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Atomic multipole moments associated with a spherical volume

fully residing within a topological atom (i.e., the b sphere) can be

obtained analytically. Such an integration is thus free of quadra-

ture grids. A general formula for an arbitrary rank spherical har-

monic multipole moment is derived, for an electron density

comprising Gaussian primitives of arbitrary angular momentum.

The closed expressions derived here are also sufficient to calculate

the electrostatic potential, the two types of kinetic energy, as well

as the potential energy between atoms. Some integrals have not

been solved explicitly before but through recursion and substitu-

tion are broken down to more elementary listed integrals. The

proposed method is based on a central formula that shifts Gauss-

ian primitives from one center to another, which can be derived

from the well-known plane-wave expansion (or Rayleigh equa-

tion). VC 2018 The Authors. Journal of Computational Chemistry
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Introduction

Quantum chemical topology (QCT),[1] pioneered[2] by the

research group of the late Richard Bader, has carved out a

space among non-topological methods in extracting insight

from wave functions, both in chemistry (including metal-metal

interactions[3]) and solid state physics (including high-

resolution X-ray crystallography[4]). This imaginative approach

started, in quantum chemistry, as (the Quantum Theory of )

Atoms in Molecules[5] (QT)(AIM) in the early 1970s. After

adopting the mathematical language of dynamical systems

with an eye on analyzing the electron density, QTAIM pro-

posed a parameter-free definition of an atom and a chemical

bond (the latter continuing to be a topic of contemporary

research). The concepts of dynamical systems (e.g., separatrix,

critical point, basin, gradient path) have been applied with

success to quantum mechanical density functions, other than

the electron density, such as the Laplacian of the electron den-

sity, the nuclear potential, the electron localization function,

the electron localizability indicator, the virial field, to name a

few (references and more details see both the Introduction

and Box 8.1 in Ref. [6]). A detailed history of QTAIM and its

QCT follow up has been given elsewhere.[6–8]

Although sometimes still mistaken[9] for yet another popula-

tion analysis, QTAIM offers a good number of important atomic

properties other than an atomic charge, which all derive from a

single universal formula. This formula is the 3D integration of a

relevant integrand over the volume of the topological atom, and

can yield atomic (kinetic) energy, volume, electrostatic potential,

and multipole moments, to name a few common ones. The exis-

tence of a single formula that delivers atomic properties in a

consistent way should at least be emphasized and perhaps even

celebrated. Indeed, this is not true for other methods: for exam-

ple, there is no Mulliken volume or Hirshfeld volume; similarly,

there is no van der Waals charge (as opposed to volume or

radius). Better controlling the atomic integration over a spherical

volume that resides completely within a topological atom (see

below) is a sign of progress.

An important development within the QCT framework is

that of an energy partitioning method called interacting quan-

tum atoms (IQA),[10] which is based on earlier work.[11] In spite

of its great computational cost, IQA is increasingly applied to

a wide variety of chemical phenomena, non-exhaustively rang-

ing from hydrogen bond cooperativity[12] over metal carbonyl

bonds,[13] halogen bonds,[14] Zn-complexes,[15] excited

states,[16] and congested molecules,[17] to torsional energy bar-

riers in peptides.[18] IQA hereby avoids the pitfalls,[19] both

conceptual and numerical, of older non-topological energy

partitioning schemes such as EDA and SAPT. The surge of IQA

has been made possible by improved algorithms (e.g., paralle-

lization and parameter fine-tuning) such as those found in the

program[20] AIMAll.

Still, the computational challenge of the topological parti-

tioning remains, compared to cheaper non-topological meth-

ods. This is why research that improves algorithms to

integrate topological atoms should continue. This article

focuses on the elimination of integration quadrature, but only

inside the so-called b sphere,[21] which is the largest sphere

that is completely contained within the topological atom at

whose nucleus it is centered. In practice, the b sphere is just a
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sphere with an adequately large radius, typically �90% of the

distance between the nucleus and the nearest bond critical

point. Numerical volume integration over the whole topologi-

cal atom does not require a b sphere, in principle. Indeed, the

radial quadrature can be performed by a single interval

stretching from the nucleus to the edge of the atom. However,

the very high values of electron density near the nucleus

make it numerically advantageous to keep the b sphere, and

to work with two radial integration intervals, one inside the b
sphere and one outside, each with its own quadrature grid.

Heavy elements (fourth period and beyond) benefit from even

more than two radial integration intervals. In 2011, a fully ana-

lytical 3D volume integration over the b-sphere was achieved

for the first time.[22] Here, we propose an alternative analytical

integration, which not only avoids the tedious axes rotations

occurring in the former integration procedure but also gener-

alizes much better to arbitrary multipole moments, and ena-

bles controlled elimination of Gaussian primitive functions far

from the nucleus of the atom being integrated.

The Introduction to the 2011 paper contains a very detailed

and rather exhaustive history at the time of topological integra-

tion algorithms, which will not be repeated here. Instead, we

expeditiously review the literature, now extending it with the

period 2012–2017, and starting with the first integrations over

topological atoms, carried out[23] already in 1973 but for linear

molecules only. In 1981, the first computer program called

OMEGA[21] enabled the integration of topological atoms in any

polyatomic molecule, followed by a completely different pro-

gram[24] a year later, called PROAIM. The Bader group gathered

these programs, together with critical point location software,

into the AIMPAC suite. With the help of collaborators, the main

author of the atomic integration code, mathematician Biegler-

K€onig, resurrected and perfected[25–27] his effort of the 1980s,

leading to the AIM2000 code. Meanwhile, in the 1990s, the pro-

gram MORPHY[28] appeared as the first integration code[29] writ-

ten independently from the AIMPAC suite. MORPHY, also for the

first time combined all AIMPAC functionality into a single pro-

gram. In 1997, AIMAll emerged from an extensive AIMPAC modifi-

cation, and is now a popular and fast QCT code. Independent

code, also developed[30] in the 1990s, was implemented in the

program GAUSSIAN but later withdrawn from it. In 1997, a

research group in Oviedo (Spain, USE) created an independently

written topological code called CRITIC,[31] which is devoted to

solid state systems, and later honed it to CRITIC2.[32] In the early

2000s, they also wrote PROMOLDEN, a code specialized in molec-

ular rather than solid state electron densities, and focusing on

IQA. The QTREE method was also invented[33] in Oviedo, and was

based on the OCTREE algorithm[34] proposed eight years earlier.

The Electron Localization Function, a popular QCT tool[35] to

extract chemical information from wave functions, triggered the

independent development of the topological code TopMoD.[36]

Gatti’s TOPOND code[37] determines the topology of an analyti-

cally expressed Hartree-Fock or DFT wavefunction obtained by

the program CRYSTAL.[38] The high-resolution X-ray crystallogra-

phy community also created its own algorithms early on such as

that of TOPXD,[39] NEWPROP,[40] or WINXPRO.[41] However, a topo-

logical analysis can also be carried out using grids,[42,43] such as

the InteGriTy package.[44] Grid methods are also applied in the

context of computed electron densities.[45–47] Two more algo-

rithms are based on different principles, such as the “elastic

sheet” method[48] and a finite element method.[49] In contrast,

recent developments[50,51] turned back to the original triangula-

tion method of Biegler-K€onig. Meanwhile, in the 2010s, the Chi-

nese program Multiwfn[52] (multifunctional wavefunction

analyzer) emerged from a fast catch-up exercise consisting of

rewriting a large collection of pre-existing algorithms developed

over years by other groups. Multiwfn has an impressive function-

ality, encompassing both topological and non-topological meth-

ods, but encourages crude parameter settings, and typically

implements the simplest (i.e., mathematically elementary)

algorithms.

In this article, we focus on the involved mathematics of deriv-

ing closed formulae for the b sphere’s contribution to atomic

multipole moments of arbitrary spherical harmonic rank, the two

types of kinetic energy (K and G), the electrostatic potential and

the potential energy between topological atoms. To keep the

Method Section to the point, much material has been siphoned

off to the Supporting Information. Due to the mathematical

complexity of the analytical approach, the strategy and all details

are reported in this article, while an implementation will follow

in a future software-oriented publication.

Method

Imagine a sphere with a given radius b, centered at a given

nuclear position. In the context of topological atoms, this sphere

is called the b sphere. This is the largest sphere that completely

fits within a topological atom. Whichever the shape of this

atom’s interatomic surfaces, b must be smaller than the distance

between the nucleus and the closest-by bond critical point.

The first aim is to calculate, by analytical integration, the

atomic multipole moments QLM associated with the volume of

the b sphere only. The integrand of the integral leading to

QLM(b) is the product of the electron density q and a regular

spherical harmonic RL,M centered on the center of atomic inte-

gration with position vector Ri,

QLMðbÞ5
ð

b sphere

dr qðrÞ RL;Mðr2RiÞ (1)

where the radius b acts as a parameter and where the regular

spherical (or solid) harmonic RL,M is defined by eq. (2),

RL;Mðr; h;uÞ5
ffiffiffiffiffiffiffiffiffiffiffi

4p
2L11

r
rLYL;Mðh;uÞ (2)

Here r, h, and u represent spherical coordinates centered on

Ri, which typically is the nucleus of (topological) atom X and

YL,M represents a spherical harmonic, defined using the so-

called “quantum mechanics convention” and including the

Condon-Shortley factor.

Three comments are in order here. First, the uppercase indi-

ces L and M should not be confused with the lowercase indi-

ces ‘ and m, which will appear in formulae below. The regular
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spherical harmonics share their mathematical shape with the

familiar s, p, d, f orbitals, or orbitals of higher rank. Second, eq.

(2) defines the RL,M functions as complex (for details see Part A

in the Supporting Information). It is best to work with complex

RL,M functions during a derivation and, if necessary, convert

them to real functions only at the end. Third, there is a local

frame centered on a given nucleus, which determines the ori-

entation of RLM in space. This local frame is parallel to the

global frame, which renders the local and global frames identi-

cal but for a translation. Earlier work[22] shows that one can

make the nuclear position of the b sphere coincide with the

origin of the global frame, without loss of generality.

The electron density appearing in eq. (1) is expanded in

Gaussian primitives (denoted G(r – R)) of arbitrary angular

momentum and centered at position R,

qðrÞ5
XnMO

p51

npw
2
pðrÞ5

XnMO

i51

np

XnG

j51

cjpGjðr2RjÞ
 ! XnG

k51

ckpGkðr2RkÞ
 !

5
XnMO

p51

XnG

j51

XnG

k51

npckpcjpGjðr2RjÞGkðr2RkÞ

(3)

where nMO signifies the number of molecular orbitals, nG is the

number of Gaussian primitives used to expand each MO in,

and c are the LCAO coefficients, which include the normaliza-

tion factors of the Gaussian primitives. This notation makes

clear that a Gaussian primitive is centered on either nuclear

position Rj or Rk. Note that Rj may or may not coincide with

the center of atomic integration Ri. The same is true for Rk,

independently of whether Rj coincides with Ri.

A brief digression points out that, in a quadrature scheme, it

is possible to evaluate a molecular orbital on its own, as part

of the integration procedure calculating the integral of eq. (1).

However, in an analytical integration, one cannot do this and

one must instead consider the whole electron density in the

integrand in eq. (1). This point is elaborated in Appendix A of

the Supporting Information of Ref. [22].

Using the Gaussian product theorem, the product of any two

Gaussians centered on Rj and Rk can be written as a single

Gaussian, centered on Rjk. Ignoring the angular part of the

Gaussian primitives, the product theorem is formally written as

Gjðr2RjÞGkðr2RkÞ5exp ð2ajjr2Rjj2Þexp ð2akjr2Rkj2Þ
5Kjkexp ð2ajkjr2Rjkj2Þ5Gjkðr2RjkÞ

(4)

The new Gaussian exponent ajk, the new center Rjk and prefac-

tor Kjk are also easily calculated,

ajk 5aj 1ak; Rjk5
ajRj1ak Rk

aj1ak
; Kjk5exp 2

ajak

aj1ak
jRj2Rkj2

� �
(5)

Substitution of eq. (3) into eq. (1) leads to eq. (6),

QLMðbÞ5
XnMO

p51

np

XnG

j51

XnG

k51

ckpcjp

ð
b

dr RL;Mðr2RiÞGjkðr2RjkÞ (6)

The integration problem is then confined to the contribu-

tion from a single Gaussian to a given multipole moment and

denoted QLM, jk(b), which is centered on a site that is, in princi-

ple, different to the site Rj at which the multipole moment is

centered,

QLM;jkðbÞ5
ð
b

dr RL;Mðr2RiÞGjkðr2RjkÞ (7)

Without loss of generality one can position the atomic integra-

tion center Ri at the global origin, which is equivalent to trans-

late the whole relative configuration of vectors r, Rj, Rk, and

Rjk to the global origin.

Figure 1 illustrates all vectors introduced so far, and how

they relate to one another geometrically, for an arbitrary

pair of Gaussian primitives centered on Rj and Rk, and

contributing to the atomic integral calculated in eq. (7).

Figure 1 illustrates the case of two Gaussian p-type primi-

tives, py and pz, making a contribution to q(r) and hence to

QLM.

For the general product of two Gaussian primitives of arbi-

trary angular momentum, eq. (7) becomes

QLM;jkðbÞ5 Kjk

ð
b

dr RL;MðrÞ exp ð2ajkjr2Rjkj2Þðx2XjÞ
�l j ðy2YjÞ �m j

ðz2ZjÞ�nj ðx2XkÞ
�l k ðy2YkÞ �m k ðz2ZkÞ�n k

(8)

where the indices l, j, and k with superscript bars mark the

angular momenta. One can use the binomial expression to

work out each of the three products in eq. (8), one product in

x, one in y and one in z. For example, focusing on x only, one

obtains eq. (9),

Figure 1. Schematic representation of the vectors involved in eqs. (3), (6),

and (7). The atom to be integrated is centered at the origin o of the global

frame, which provides coordinates for all vectors involved. Two arbitrary

Gaussian primitives, a py and a pz function, are respectively centered at Rj

and Rk. The product of these Gaussian primitives is centered at Rjk. The

position vector r describes the electron density contributing to the atomic

(volume) integral. The angle c is pivotal in the separation of the variables.

[Color figure can be viewed at wileyonlinelibrary.com]
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ðx2XjÞ
�l j ðx2XkÞ

�l k 5
XNk

k50

fkxðXj; XkÞxk (9)

where the function fkx provides the coefficients corresponding

to the power k 5 r 1 s in x, which parametrically depend on

the position of the centers (Xj, Xk) of the Gaussian primitives

and their angular momenta (the various powers of Xj and Xk).

We can then deduce from eq. (9) the two lowest powers of k
(0 and 1),

f0xðXj; XkÞ5ð2XjÞ
�l j ð2XkÞ

�l k

f1xðXj; XkÞ5�lkð2XjÞ
�l j ð2XkÞ

�l k 21
1�l jð2XjÞ

�l j21ð2XkÞ
�l k

(10)

while Part B of the Supporting Information explicitly lists f2x and

f3x. The functions fn are polynomials in the components of the

position vectors Rj and Rk, which are expressed with respect to

the global axis system (which is translated to the center of inte-

gration, for each atom in turn, as discussed above).

Equation (8) can then be rearranged as

QLM;jkðbÞ5 Kjk

ð
b

dr RL;MðrÞ exp ð2ajkjr2Rjkj2Þ
X
k50

fkxðXj; XkÞxk

 ! X
l50

flyðYj; YkÞyl

 ! X
m50

fmzðZj; ZkÞzm

 !

5Kjk

X
k50

X
l50

X
m50

fkx fly fmz

ð
b

dr RLMðrÞ exp ð2ajkjr2Rjkj2Þxkylzm

(11)

where k is the integer power of the coordinate x, l that of y,

and m that of z. Part B of the Supporting Information also

applies eqs. (11) and (10) to the specific case illustrated in Fig-

ure 1, which shows two different p-type Gaussian primitives

(py and pz) contributing to QLM, jk.

To work out eq. (11) analytically, we recognize that RLM and

the product Gaussian Gjk have a different origin: the former is

centered at the global origin o while the latter is centered at

Rjk. The integral of eq. (11) is naturally carried out in spherical

coordinates centered at o because the electron density is

essentially spherical, even for an atom inside a molecule. In

other words, the deviations from sphericity are too small to

abandon spherical coordinates in favor of alternative but inap-

propriate coordinates, such as Cartesian coordinates. The chal-

lenge is therefore to re-express Gjk in terms of spherical

coordinates centered at o. This can be achieved using a key

equation proposed before,[53]

exp ðr1•r2Þ5
X1
‘50

ð2‘11Þ i‘ðr1r2ÞP‘ðcos cÞ (12)

where i‘(z) is the modified spherical Bessel function of integer

order ‘, and r1 and r2 are the respective magnitudes of vector

r1 and r2, while P‘ is the Legendre function of order ‘ and c is

the angle between these two vectors. Six remarks are in order

here. First, eq. (12) can be derived from the well-known plane-

wave expansion (or Rayleigh equation) as demonstrated in

Part C of the Supporting Information. Second, no convergence

condition accompanying this series expansion is reported.

Third, the sum over ‘ needs to be truncated to a finite integer,

which offers an opportunity to make the integral evaluation

(see below) more efficient. Fourth, on application in the cur-

rent context, which vector is r1 and which is r2 is not impor-

tant because eq. (12) remains valid if these vectors are

swapped. Fifth, the expansion of eq. (12) is pointless if either

r1 or r2 vanishes. In that case, we trivially recover that 1 5 1.

Indeed, the only surviving term in the sum is that of ‘5 0,

and i0(0) 5 1 and P0(x) 5 1 (even when c is indeterminate, as is

the case here, with an undefined angle c resulting between a

null vector and non-null vector). Sixth and finally, the argu-

ment of an exponential function must be dimensionless and

hence, if r1 has the dimension of length then r2 must have

the dimension of reciprocal length, which is the case if it were

a wave factor (as indeed it is in the Rayleigh equation).

To make use of eq. (12), the exponential function’s argument

in eq. (11) needs to be rewritten. This is done in eq. (13),

exp ð2ajkjr2Rjkj2Þ5exp 2ajkðr21R2
jkÞ

� �
exp ð2ajkRjk•rÞ (13)

such that eq. (12) applies to the second factor on the right-

hand side of eq. (13), setting r1 5 2ajkRjk and r2 5 r where

|Rjk| 5 Rjk and |r| 5 r. In terms of dimensionality (see 6th remark

just above), the dimension of a is reciprocal length squared,

and hence, the argument of the exponential in eq. (13) is

again dimensionless. Substitution of eqs. (12) and (13) into eq.

(11), and dropping the by now tedious indices j and k, one

obtains eq. (14),

QLMðbÞ5Kexp ð2aR2Þ
X
k50

X
l50

X
m50

fkx fly fmz

ð
b

dr RLMðrÞ

exp ð2ar2Þ
X1
‘50

ð2‘11Þi‘ð2aRrÞP‘ðcos cÞ xkylzm

(14)

Two remarks must be made. If either R 5 0 (center of product

Gaussian coincides with the center of integration) or r 5 0

(lower boundary of volume integration), then the expansion of

eq. (12) becomes trivial but it still holds. From the latter state-

ment, it follows that there is no need to treat the case of

R 5 0 separately, at least at this stage. Later in the derivation a

further comment on R 5 0 will be needed. In summary,

although the case of R 5 0 can be solved directly using spheri-

cal coordinates centered on the global origin in eq. (11) we

proceed anyway with the expansion that is eq. (12). Second,
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the quantities R, K, a, and f in eq. (14) are parameters, depending

on the fixed characteristics of the product Gaussian. The volume

integral in eq. (14) is best described via spherical coordinates,

denoted r, h, and u, and centered at the global origin o (see Fig.

1). The quantity c is the angle between r and R and hence is a

mixture of a parameter (R) and a variable (r). We aim to separate

all variables from parameters, so the Pl(cos c) factor needs to be

expanded. The well-known addition theorem involving two

spherical harmonics, given in eq. (15), achieves this aim,

P‘ðcos cÞ5 4p
2‘11

X‘
m52‘

Y‘;m
�ðh;uÞY‘;mðhR;uRÞ (15)

where vectors r and R are, respectively, described by spherical

coordinates (r, h, u) and (R, hR, uR), which are both centered

on o. The choice as to which variables describe the complex

conjugate spherical harmonic is steered by the application of

an advantageous orthonormalization relationship discussed

below, the special case where k 5 m 5 l 5 0. Substituting eq.

(15) into eq. (14), and rearranging delivers

QLMðbÞ54pKexp ð2aR2Þ
X
k50

X
l50

X
m50

fkx fly fmz

ð
b

dr RLMðrÞ

exp ð2ar2Þ
X1
‘50

i‘ð2aRrÞ
X‘

m52‘

Y‘;m
�ðh;uÞY‘;mðhR;uRÞ xkylzm

(16)

Substituting eq. (2) into eq. (16) and making integration varia-

bles explicit yields,

QLMðbÞ5 4p

ffiffiffiffiffiffiffiffiffiffiffi
4p

2L11

r
Kexp ð2aR2Þ

X
k50

X
l50

X
m50

fkx fly fmz

3

ð2p

0

ðp
0

ðb
0

drdhdu r2sin h rLYL;Mðh;uÞexp ð2ar2Þ
X1
‘50

i‘ð2aRrÞ
X‘

m52‘

Y‘;m
�ðh;uÞY‘;mðhR;uRÞðrsin hcos uÞkðrsin hsin uÞlðrcos hÞm

(17)

Further rearrangement yields the following master equation, eq. (18),

QLMðbÞ5

ffiffiffiffiffiffiffiffiffiffiffi
ð4pÞ3

2L11

s
Kexp ð2aR2Þ

X
k50

X
l50

X
m50

fkx fly fmz

3
X1
‘50

ðb
0

dr rk1l1m1L12exp ð2ar2Þ i‘ð2aRrÞ
X‘

m52‘

Y‘;mðhR;uRÞ
ð2p

0

ðp
0

dhdu Y‘;m
�ðh;uÞYL;Mðh;uÞsin k1l11hcos mhsin lucos ku

(18)

In the special case where k 5 m 5 l 5 0, the angular integra-

tion in eq. (18) has been prepared for the use of the ortho-

normalization relationship announced above,

ðp
0

ð2p

0

dh dusin h Y�‘0;m0 ðh;uÞ Y‘;mðh;uÞ5 d‘‘0dmm0 (19)

such that eq. (18) becomes

QLMðbÞ5

ffiffiffiffiffiffiffiffiffiffiffi
ð4pÞ3

2L11

s
Kexp ð2aR2Þ

X1
‘50

ðb
0

dr rL12exp ð2ar2Þ i‘ð2aRrÞ
X‘

m52‘

Y‘;mðhR;uRÞ d‘LdmM

5

ffiffiffiffiffiffiffiffiffiffiffi
ð4pÞ3

2L11

s
Kexp ð2aR2Þ YL;MðhR;uRÞ

ðb
0

dr rL12exp ð2ar2Þ iLð2aRrÞ

(20)

This pleasing result shows that there is no need to evalu-

ate any angular integrals in the case of only s-like Gaussian

primitives contributing to QLM(b). Second, the multipole

moment QLM(b) is simply proportional to the value of

YL,M(hR, /R). Note that this multipole moment QLM(b) can be

a complex number because YL,M can be complex and the

other factors in eq. (20) are real. Third, the contribution of a

given Gaussian primitive drops off quickly with the distance

of its center from the origin o. The radial integral in eq. (20),

at any order L, can be reduced to a linear combination of

the basic integral of an exponential with quadratic argu-

ment. An efficient implementation to any order L is possible

through a recursion relation for modified spherical Bessel

functions.

We now return to the master equation, eq. (18), which

presents a radial and a double angular integral to be

solved. The radial integral is tackled first, and can be written

as
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Iradð‘; S ; a;b; pÞ5
ðb
0

dr rk1l1m1L12exp ð2ar2Þ i‘ð2aRrÞ

5

ðb
0

dr rSexp ð2ar2Þ i‘ðprÞ

(21)

where p 5 2aR and S 5 k 1 l 1 t 1 L 1 2 simplify the notation

of the integral. This integral does not appear to have been

solved based on ready inspection of published solved inte-

grals. Therefore, the integral had to be creatively reduced to

known integrals. The explicit derivation and validation has

been siphoned off to Part D in the Supporting Information,

but we quote the final result here,

I6f ðsÞ5
ðb
0

dr rsexp ð2ar26prÞ5exp
p2

4a

� �Xs

k50

s

k

 !
6 p

2a

� �s2k

2a
k11

2ð Þ

C
k11

2
; að7p=2aÞ2

� �
2C

k11

2
; a b7ðp=2aÞ½ �2

� �	 

(22)

where C(a,x) is the upper incomplete gamma function (or of

the second kind). Part D of the Supporting Information

shows how this solved integral cascades up, via a recursive

relation, to the solution of Iradð‘; S ; a;b; pÞ. Note that if a is

an integer then C(a,x) returns essentially an exponential,

while if a is a half-integer then the error function emerges.

Also note that the 7 sign must be explicitly preserved

when taking the square, because if a square root is taken of

this square product it is important that the original sign is

preserved.

The second sizeable task in solving the master integral

in eq. (18) focuses on IangðL;M; l;m; k; l; mÞ, the angular part

counterpart of the radial integral Iradð‘; S ; a;b; pÞ. To

shorten this article even more, the explicit derivation and

validation has been siphoned off to Part E in the Support-

ing Information. This derivation solves the angular integral

analytically, splitting it into an integral in h and one in u,

that is,

IangðL;M; l;m; k; l; mÞ5
ð2p

0

ðp
0

dhdu Y‘;m
�ðh;uÞYL;Mðh;uÞsin k1l11h cos mh sin lu cos ku

5
ð2‘11Þ

4p
ð‘2mÞ!
ð‘1mÞ!

	 
1=2 ð2L11Þ
4p

ðL2MÞ!
ðL1MÞ!

	 
1=2ðp
0

dh Pm
‘ ðcos hÞPM

L ðcos hÞsin k1l11h cos mh
ð2p

0

du eiðM2mÞusin lu cos ku

5
ð2‘11Þ

4p
ð‘2mÞ!
ð‘1mÞ!

	 
1=2 ð2L11Þ
4p

ðL2MÞ!
ðL1MÞ!

	 
1=2

IhðL;M; l;m; k;l; mÞIuðM;m; k;lÞ

(23)

The result for the integral in u is

IuðM;m; k;lÞ5 p

2k1l21
ð2iÞl

Xl

k50

ð21Þl2k
l

k

 ! k
1

2
ðk1l1m2MÞ2k

0
@

1
A if k1l1jm2Mj is even (24)

It is very important to realize that Iu vanishes if

m> k 1 l 1 M.

In the calculation of h, it proved crucial to use a finite

expansion of the associated Legendre polynomials in terms of

cosines and sines, to obtain a closed and more importantly,

universal expression, which is

IhðL;M; l;m; k;l; mÞ5 2
1

2

� �m1M

ð‘1mÞ!ðL1MÞ!
X‘2m

2

	 


j50

XL2M

2

	 


k50

2
1

4

� �j1k 1

ð‘2m22jÞ!ðm1jÞ!j!ðL2M22kÞ!ðM1kÞ!k!
3

11ð21Þa½ �
C

a11

2

� �
C

b11

2

� �
2C

a1b12

2

� � where a5l2m22j1L2M22k1v and b5m12j1M12k1k1l11

(25)
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In summary, by substituting eqs. (24) and (25) back into eq.

(23), the integral in the master equation eq. (18) has been

solved. Thus, we obtained a general formula for an arbitrary

spherical harmonic multipole moment generated by the elec-

tron density, within a sphere with radius b, and constructed

from Gaussian of arbitrary angular momentum.

The next derivation focuses on the kinetic energy, starting

with one type of kinetic energy density, usually denoted

G(r) but here written as EG(r) to avoid confusion with the

Gaussian primitive function. Because EG(r) contains only first

derivatives the expressions are less complex than for

another type of kinetic energy density called K(r), now

denoted EK(r) for consistency. The latter contains second

derivatives and is discussed later. The contribution of the b
sphere to the integrated kinetic energy, denoted EG(b), is

defined as follows:

EGðbÞ5
ð

b sphere

dr EGðrÞ5
1

2

XnMO

p51

np

ð
b sphere

drrwp•rwp (26)

where all symbols in common with eq. (3) mean the same.

The derivation leading to a solution for eq. (26) is given in Part

F of the Supporting Information. Thus, the equivalent of eq.

(11), which formulates the key integral for QLM,jk, then

becomes

EG;jkðbÞ5 Kjk

X12

r51

Fjk;r

X
k50

X
l50

X
m50

fkx;r fly;r fmz;r

ð
b

dr exp ð2ajkjr2Rjkj2Þxkylzm

(27)

This equation concludes the proof that the G-type kinetic energy

can be calculated by closed expressions because the integral in

eq. (27) is a special case (i.e., L 5 M 5 0 in RLM(r)) of the integral in

eq. (11). Hence, the treatment of the integral in eq. (27) is identi-

cal of that in eq. (11). Finally, it should be pointed out that the

gradient operator never appeared expressed in spherical polar

coordinates. Indeed, its differentiation was carried out at Carte-

sian level, prior to the treatment of the complex integrals in

spherical polar coordinates. The same strategy is followed for

the second type of kinetic energy denoted EK(r).

The next derivation (or rather outline thereof ) focuses on

EK(r), where the contribution of the b sphere to the integrated

kinetic energy, denoted EK(b), is defined as follows:

EKðbÞ5
ð

b
dr EKðrÞ52

1

2

XnMO

p51

np

ð
b

drwpr2wp (28)

One can prove that the Laplacian operator operating on a

Gaussian primitive again results in a linear combination of

Gaussian primitives:

r2Gjðr2Rj; aj;�l j; �mj; �njÞ522aj 2ð�l j1 �mj1�njÞ13
� �

Gjðr2Rj; aj;�l j; �mj; �njÞ

14a2
j Gjðr2Rj; aj;�l j12; �mj; �njÞ1Gjðr2Rj; aj;�l j; �mj12; �njÞ1Gjðr2Rj; aj;�l j; �mj; �nj12Þ
� �

1 �l jð�l j21ÞGjðr2Rj; aj;�l j22; �mj; �njÞ1 �mjð �mj21ÞGjðr2Rj; aj;�l j; �mj22; �njÞ1�njð�nj21ÞGjðr2Rj; aj;�l j; �mj; �nj22Þ
� � (29)

This equation allows one to write the equivalent of eq. (F4)

of the Supporting Information:

EKðbÞ5 2
1

2

XnMO

p51

np

ð
b

dr
XnG

j51

cjpGjðr2Rj; aj;�l j; �mj; �njÞ
 ! X3

s51

@2

@2qs

XnG

k51

ckpGkðr2Rk; ak;�lk; �mk; �nkÞ
 ! !

52
1

2

XnMO

p51

np

XnG

j51

XnG

k51

ckpcjp

ð
b

dr
X7

r51

FK
jk;r Gjkðr2Rjk; ajk;�l jk;r; �mjk;r; �njk;rÞ

52
1

2

XnMO

p51

np

XnG

j51

XnG

k51

ckpcjpEK;jkðbÞ

(30)

where the explicit product between Gj andr2Gk is now not writ-

ten out but seen to give rise to a 7-term sum with its own pre-

factors F, and pattern of powers (l, m, n). As for EG, we are now

re-assured that we make contact with the previously established

machinery of solving the arising integrals. This completes the

treatment of kinetic energy. Note that the b-sphere contribution

of the Laplacian of the electron density can be trivially obtained

from the two kinetic energies because

LðbÞ5 2
1

4

ð
b

drr2qðrÞ5EKðbÞ2EGðbÞ (31)

To complete the treatment of IQA energies by their b-sphere

contributions, the final section focuses on the potential

energy, both within the same topological atom (intra) and

between two different topological atoms (inter). An efficient

strategy to calculate potential energies builds on two insights:

(i) the calculation of the electrostatic potential (generated by a

given electron density) as a useful intermediate physical quan-

tity, and (ii) the exploitation of the exact convergence of the

multipole expansion (due to the finite volume of the b-

sphere).
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Figure 2 sets the scene, introducing symbols that will

appear in the equations below. A topological atom, denoted

X, consists of two regions: the b-sphere and the remaining

region outside the b-sphere, which we call “a.” All integration

in the a-region is done by numerical quadrature, typically by

a Gauss-Legendre for the radial part and a Lebedev grid for

the angular part. The integration of the complex shape of

the a-region could be possible analytically as well, by intro-

ducing so-called natural coordinates in eq. (18), but actually

achieving this is perhaps more of a retirement project. The

point P marks a possible position where one wants to know

the electrostatic potential generated by the electron density

in bA.

The electrostatic potential at a given point P, generated by

the total charge density inside the b sphere, is defined by

Vtot Pð Þ5
ð
b

dr
qtot rð Þ
j r2Pj5

Zb

j rj2
ð
b

dr
q rð Þ
j r2Pj5Vnuc1Velec (32)

where qtot(r) is the sum of the electronic and nuclear charge

density, described by the position vector r, q(r) the purely

electronic density featuring throughout this article [starting

with eq. (1)], and Zb is the charge of the nucleus inside the b
sphere. We take advantage of the following well known

expansion

1

jr2P j5
X1
L50

rL
<

rL11
>

4p
2L11

� �XL

M52L

ð21ÞMYL;2MðhP;uPÞYL;Mðh;uÞ

(33)

In this expression, r< is the smaller and r> is the larger value

and the common choice is to assign r 5 |r| to r<, and to assign

P 5 |P| (where both vectors r and P refer to the same global

origin) to r>. This expansion will then converge, provided r< P,

which means that the point P must lie outside the b sphere.

This is perfectly possible because the electron density is con-

fined to the b sphere. In other words, formal convergence is

only possible if the point (P) at which the potential is evalu-

ated lies further from the nucleus than any element of elec-

tron density within the b-sphere. Substituting eq. (33) into eq.

(32) leads to

Velec Pð Þ52

ð
b

dr
q rð Þ
j r2Pj52

X1
L50

4p
2L11

� �1=2 1

PL11

XL

M52L

ð21ÞMYL;2MðhP;uPÞ
ð
b

drq rð ÞRL;Mðh;uÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QLMðbÞ

(34)

which proves that the electrostatic potential can be calculated

directly from the previously computed multipole moments

QLM(b), without introducing new integrals. The calculation of

the potential energy between two topological atoms benefits

from this straightforwardly calculated electrostatic potential

because this energy can be written as follows:

Epot
AB 5

ð
XA

drA

ð
XB

drB
qtotðrAÞ qtotðrBÞ

rAB
5

ð
XA

drA qtotðrAÞVBðrAÞ5ZAVBðRAÞ2
ð
XA

drA qðrAÞVBðrAÞ (35)

where

VBðrAÞ5
ð
XB

drB
qtotðrBÞ

rAB
(36)

is the electrostatic potential generated by atom B in atom A.

It is important to fully exploit the fact that the electrostatic

potential generated by the b sphere is analytically computed

in any point outside it. Because each atom is a union of b
sphere and an a region, or X 5 a U b, there are four possible

interactions, between two different atoms (A 6¼B): bA – bB, bA

– aB, aA – bB, and aA – aB. This division can be summarized as

follows:

Figure 2. Electrostatic potential and potential energies within and between

two topological atoms XA and XB. Note that for convenience the global

origin coincides with the nuclear position of XA. [Color figure can be

viewed at wileyonlinelibrary.com]
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Epot
AB 5

ð
bA

dr1

ð
bB

dr2
qtotðr1Þqtotðr2Þ

r12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
analytical

1

ð
bA

dr1

ð
aB

dr2
qtotðr1Þqtotðr2Þ

r12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
numerical2analytical

1

ð
aA

dr1

ð
bB

dr2
qtotðr1Þqtotðr2Þ

r12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
numerical2analytical

1

ð
aA

dr1

ð
aB

dr2
qtotðr1Þqtotðr2Þ

r12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
numerical

5
X

LA LB MAMB

TLA LB MAMB
ðRABÞQLAMA

ðbAÞQLB MB
ðbBÞ1

ð
aB

dr2qtotðr2ÞVbA
ðr2Þ

1

ð
aA

dr1qtotðr1ÞVbB
ðr1Þ1

ð
aA

dr1

ð
aB

dr2
qtotðr1Þqtotðr2Þ

r12

(37)

where TLAMALB MB
is a purely geometric interaction tensor and

RAB is the internuclear vector. In the second and third term,

the quadrature grid over the respective a-regions of atoms B

and A will ask for values of the analytically evaluated electro-

static potential in each of its points. The fourth term is purely

numerical and hence does not benefit from the work of the

current article. There remains only one case to be mentioned,

which is that of A 5 B, because it causes its own computa-

tional regime, but only for bA – bA. Indeed, the interactions bA

– aA and aA – aA can be calculated without extra knowledge.

For the bA – bA case, one option is to follow the method

“inverse multipole moments,”[54] another is to introduce a Fou-

rier transform that is used in the evaluation of nuclear-electron

attraction integrals.

Conclusions

We present a detailed derivation of a fully analytical 3D inte-

gration over the volume bounded by the b sphere inside a

topological atom. The formulae are sufficiently general such

that a Gaussian primitive of arbitrary angular momentum can

contribute to the electron density within the b sphere. We

obtained a general formula for an arbitrary spherical harmonic

multipole moment, the kinetic energies and the potential

energy between atoms. We showed that closed expressions

can be obtained involving the exponential, error function, and

gamma functions. The implementation of the results of the

derivations given here will follow in a subsequent publication.

This implementation will make a choice of quadrature grid

superfluous, but it is not yet clear how the current formulae

will perform computationally, compared with quadrature

schemes.
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