
Vol. 28 no. 21 2012, pages 2724–2731
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts525

Genome analysis Advance Access publication September 3, 2012

JEnsembl: a version-aware Java API to Ensembl data systems
Trevor Paterson* and Andy Law
Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, Midlothian EH25 9RG, UK

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: The Ensembl Project provides release-specific Perl APIs

for efficient high-level programmatic access to data stored in various

Ensembl database schema. Although Perl scripts are perfectly suited

for processing large volumes of text-based data, Perl is not ideal for

developing large-scale software applications nor embedding in graph-

ical interfaces. The provision of a novel Java API would facilitate

type-safe, modular, object-orientated development of new Bioinfor-

matics tools with which to access, analyse and visualize Ensembl

data.

Results: The JEnsembl API implementation provides basic data re-

trieval and manipulation functionality from the Core, Compara and

Variation databases for all species in Ensembl and EnsemblGenomes

and is a platform for the development of a richer API to Ensembl

datasources. The JEnsembl architecture uses a text-based configur-

ation module to provide evolving, versioned mappings from database

schema to code objects. A single installation of the JEnsembl API can

therefore simultaneously and transparently connect to current and

previous database instances (such as those in the public archive)

thus facilitating better analysis repeatability and allowing ‘through

time’ comparative analyses to be performed.

Availability: Project development, released code libraries, Maven

repository and documentation are hosted at SourceForge (http://jen

sembl.sourceforge.net).

Contact: jensembl-develop@lists.sf.net, andy.law@roslin.ed.ac.uk,

trevor.paterson@roslin.ed.ac.uk

Received on June 12, 2012; revised on August 16, 2012; accepted on

August 20, 2012

1 INTRODUCTION

The Ensembl Project provides a genome information system for

the annotation, analysis and display of genome assembly data

pertaining to vertebrates [ENSEMBL (http://www.ensembl.org)]

and for other taxonomic groups [ENSEMBLGENOMES

(http://www.ensemblgenomes.org)]. Together with core genomic

annotations, the curated resources now include comparative gen-

omic, variation, functional genomic and regulatory data stored

in separate but linked database schemas (Flicek et al., 2010).
Access to data in Ensembl databases is freely provided

through Ensembl’s interactive web browser, the BioMart data

mining tool (http://www.ensembl.org/biomart/martview) and

web services (http://www.biomart.org/martservice.html), publicly

exposed MySQL databases (ensembldb.ensembl.org:5306;

mysql.ebi.ac.uk:4157; ensembldb.ensembl.org:3306) and pro-

grammatically through Perl API modules (http://www.ensembl

.org/info/data/api.html) (Stabenau et al., 2004). The Perl API is

ideally suited to the processing of large volumes of text-based

data and as such is used for the majority of the Ensembl systems’

internal workflows. However, Perl is not an ideal language for

embedding in graphical interfaces.
In contrast, Java provides a robust, object-oriented program-

ming environment and is a preferable language for implementing

large-scale projects, with the benefits of compile time type check-

ing, enforced interfaces, the potential to separate interface from

implementation (allowing for transparent alternative implemen-

tations), multi-threading, better support for graphical user inter-

faces and support for garbage collection of circularly referenced

objects. Java, like Perl, also benefits from a vast resource of

freely available diverse code libraries and development frame-

works and tools, including open source projects in the

Bioinformatics domain.

Previously, Ensembl provided the ENSJ library, a Java API

for data access in Java or Jython (Stabenau et al., 2004). Like the

Perl API, ENSJ intimately embedded data access code (i.e. the

actual SQL statements that access the Ensembl MySQL data-

bases) within the body of code representing the genetic objects.

As a consequence, a new API release had to be generated for

each database schema version (Ensembl release) configured to

connect and retrieve data from its cognate schema, with no back-

wards compatibility guaranteed. As with the Perl API, the dis-

persed nature of the embedded SQL statements meant that

changes required to keep pace with each database release were

spread across multiple files, which was an inefficient process. In

2006, ENSJ was discontinued when the Ensembl team elected to

focus their finite resources on the maintenance of the Perl API

code alone. Since then, despite the growing number of bioinfor-

matic tools being developed in Java, there has been no Java

Ensembl API available.
Other parties have, however, developed several partial APIs to

Ensembl in a number of alternative programming languages,

particularly to support bulk data download. Typically, these

APIs do not directly address the issue of schema versioning,

and many are not actively maintained. Two of the most widely

used such APIs are the Bioconductor R interface to BioMart,

‘biomaRt’ (http://www.bioconductor.org/packages/release/bioc/

html/biomaRt.html), although this is a biomart API rather

than an Ensembl API per se, and the BioGem plug-in ‘ruby-

ensembl-api’ (http://bioruby-annex.rubyforge.org/) which uses

Active Records to abstract over the Ensembl Core Schema.*To whom correspondence should be addressed.

� The Author(s) 2012. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://jensembl.sourceforge.net
http://jensembl.sourceforge.net
http://www.ensembl.org
http://www.ensemblgenomes.org
http://www.ensembl.org/biomart/martview
http://www.biomart.org/martservice.html
http://www.ensembl.org/info/data/api.html
http://www.ensembl.org/info/data/api.html
http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioruby-annex.rubyforge.org/


Although the ActiveRecord design allows the API code to
remain ‘in sync’ with the database schema automatically, no

higher level data model is generated and scripts that run against

a particular release of the Ensembl databases will not run against
other releases if the names of tables or columns have been

changed. Several Python-based APIs that have been made avail-

able have not evolved with schema changes and provide limited

data models [e.g. PyCogent (http://pycogent.sourceforge.net)
(Knight et al., 2007), PyGr (http://code.google.com/p/pygr/

wiki/PygrOnEnsembl), cache-ensembl (http://pypi.python.org/

pypi/cache_ensembl)].
A new, easily maintainable Java-based API to the Ensembl

system would be a timely and highly effective addition to the bio-

informatics toolbox. Such an API would allow integration be-
tween graphical user interfaces and Ensembl datasources and

between other bioinformatic resources and libraries implemented

in Java [for example, the BioJava (http://www.biojava.org)

framework; Holland et al., 2008].
A full Java API to the Ensembl system would replicate all the

data access functionality of the Perl API Core, Compara,
FuncGen and Variation modules and would:

(1) Connect to and extract data from the current release ver-
sion of Ensembl.

(2) Access all instances of Ensembl data systems including

single-species databases at Ensembl and EnsemblGenomes

and the multi-species databases (bacterial collections) at

EnsemblGenomes.

(3) Access data from all database types: Core, FuncGen,
Variation, Compara, etc.

(4) Emit software objects corresponding to the major ob-

ject types within Ensembl including Sequence

Regions, Markers, Alleles, Genes, Exons, Transcripts,

CoordinateSystems and AnnotationFeatures of numerous
kinds.

(5) Map between appropriate CoordinateSystem levels for a

given genome (thus allowing actual DNA sequence data to

be retrieved for features annotated at higher levels, e.g.
genes on chromosomes).

(6) Provide an architecture for updating the API connectivity
and functionality as new versions of Ensembl are released,

while maintaining backwards compatibility with earlier re-

leases (improve on the Perl requirement for version-
specific API releases).

(7) Be compatible with (and build upon) existing open source

Java libraries for bioinformatics where relevant (e.g.

BioJava 3.0).

We report here the implementation of an extendable Ensembl

Java API that demonstrates the tractability of the objectives

above; specifically it provides access to all versions of databases
currently published at Ensembl and EnsemblGenomes. It imple-

ments core functionality for the retrieval of chromosome, gene,

transcript, exon, protein data, etc. from ‘Core’ databases; maps

locations between CoordinateSystems and maps transparently
between database versions where changes in the schema necessi-

tate different SQL statements to extract the same information.

We have also implemented retrieval of SNP variation

information from the ‘Variation’ databases and comparative
homology information from the ‘Compara’ databases.
We demonstrate the potential utility of our Ensembl Java API

by incorporating the JEnsembl libraries in a plug-in created for
the Savant Genome Browser (http://www.savantbrowser.com/)
(Fiume et al., 2010), and in our Genetic Map Drawing applica-

tion ‘ArkMAP’ (http://www.thearkdb.org/arkdb/download.jsp).
These plug-ins demonstrate how third-party developers can use
JEnsembl to access data from Ensembl datasources, allowing

the graphical display and alignment of chromosomal sequences,
variations and exceptions, gene annotations and gene
homologies.

2 IMPLEMENTATION

JEnsembl is implemented in Java version 1.6 following a modu-
lar design pattern using Maven software management. Project
development is hosted on SourceForge where code is available

from the subversion repository (http://jensembl.sourceforge.net/;
https://sourceforge.net/projects/jensembl/). The architecture of
the project is shown schematically in Figure 1. Each of the sep-

arate interdependent modules of the API is built as a Maven
artifact allowing for public distribution via Maven repositories.
Alternatively, the Jar artifacts can be used as standard Java

libraries outwith a Maven build environment. Each module is
coded against full JUnit tests, with an additional module provid-

ing demonstration code and functional tests for data retrieval by
the API from remote datasources. Current release versions of the
libraries are available on the project website and Maven

repository.
The modular design of the JEnsembl artifacts is described

more fully in the online documentation. In brief, the JEnsembl

API defines Java objects corresponding to the various genetic
objects described in the Ensembl datasources (i.e. Chromosomes,
DNASequences, Features, Species, Genes, etc.). These data ob-

jects are created and populated through the data access layer (see
Fig. 1) using MyBatis (http://www.mybatis.org/) as the
RDBMS-to-Java object-mapping tool. A fundamental goal of

the project design was to separate schema version-specific data-
base query code from the data model; this is achieved by parti-
tioning the SQL code and MyBatis data mapping rules into a

hierarchy of XML configuration files in the configuration
module (see Fig. 2). Configurations in the schema.properties file
automate which mapping rules are used for each Ensembl

release-version, allowing the data access code seamlessly to main-
tain correct data mappings as the Ensembl data schema evolves,

while retaining backwards compatibility with earlier schema.
To connect to a datasource (e.g. Ensembl), a DBRegistry

object is instantiated by injecting either a default RegistryConfi-

guration object read from the current ensembl-configmodule or a
RegistryConfiguration generated from locally supplied proper-
ties. The RegistryConfiguration defines the set of MyBatis con-

figuration files to read for each version of the database/schema
identified within the installation. Upon DBRegistry initializa-
tion, the names of available databases at the configured data-

source are parsed using the Ensembl naming conventions and
meta-data tables to identify database-type, species, assembly and
schema release versions. The DBRegistry object can then be

queried for lists of known databases or species, or can return

2725

JEnsembl

http://pycogent.sourceforge.net
http://code.google.com/p/pygr/wiki/PygrOnEnsembl
http://code.google.com/p/pygr/wiki/PygrOnEnsembl
http://pypi.python.org/pypi/cache_ensembl
http://pypi.python.org/pypi/cache_ensembl
http://www.biojava.org/wiki/Main_Page
http://www.savantbrowser.com/
http://www.thearkdb.org/arkdb/download.jsp
http://jensembl.sourceforge.net/
https://sourceforge.net/projects/jensembl/
http://www.mybatis.org/


objects extracted from current or specific releases of named spe-

cies databases.
JEnsembl represents each of the database schema with a hier-

archy of subclasses of the Database class, (CoreDatabase,

ComparisonDatabase, VariationDatabase, etc.). A correctly

typed instance of a Database class is constructed by the

Registry for each species/version/schema database, with each

Database object creating its own instance of a MyBatis

SqlSessionFactory, configured (via the Configuration artifact)

with the correct SQL mapping files for the appropriate schema

type and version. Correctly configured data access is controlled

by DAOFactory objects; an appropriate type of DAOFactory is

created on demand for each Database instance and automatic-

ally configured to use the correct MyBatis mapping rules for its

schema version. The DAOFactory provides the DAO access ob-

jects which perform data queries using MyBatis SqlSessions pro-

vided by their shared DAOFactory. These SQL queries typically

return DatasourceAware objects; each DatasourceAware object

holds a reference to its own DAOFactory, which is used to per-

form lazy loading of data fields and perform queries about

further data relationships. Hence, all access to a particular data-

base is effectively performed through a DAOFactory singleton

(providing the opportunity for implementing data caching).

Databases with schema versions for which configuration de-

tails are not explicitly provided will not be made available by the

Registry, thus avoiding incompatibility with unsupported older

releases or newer releases that post-date the API code and that

have not yet been mapped. New Ensembl releases requiring

changes to SQL code are handled simply by defining a new

mapping configuration. Where no changes are needed, existing

configurations can be reused in a flexible and granular fashion—

new mapping configurations can import existing elements and

only need to replace the individual mapping files that cover the

modified part of the schema. This architecture is illustrated in

Figure 2.
The Ensembl datasources contain not only the actual DNA

sequences of genome assemblies but also annotations of features

on the assembly derived from Ensembl’s own pipeline analyses

and external sources, together with derived relationships between

these features. Core sequence and assembly information together

with gene and transcription annotations are stored in a ‘Core’

schema, while the other (optional) data schema are used to hold

further information about the better studied model species.

Access to data in the other (non-Core) database schema is con-

trolled through the Core DAO Factory, which, for example, can

supply an instance of a DAOVariationFactory for the correct

Fig. 1. JEnsembl architecture. Schematic diagram of the modular

JEnsembl architecture, where schema-versioned MyBatis configurations

in the ensembl-config module are mapped to DatasourceAware objects

using the MyBatis data mapping framework. Connection to external

Ensembl datasources is via the MySQL JDBC connector

Fig. 2. Data mapping between database releases and schema versions.

(A) The configuration file hierarchy in the ensembl-config module. The

ensembldb, ensembldb-archives and ensemblgenomes properties files hold

JDBC connection parameters, while schema_version_mappings specifies

which MyBatis configurations are to be used for each Ensembl release

version. The base Configuration.xml and Database.xml files configure

connection at the datasource level, while release-specific MyBatis map-

pings are held in database type-specific directories: schema/XX/compara,

core, funcgen and variation; rules specified in a Configuration.xml file in

each directory allows a release configuration to use mapping files from

different directories. (B) Abridged listing of schema_version_mappings

properties, showing how the appropriate mappings of database type

and version to MyBatis configuration directories are specified. Core

and Compara mappings were developed for release 57 and are backwards

compatible to release 51. Variation mappings were introduced from ver-

sion 62 and Core mapping rules updated at release 65

2726

T.Paterson and A.Law



species/version Variation Database, with its own correctly con-

figured SQLSessionFactory. This DAOVariationFactory sup-

plies a DAOVariation object, which may be used to retrieve all

the variations for a given chromosomal region. Comparative

genomic data are stored somewhat differently in Ensembl, and

a DAOComparaFactory accesses a single Compara database for

each release of Ensembl, which holds the results of pair-wise

inter-species comparisons (comprising both genomic alignments

and gene family and homology data).
The EnsemblGenomes datasource uses the same (versioned)

schema as Ensembl (which is now focused as a Vertebrate re-

source), but with species organized into five separate taxonomic

groups, each with its own Compara database. Therefore, as with

the Ensembl Perl API, JEnsembl can use the same API for data

access from EnsemblGenomes with the added benefit of version

aware configuration on the fly. However, EnsemblGenomes bac-

terial datasources differ significantly in being organized into

multi-species databases according to phylogeny. Ensembl

adapted their schema to handle multi-species resources, and the

Perl API handles all schema identically (as potentially

multi-species). In JEnsembl, multi-species resources are currently

handled by implementing separate ‘multi-species’ interfaces in

Database and Factory objects. Because the underlying schema

is identical, the multi-species data access architecture could be

used for accessing standard single-species datasources. However,

currently we feel retaining the single-species database paradigm is

simpler for the majority of users and allows for easier represen-

tation of a ‘species’ object, shared between database release

versions.
In order to harness the comprehensive sequence manipulation

features of BioJava libraries, we extended the BioJava 3.0 Core

DNASequence object for the JEnsembl DNASequence object,

providing an Ensembl SequenceReader that can lazy-load se-

quence on demand from the Ensembl datasource. This provides

the JEnsembl Sequence objects with BioJava API behaviour, for

example reading protein sequences from translated transcripts.

Incorporation of third-party open source libraries not only ob-

viates code duplication but also enables interoperability with a

wider range of third-party software.
The JEnsembl release libraries were used to create a novel

plug-in for the Savant Genome Browser (Fiume et al., 2011).

The plug-in source code and binary Jars for different versions

of the browser are also available from the JEnsembl project site

on SourceForge (http://jensembl.sourceforge.net/savant.html).

Our ‘ArkMAP’ map drawing tool has recently been converted

to retrieve chromosome gene annotation data directly from

Ensembl datasources using the JEnsembl API instead of the

BioMart web services, thus allowing ArkMAP to be ‘Version

Aware’ for Ensembl data. JEnsembl-mediated access to

Compara data allows the discovery and alignment of regions

of conserved synteny between species and SNP marker mappings

can be retrieved from Variation datasources.

3 RESULTS AND DISCUSSION

3.1 JEnsembl

The JEnsembl development code, Jar library releases (Maven

artifacts) and documentation including JavaDocs are available

on SourceForge (current release 1.12). Access to an Ensembl
datasource is achieved by initializing a DBRegistry object
either with one of the two configurations provided

(ENSEMBLDB or ENSEMBLGENOMES) or with user-speci-
fied configuration properties that allow connection to alternate
datasources using the Ensembl schema, for example Ensembl

Archives or private, local data resources. Initialization of the
Registry object sorts and registers the available databases at
the selected datasource: their release number, schema type and

species, determining which releases match the schema version
mappings in the current JEnsembl Configuration module.
Thereafter, data from any ‘known’ database type and version

can be interrogated through the Registry. In the absence of spe-
cified type or version number, a query retrieves data by default
from the most recent configured (i.e. ‘known’) version of the

appropriate database type. In addition to providing public
access to the databases, the Registry provides public access to
Species objects by name or alias, suitable for more high-level
usage. Species can then be queried for information about

genes, sequences, etc. without any knowledge of the Ensembl
data structure.
Figure 3 demonstrates example code usage, starting with

Registry initialization and retrieval of a Species object, which is
then used to access data from specified release versions of the
Ensembl datasource. Thus, the current or any earlier release ver-

sion of chicken chromosome 2 (together with all of it annota-
tions) can be retrieved (e.g. release ‘60’ in Fig. 3). This allows
reproducible access to the correct version of data used by histor-

ical analyses and allows comparison of different versions of the
data using a single API code installation. This is illustrated by the
single code snippet shown in Figure 4 where data pertaining to a

single human gene can be retrieved from the current and previ-
ous 17 human core database releases available at the Ensembl
datasource (and for which the JEnsembl API has configured

schema mappings). This allows, for example, the location of
the gene to be compared over time, between Ensembl releases,
assembly builds, patches and changes to the gene model and

permits many other ‘through-time’ analyses of genome assem-
blies to be contemplated. The retrieval of similar multi-release
data using Perl would require multiple, separate, release-specific

versions of the Ensembl Perl API to be installed and involve
complex library path manipulations.
A central concept within the JEnsembl model is a ‘Mapping’:

between source and target ‘MappableObjects’, with source and
target coordinates (start, stop, strand). Mappings allow any of
the Ensembl annotation types to be located on other types (e.g.

genes, exons, variations on chromosomes). When genes are
retrieved from a chromosome, the query returns a set of genes,
each with its own mapping to the chromosome, while the

chromosome is returned with an ordered set of the (inverse)
mappings of genes on the chromosome.
Retrieval of data across the database schema types is achieved

transparently, by loading appropriate DAOFactories, and using
appropriate identifiers shared across the schema. For example,
querying a gene for homologues uses the gene’s stable Ensembl

identifier to query the Compara schema, and the target ‘hits’
retrieved contain enough information to convert them to Core
schema objects if required (target stable id, chromosome name

and coordinates, and target species name). Similarly, queries to

2727

JEnsembl

http://jensembl.sourceforge.net/savant.html


retrieve variants from the Variation database are parameterized

with the Core sequence identifier and desired range coordinate

and return the properties and mapping coordinates of variants

within this range.
The Ensembl pipeline typically annotates features at the high-

est ‘level’ of coordinate systems used in production of the

genome assembly. JEnsembl transparently integrates the varying

levels of coordinate systems (chromosome, supercontig, contig,

clone, etc.) down to the lowest ‘sequence’ level coordinate

system. This is achieved using a hierarchy of interfaces:

DNASequence, AssembledDNASequence and Chromosome.

AssembledDNASequences contain an assembly of DNASe-

quences (which may themselves be AssembledDNASequences)

at a given coordinate system level. Hence, the actual DNA se-

quence for a given chromosome is returned by lazy loading the

assembly mappings and underlying sequence level objects to re-

trieve the range of actual sequences required. The JEnsembl

DNASequence classes are built upon BioJava3 DNASequence

and extend the ProxySequenceReader interface to load, read and

manipulate sequences.

Throughout the JEnsembl development process, Ensembl has

continued to release successive versions of its datasets, with an

evolving data schema. This evolving schema has afforded a chal-

lenging opportunity to demonstrate the effectiveness of

JEnsembl’s transparent version configuration strategy. For ex-

ample, a major change was introduced to the Core schema at

version 51 to allow multiple species to be held within a single

database, with separate coordinate systems being held for each

species. Our code must therefore execute different SQL queries

when retrieving coordinate system information from database

instances before or after this release. Similarly, the merging of

separate stable_id tables with the gene, exon, transcript and

translation tables in Ensembl release 65 requires different SQL

queries to be run post and prior this release. These schema mi-

grations are specified in a hierarchy of MyBatis XML configur-

ations and a properties file specifying which MyBatis

configurations should be used for each schema release (see

Fig. 2). The configuration occurs seamlessly and silently and

requires no user intervention.
The JEnsembl development site details many more example

code files that may be downloaded, and which demonstrate data

access using all of the currently implemented aspects of the API.

These files (found in the Ensembl Test artifact) include the data

access routines used in the Savant and ArkMAP examples below.

Fig. 3. Example usage of JEnsembl Java API (v1.12). The Species ‘ecoli’

retrieved in the final code block is actually a CollectionSpecies because it

is retrieved from the ‘escherichia_shigella_collection_core’ databases.

CollectionSpecies are slightly less reliable access points than normal

Species as there is no guarantee of stable species, strain names and aliases

between releases

Fig. 4. Code illustrating JEnsembl API retrieving chromosomal coordin-

ates for a human gene (Ensembl ID ENSG00000153551) for 18 different

Ensembl Releases currently available at the ENSEMBLDB datasource

(i.e. MySQL databases at ensembldb.ensembl.org:5306). The results re-

flect different coordinates of this gene in assembly builds 36 and 37. The

increase in apparent gene size between release 55 and 56 (highlighted) is

due to the addition of further transcripts to the gene model

2728

T.Paterson and A.Law



3.2 Savant Plug-In

To demonstrate the potential utility of JEnsembl to third-party

developers, we have implemented a Java plug-in Jar for the

Savant Genome. The plug-in allows a Savant user to browse

all of the available species and versions available at Ensembl

and EnsemblGenomes, and to load chromosome assemblies for

display in Savant. These can then be decorated with the gene

annotations for that chromosome build (Fig. 5).
As in our code examples (Fig. 3), the plug-in creates a

DBRegistry object and presents available databases (and subse-

quently chromosomes) to the user as drop down selection lists.

The gene annotation data for the selected genome are retrieved

from gene mappings (for example code, see Fig. 3) and then

passed to the Savant application.

It should be noted that limitations in the Savant API architec-

ture, whereby data must be passed in as a single BED file, pre-

clude some of the capabilities of the JEnsembl code which has

been designed to load sequence details in a ‘lazy’ fashion, i.e.

only when needed. For this reason, importing of actual DNA

sequence data together with the chromosome coordinates is pro-

vided as an optional step and should be avoided for large

chromosomes.

3.3 ArkMAP

ArkMAP is a desktop Java application provided by ArkDB for

drawing genetic maps (i.e. linkage maps, radiation-hybrid maps,

cytogenetic maps, physical maps). It can download and align

mapping data from ArkDB web services and from Ensembl

datasources. It has recently been refactored to use the

JEnsembl API to retrieve mapping data from JEnsembl.

Previously, Ensembl assembly data (e.g. gene location annota-

tions) were retrieved using BioMart web services, which re-

stricted ArkMAP to accessing data in the current Ensembl

release (held in BioMart). However, by using the JEnsembl

API for data access, ArkMAP becomes release-version aware

and data can now be selected for any available Ensembl release.

This is important because it allows work performed using previ-

ous assemblies to be compared with the current genome assem-

bly. This is illustrated in Figure 6: an ArkDB map created using

the bovine assembly data of Ensembl release 54 can be aligned

with gene annotation data from the appropriate Ensembl release,

which can in turn be aligned with the most recent assembly re-

lease. The JEnsembl API allows additional data exploration: for

example the discovery of gene homologies and the identification

and alignment of regions of conserved synteny between species

(as shown in Fig. 6) or the retrieval of the coordinates of SNP

Markers (e.g. dbSNP markers).

3.4 Scripting with the JEnsembl API

The comprehensive Ensembl Perl API is widely used for data

access and manipulation by bioinformaticians and Perl is an

ideal scripting language for bulk sequence manipulation.

However, as further functionality is implemented in JEnsembl,

Fig. 5. JEnsembl plug-in for Savant genome browser. (A) The user selects the desired species and release version from those available at the selected

datasource (Ensembl, EnsemblGenomes or EnsemblGenomes-Bacterial). (B) A single chromosome/assembly is selected from those available for the

chosen species/release. The chromosome is imported either as a simple coordinate skeleton or with the associated colour-coded genomic sequence.

Currently, the only feature annotation that can be imported from the datasource is the gene track, which Savant shows aligned with the DNA Sequence

2729

JEnsembl



there is greater potential for using Java scripts for data manipu-

lation, a task aided by the use of powerful Java IDE tools such as

Netbeans and Eclipse for writing code. Example data access

scripts can be found in the Ensembl Test artifact described

above and are available on the project website. Use of

JEnsembl has both validated the API and driven implementation

of new features as required. For example, retrieval of variation

data from the Variation schema databases was introduced to sup-

port a script that outputs SNPs within a given proximity to an

annotated gene, while the requirement for a mechanism to re-

trieve pseudoautosomal sequences was exposed by scripts which

were failing to locate sequence features on the human Y

chromosome.

4 CONCLUSIONS

The majority of bioinformatic processing of genome information

has traditionally been performed using Perl scripting, and the

Ensembl Perl API is a fundamental tool for bioinformatic ana-

lysis. However, Java developers of bioinformatics tools, particu-

larly graphical display interfaces, have been restricted by the lack

of a generic Java API for accessing Ensembl data. In its absence,

they have been forced to develop ad hoc solutions and data

models for importing and representing genome data from

Ensembl either directly accessing the raw MySQL datasources

(which have an extremely complex data model) or retrieving data

from Web Service calls to Ensembl BioMart and converting the

raw data to the user’s own genetic data model. All of these

methods are fragile to a lesser or greater degree and thus repre-

sent ‘workarounds’ rather than ‘solutions’. The provision of this

Java API to Ensembl thus represents a valuable new resource for

the expanding Java bioinformatics community.
Our current release version of JEnsembl demonstrates how we

believe certain key aspects of a Java API should be addressed, in

particular schema versioning and interoperability with other

available Java libraries. It provides the framework on which to

build a fully functional, open source implementation of a Java

Ensembl API equivalent in functionality to the Perl API main-

tained by the Ensembl team. The project is hosted on

SourceForge where we hope it will develop as a collaborative

project similar to the BioJava code base and as such we call

for and welcome expressions of interest from other developers.

ACKNOWLEDGEMENTS

We wish to thank the numerous BioJava3 developers for helpful

discussions during the early stages of this project and the

Ensembl development teams for helpful information and

feedback.

Fig. 6. The ArkMAP application uses JEnsembl for retrieving maps and homologies from Ensembl datasources. ArkMAP can be used to draw genetic

maps loaded from ArkDB, Ensembl or local datasources. Here the first 8Mb of a bovine ePCR map has been loaded from ArkDB, where Ark Markers

have been mapped on the Btau4 assembly. The JEnsembl API was then used to retrieve and align the cognate gene-annotated chromosome 1 assembly

from Ensembl release 54. JEnsembl was then used to retrieve a more recent (release 66) gene annotated assembly which is aligned to the old assembly.

Finally, JEnsembl was used to search for human gene homologies with the bovine genes in this region, and the region of conserved synteny on human

chromosome 21 aligned with the bovine chromosome (with colour-coded homology relationships)

2730

T.Paterson and A.Law



Funding: Supported by Institute Strategic Grant funding from
the Biotechnology and Biological Sciences Research Council.

Conflict of Interest: none declared.

REFERENCES

Fiume,M. et al. (2010) Savant: genome browser for high-throughput sequencing

data. Bioinformatics, 26, 1938–1944.

Flicek,P. et al. (2008) Ensembl’s 10th year, 2010. Nucleic Acids Res., 38 (Suppl. 1),

D557–D562.

Holland,R.C.G. et al. (2008) BioJava: an Open-Source Framework for

Bioinformatics. Bioinformatics, 24, 2096–2097.

Knight,R. et al. (2007) PyCogent: a toolkit for making sense from sequence. Genome

Biol., 8, R171.

Stabenau,A. et al. (2004) The Ensembl core software libraries. Genome Res., 14,

929–933.

Strozzi,F. and Aerts,J.A. (2011) A Ruby API to query the Ensembl database for

genomic features. Bioinformatics, 27, 1013–1014.

2731

JEnsembl


