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Abstract: Metagenomics analysis is now routinely used for clinical diagnosis in several diseases, and
we need confidence in interpreting metagenomics analysis of microbiota. Particularly from the side
of clinical microbiology, we consider that it would be a major milestone to further advance microbiota
studies with an innovative and significant approach consisting of processing steps and quality
assessment for interpreting metagenomics data used for diagnosis. Here, we propose a methodology
for taxon identification and abundance assessment of shotgun sequencing data of microbes that are
well fitted for clinical setup. Processing steps of quality controls have been developed in order (i) to
avoid low-quality reads and sequences, (ii) to optimize abundance thresholds and profiles, (iii) to
combine classifiers and reference databases for best classification of species and abundance profiles
for both prokaryotic and eukaryotic sequences, and (iv) to introduce external positive control. We find
that the best strategy is to use a pipeline composed of a combination of different but complementary
classifiers such as Kraken2/Bracken and Kaiju. Such improved quality assessment will have a major
impact on the robustness of biological and clinical conclusions drawn from metagenomic studies.

Keywords: microbiome; mycobiome; virome; metagenomics; shotgun; Kraken2; Bracken; Kaiju;
quality assessment; clinical microbiology

1. Introduction

The role of the human microbiome in medicine has become of paramount importance,
and this emerging field is rife with opportunities for discovery. The strategy of developing
microbiome/mycobiome-based biomarkers for predicting disease risk is one of the most
promising, particularly during systemic inflammatory diseases, metabolic diseases, and
cancers [1]. Large international research programs and more than 10,000 scientific papers
containing the keyword “microbiome” have been published each year for 5 years. How-
ever, approaches for high-throughput sequencing and analysis of microbiome from various
origins (mainly respiratory, digestive, or urinary tracts and skin) results are increasingly
diverse. First, the goals differ from pathophysiological studies to diagnosis, until the
comparison of human and environmental microbiomes with different matrixes such as
water, air, and surfaces [2]. Second, the methodology also greatly varies with different
technologies (short versus long reads) and multiple sequencing equipment, different ap-
proaches (targeted versus shotgun metagenomics), or different targets (microbiome versus
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mycobiome versus virome [2]. Finally, bioinformatic analysis of millions of sequences
is a key challenge, and the reproducibility of pipelines is essential. Ye and colleagues
published a remarkable paper on the benchmarking of metagenomics tools for taxonomic
classification [3]. Their study examined the performance of 20 metagenomic classifiers
using datasets by comparing the size and growth of reference databases, along with specific
key metrics: precision-recall of the classifiers, abundance profile distances for 20 classi-
fiers, and the computational requirements. Among the DNA classifiers, Kraken and its
derivate tools Bracken, KrakenUniq, and Kraken2 have several advantages. Indeed, they
provide good performance metrics, they are very fast on large numbers of samples once
the database has been loaded, and they allow for the creation and use of custom databases.
Only Bracken is based on a probabilistic approach to generate the final abundance pro-
files. Among the protein-based classifiers, Kaiju is recommended by Ye et al. [3] to access
fast and efficient classification with minimum memory requirements compared to other
classifiers. The development of metagenomic analysis pipelines also includes the recently
published Sunbeam based on Kraken1 and SqueezeMeta, which represents a co-assembly
procedure without filtering [4,5]. Taxonomic classifiers are still burdened by high numbers
of false-positive calls at low abundance. Consequently, it is essential to provide a quality
review process of metagenomics data in order to validate metagenomic pathogen detection
results in clinical laboratories. In a diagnosis setting, clinical microbiologists are usually
very much involved in the different analytical steps such as nucleic acid extraction and
sequencing with standard operating procedures and quality controls. Nevertheless, they
also must be involved in the post-analytical phases of the process, i.e., the validation of all
analytical data, and should build close relationships with bioinformaticians. The ultimate
goal is to provide the whole workflow to accreditation.

Here, we propose a methodology for taxon identification and abundance assessment
of shotgun sequencing data of microbes that are well fitted for clinical setup and routine
use in diagnosis. It uses classifiers highlighted in the paper of Ye et al. [3] and accounts
for limited computing resources, allowing the pipeline to be used on a routine basis in
fast-decision-making processes linked to diagnostic analyses.

2. Materials and Methods
2.1. Dataset and Quality of Reads

We used the simBA525 data set tested by Ye et al. [3]. This dataset contains reads
randomly chosen from 525 bacterial/archaeal species. It is composed of short synthetic
reads generated using ART with default settings [6].

Before filtering and gene mapping, a robust quality review process included the k-
mer analysis of raw metagenome sequence reads. We used the k-mer analysis method
introduced by Onate et al. [7]. Then, we selected Trimmomatic to identify and remove
low-quality sequences and contaminants, as it is recognized as particularly efficient in
various studies [8–10].

2.2. Sensitivity and Specificty

To estimate a good value for a specific abundance threshold, Ye et al. used a precision-
recall curve, where each point represents the precision (specificity) and recall (sensitivity)
scores at a specific abundance threshold [3]. Here, we calculated a cutoff of minimal reads
per species to compare Kraken and Kaiju.

2.3. Databases

Direct taxonomic classification is useful for quantitative community profiling and
identifying organisms with close relatives in the database [11]. Among the 20 classifiers
presented in the paper of Ye et al., only Bracken employs a probabilistic approach to
generate the final abundance profiles [3]. Each classifier tool uses precompiled reference
databases, which can differ widely. Kraken and Kaiju are distributed with precompiled
reference databases similar to RefSeq (completely assembled and annotated reference
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genomes of archaea, bacteria, and viruses from the NCBI RefSeq database). Unlike Kraken,
Kraken Uniq, and Kaiju, Kraken 2 includes additional bacterial databases such as 16S
Greengenes, 16S Silva, and 16S RDP. Eukaryotic RefSeq contains only 191 of 1897 (10%)
fungal genome assemblies. Kaiju was the only classifier that included a fungal database
(fungal sequences from the NCBI RefSeq database) and nr_euk database (as option -s nr
additionally included proteins from fungi and microbial eukaryotes). We added fungal
genomes of medical interest such as Candida parapsilosis GCA_004026285.1, Candida kru-
sei GCA_002166775, Candida tropicalis GCA_002864075, Aspergillus flavus GCF_000006275,
Aspergillus nidulans GCF_000149205, Scedosporium apiospermum GCF_000732125, Scedospo-
rium boydii GCA_002221725, Trichosporon asahii GCF_000293215, and Geotrichum capitatum
GCA_000817185.

Furthermore, plasmid sequences and mobile genetic elements (MGEs) in the RefSeq
database can lead to incorrect taxonomic classification, being a major concern. Those
sequences may be shared with different bacterial species and cannot be used as a discrimi-
natory marker for bacterial taxa. We then modified the database by separating the plasmid
sequences from bacterial RefSeq genomes and re-assigned them to a single taxon for all
plasmid and synthetic vector sequences, as recommended by Doster et al. [12]. Of note, an
additional defect of the Kraken 2 database includes the GRCh38 assembly of the human
genome [13].

2.4. Controls

External positive and negative controls were included in each run. A positive control
was composed of one or more pathogens. Negative controls contained extraction buffer
or blank transport media to identify specimen-to specimen and reagent contamination. If
quantitative values are used to interpret the results, acceptable ranges need to be established
during validation. The L2 distance was defined by Ye et al. as the distance between the
species abundance profile of a positive control compared with the true composition [3].

3. Results

We present the key metrics for quality assessment of Kraken/Bracken and Kaiju
that have a major impact on the robustness of biological and clinical conclusions drawn
from metagenomic studies as a practical algorithm in Figure 1. The processing steps are
as follows.
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3.1. Quality Review of Reads

The abundance of all overlapping k-mers (with k = 4) was first computed for the set
of reads. Then, the distribution of the occurrence of all 256 k-mers was evaluated using
the normalized Shannon entropy (NSE), giving a score between 0 and 1. The NSE for the
simBA525 data set tested by Ye et al. was 0.989746.

3.2. Quality Review of Sequences/Quality Filtering

Trimmomatic includes a variety of processing steps for read trimming and filtering,
but the main algorithmic innovations were related to the identification of adapter sequences
and quality filtering. We used the Trimmomatic default values.

3.3. Precision and Recall Scores across All Abundance Thresholds

To estimate a good value for a specific abundance threshold, we computed the pre-
cision/recall values for all possible thresholds and generated a precision/recall curve
from this data (Figure 2). We observed that when decreasing the threshold, precision first
decreased slowly and then dropped sharply below 500 reads per species. Therefore, we
recommend a cutoff of 500 reads minimum per species.

Figure 2. Precision/recall curves for the classifiers Kraken 2 and Kaiju with the simBA525 dataset
according to Ye et al. in 2019 [3]. Each point in the curves represents the precision and recall score for
a specific read abundance threshold, calculated on a simulated dataset. We observed a sharp decrease
in precision when the threshold was below 500 reads per species, indicating many false-positive
species with low abundance. The figure also shows the cutoff values for recall of 0.8 and 0.95 at 2500
and 10 reads, respectively.

3.4. Databases

Kraken 2 allowed the use of both a standard database and custom databases. The
standard Kraken 2 database contained NCBI taxonomic information, as well as the complete
bacterial, archaeal, and viral genome sequences in RefSeq, the human genome, and a
collection of known vectors (UniVec_Core). Other genomes were also added, but such
genomes have to meet certain requirements, i.e., sequences must be in FASTA format (multi-
FASTA is allowed). When genomes met these requirements, each sequence was added to the
database’s genomic library using the –add-to-library switch. In combination with Kraken 2,
Kaiju was cleverly complete with fungal sequences from the NCBI RefSeq database by
including additional proteins from fungi and microbial eukaryotes as option-s nr.
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3.5. External Controls

An L2 distance of <0.2 with the classifier Kraken2/Bracken/Kaiju proved efficient.

3.6. Consensus Classifier

To summarize, the quality assessment must include an NSE > 0.96, a standard Trim-
momatic quality of filtering, a minimum of 500 reads, databases from Kraken2, Bracken,
Kaiju, specific fungal genomes, and an L2 distance < 0.2 for the external positive control
(Figure 1).

4. Discussion

Deep sequencing or next-generation sequencing is now the standard to reconstruct
microbial communities, including non-cultural microorganisms, and these wide datasets of
taxonomic and functional diversity need robust and qualitative bioinformatic analysis [14].

4.1. Quality Review of Reads

As previously described, Onate et al. showed that the normalized Shannon entropy
(NSE) with a score between 0 and 1 is a good indicator of the diversity and quality of the
metagenomic sample. We thus propose to use the following values to evaluate dataset
quality prior to more extensive bioinformatics analysis: an NSE > 0.96 denotes a good
quality dataset; an NSE < 0.93 denotes a low-quality dataset and an NSE in the range of
(0.93–0.96) is considered as inconclusive.

4.2. Quality Review of Sequences/Quality Filtering

As mentioned earlier, Trimmomatic was shown to produce output that outperforms
the output produced by other tools such as Cutadapt in all scenarios tested [8–10]. The
processing steps determine the quality of reads, divide that value by the read length, check
whether the threshold is reached or not, and eliminate or retain the read. (trimmomatic
version 0.40).

4.3. Precision and Recall Scores across All Abundance Thresholds

One of the biggest performance challenges for many classifiers is that they often report
large numbers of low-abundance false positives, lowering the accuracy. As recommended
by Ye et al. [3], we computed the precision/recall values to find a cutoff of 500 reads
minimum per species.

4.4. Databases

The rapid growth in the number of reference databases represents a fundamental
challenge for the clinical interpretation of the results. This emphasizes the importance of
selecting databases and appropriate methods for interpreting results. The most popular
reference databases are RefSeq complete genomes (RefSeq CG) for microbial species as
well as the BLAST nt and nr databases for high-quality nucleotide and protein sequences,
respectively (50 and 200 million sequences). Other databases include SILVA for 16S rRNA,
with 2 million sequences, and GenBank, with a large number of genomes and lower quality
control standards. The RefSeq database contained all the viral genomes of medical interest
listed by the Society of French Virology (Traité de virologie médicale, Thomas Mourez, Sonia
Burrel, David Boutolleau et al. 2e éd. Paris: Société française de microbiologie; Société
française de virologie, 2019). Current resources for fungal identification were added in
order to improve the database. For all classifiers, it was crucial to add fungal genomes of
medical interest, such as Candida parapsilosis, Candida krusei, Candida tropicalis, Aspergillus
flavus, Aspergillus nidulans, Scedosporium apiospermum, Scedosporium boydii, Trichosporon asahii,
and Geotrichum capitatum. The human genome was included in the default databases of
Kaiju, Kraken, KrakenUniq, and Kraken 2 (GRCh38). Reads mapping of the human genome
were removed after Kraken 2 analysis for accurate quantification of microbial species.
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4.5. External Controls

External positive and negative controls are essential for the accreditation process and
were included in each run. As proposed by Ye et al. [3], an L2 distance defined as the
distance between the species abundance profile of the positive control compared with the
true composition was used and an L2 distance of <0.2 was considered as a good value.

4.6. Consensus Classifier

In this work, our strategy was to propose a complete pipeline of different classifiers
in accordance with Ye et al. but dedicated to clinical microbiology in a routine setting [3].
Our experiments showed that Kraken 2 is generally a more precise classifier than Kaiju
(Figure 1). However, the Kaiju protein database was more complete and allowed more
reads to be classified. Therefore, we built an ensemble classifier as follows: each read was
classified with Kraken 2 results, and as a fallback, reads not classified with Kraken 2 were
classified using results from Kaiju (Figure 1). Sunbeam, by comparison, also provides
an extensible pipeline for analyzing metagenomic sequencing data is based on Kraken 1,
which demands much more computational resources and only refers to databases built
for Kraken v1 [4]. SqueezeMeta is also an interesting metagenomic analysis pipeline with
the characteristics of a co-assembly procedure without filtering but allows detecting only
abundant species [5].

4.7. Potential Limitations

The aim of this work was to describe optimal quality procedures and filtering steps
for a taxonomic classifier pipeline to be used on a routine basis for metagenomic analysis
of clinical data, taking into account both accuracy and cost constraints (compute resource,
process time). This optimized pipeline resulted in a combination of classifiers previously
described by Ye et al. [3] improved with specific quality steps and thresholds to be applied.

While the scope of this work was not to present a new classifier for all types of
datasets, the presented optimized pipeline is a good candidate for additional analyses on
different groups of microorganisms and interlaboratory collaborations to further describe
its sensitivity and specificity.

5. Conclusions

Genome reconstruction of the microbial population is supported by the classification
of individual reads or contigs and the profile of microorganism proportions. With the
increasing demand for metagenomic analysis of microbiota in medical microbiology, it is
crucial to develop tools for rapid and efficient decision-making. This will eventually lead
to a faster turn-around time, improved analytical quality, including sample quality metrics,
and a significant cost reduction. Improved quality assessment has a major impact on the
robustness of biological and clinical conclusions drawn from metagenomic studies. New
developments are ongoing in this fascinating topic of a computational framework for taxo-
nomic classification. As an example, a deep learning-based computational framework for
taxonomic classification called DeepMicrobes avoiding the lack of a well-curated taxonomic
tree is described [15]. Using this new tool, the authors reported potential novel signatures
in inflammatory bowel diseases [16]. Definitely, machine learning approaches for taxo-
nomic classification of metagenomics data will ensure quality improvement of pipelines
for a better understanding of factors affecting microbial communities and functions [16,17].
Then, the following step will be to integrate metagenomics data in an integrative systems
medicine approach also combining metabolomics and transcriptomics to decipher the
pathophysiology of many systemic diseases [18].
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