbi.1003703. PMID: 25010360

30. Fischer A, Vázquez-Garcı́a I, Illingworth CJ, Mustonen V. High-definition reconstruction of clonal com-

position in cancer. Cell Reports. 2014; 7(5):1740–1752. https://doi.org/10.1016/j.celrep.2014.04.055.

PMID: 24882004

31. Ha G, Roth A, Khattra J, Ho J, Yap D, Prentice LM, et al. TITAN: Inference of copy number architectures

in clonal cell populations from tumor whole-genome sequence data. Genome Research. 2014;

24:1881–1893. https://doi.org/10.1101/gr.180281.114. PMID: 25060187

32. Oesper L, Mahmoody A, Raphael BJ. THetA: Inferring intra-tumor heterogeneity from high-throughput

DNA sequencing data. Genome Biology. 2013; 14(7):R80. https://doi.org/10.1186/gb-2013-14-7-r80.

PMID: 23895164

33. Salcedo A, Tarabichi M, Espiritu SMG, Deshwar AG, David M, Wilson NM, et al. A community effort to

create standards for evaluating tumor subclonal reconstruction. Nature Biotechnology. 2020; 38(1):97–

107. https://doi.org/10.1038/s41587-019-0364-z. PMID: 31919445

34. Malikic S, McPherson AW, Donmez N, Sahinalp CS. Clonality inference in multiple tumor samples

using phylogeny. Bioinformatics. 2015; 31(9):1349–1356. https://doi.org/10.1093/bioinformatics/

btv003. PMID: 25568283

35. Pradhan D, El-Kebir M. On the non-uniqueness of solutions to the perfect phylogeny mixture problem.

In: RECOMB International Conference on Comparative Genomics. Springer; 2018. p. 277–293.

36. Qi Y, Pradhan D, El-Kebir M. Implications of non-uniqueness in phylogenetic deconvolution of bulk DNA

samples of tumors. Algorithms for Molecular Biology. 2019; 14(1):19. https://doi.org/10.1186/s13015-

019-0155-6. PMID: 31497065

37. Govek K, Sikes C, Oesper L. A consensus approach to infer tumor evolutionary histories. In: Proceed-

ings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health

Informatics. ACM; 2018. p. 63–72. https://doi.org/10.1145/3233547.3233584.

38. Aguse N, Qi Y, El-Kebir M. Summarizing the solution space in tumor phylogeny inference by multiple

consensus trees. Bioinformatics. 2019; 35(14):i408–i416. https://doi.org/10.1093/bioinformatics/

btz312. PMID: 31510657

39. Gabow HN, Myers EW. Finding all spanning trees of directed and undirected graphs. SIAM Journal on

Computing. 1978; 7(3):280–287. https://doi.org/10.1137/0207024.

40. Jamal-Hanjani M, Hackshaw A, Ngai Y, Shaw J, Dive C, Quezada S, et al. Tracking genomic cancer

evolution for precision medicine: the lung TRACERx study. PLOS Biology. 2014; 12(7):e1001906.

https://doi.org/10.1371/journal.pbio.1001906. PMID: 25003521

41. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TB, Veeriah S, et al. Tracking the

evolution of non–small-cell lung cancer. New England Journal of Medicine. 2017; 376(22):2109–2121.

https://doi.org/10.1056/NEJMoa1616288

42. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, et al. The evolution-

ary history of lethal metastatic prostate cancer. Nature. 2015; 520(7547):353–357. https://doi.org/10.

1038/nature14347. PMID: 25830880

43. Kuipers J, Jahn K, Raphael BJ, Beerenwinkel N. Single-cell sequencing data reveal widespread recur-

rence and loss of mutational hits in the life histories of tumors. Genome Research. 2017; 27(11):1885–

1894. https://doi.org/10.1101/gr.220707.117. PMID: 29030470

44. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of

genomic evolution and mutational profiles in multiple myeloma. Nature Communications. 2014; 5(1):1–

13. https://doi.org/10.1038/ncomms3997. PMID: 24429703

45. El-Kebir M, Satas G, Oesper L, Raphael BJ. Multi-state perfect phylogeny mixture deconvolution and

applications to cancer sequencing. arXiv preprint arXiv:160402605. 2016. Available from: https://arxiv.

org/abs/1604.02605.

PLOS COMPUTATIONAL BIOLOGY Reconstructing clone trees with SubMARine

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008400 January 19, 2021 27 / 28

https://doi.org/10.1101/cshperspect.a026625
https://doi.org/10.1101/cshperspect.a026625
http://www.ncbi.nlm.nih.gov/pubmed/28270531
https://doi.org/10.1371/journal.pcbi.1003665
http://www.ncbi.nlm.nih.gov/pubmed/25102416
https://doi.org/10.1038/nmeth.2883
http://www.ncbi.nlm.nih.gov/pubmed/24633410
https://doi.org/10.1371/journal.pcbi.1003703
https://doi.org/10.1371/journal.pcbi.1003703
http://www.ncbi.nlm.nih.gov/pubmed/25010360
https://doi.org/10.1016/j.celrep.2014.04.055
http://www.ncbi.nlm.nih.gov/pubmed/24882004
https://doi.org/10.1101/gr.180281.114
http://www.ncbi.nlm.nih.gov/pubmed/25060187
https://doi.org/10.1186/gb-2013-14-7-r80
http://www.ncbi.nlm.nih.gov/pubmed/23895164
https://doi.org/10.1038/s41587-019-0364-z
http://www.ncbi.nlm.nih.gov/pubmed/31919445
https://doi.org/10.1093/bioinformatics/btv003
https://doi.org/10.1093/bioinformatics/btv003
http://www.ncbi.nlm.nih.gov/pubmed/25568283
https://doi.org/10.1186/s13015-019-0155-6
https://doi.org/10.1186/s13015-019-0155-6
http://www.ncbi.nlm.nih.gov/pubmed/31497065
https://doi.org/10.1145/3233547.3233584
https://doi.org/10.1093/bioinformatics/btz312
https://doi.org/10.1093/bioinformatics/btz312
http://www.ncbi.nlm.nih.gov/pubmed/31510657
https://doi.org/10.1137/0207024
https://doi.org/10.1371/journal.pbio.1001906
http://www.ncbi.nlm.nih.gov/pubmed/25003521
https://doi.org/10.1056/NEJMoa1616288
https://doi.org/10.1038/nature14347
https://doi.org/10.1038/nature14347
http://www.ncbi.nlm.nih.gov/pubmed/25830880
https://doi.org/10.1101/gr.220707.117
http://www.ncbi.nlm.nih.gov/pubmed/29030470
https://doi.org/10.1038/ncomms3997
http://www.ncbi.nlm.nih.gov/pubmed/24429703
https://arxiv.org/abs/1604.02605
https://arxiv.org/abs/1604.02605
https://doi.org/10.1371/journal.pcbi.1008400


46. Bafna V, Gusfield D, Lancia G, Yooseph S. Haplotyping as perfect phylogeny: A direct approach. Jour-

nal of Computational Biology. 2003; 10(3-4):323–340. https://doi.org/10.1089/10665270360688048.

PMID: 12935331

47. Eskin E, Halperin E, Karp RM. Efficient reconstruction of haplotype structure via perfect phylogeny.

Journal of Bioinformatics and Computational Biology. 2003; 1(01):1–20. https://doi.org/10.1142/

s0219720003000174. PMID: 15290779

PLOS COMPUTATIONAL BIOLOGY Reconstructing clone trees with SubMARine

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008400 January 19, 2021 28 / 28

https://doi.org/10.1089/10665270360688048
http://www.ncbi.nlm.nih.gov/pubmed/12935331
https://doi.org/10.1142/s0219720003000174
https://doi.org/10.1142/s0219720003000174
http://www.ncbi.nlm.nih.gov/pubmed/15290779
https://doi.org/10.1371/journal.pcbi.1008400

