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Aiming at the current problem of insufficient extraction of small retinal blood vessels, we propose a retinal blood vessel
segmentation algorithm that combines supervised learning and unsupervised learning algorithms. In this study, we use a
multiscale matched filter with vessel enhancement capability and a U-Net model with a coding and decoding network structure.
Three channels are used to extract vessel features separately, and finally, the segmentation results of the three channels are
merged. The algorithm proposed in this paper has been verified and evaluated on the DRIVE, STARE, and CHASE_DB1
datasets. The experimental results show that the proposed algorithm can segment small blood vessels better than most other
methods. We conclude that our algorithm has reached 0.8745, 0.8903, and 0.8916 on the three datasets in the sensitivity metric,
respectively, which is nearly 0.1 higher than other existing methods.

1. Introduction

The human eyes consist of the following parts: cornea, pupil,
iris, vitreous, and retina. Abnormalities in any of these tissue
structures may cause vision defects or even blindness.
Among them, the study of retinal structure and its blood ves-
sels is significant [1]. The extraction of retinal blood vessels
and the characterization of morphological properties, such
as diameter, shape, distortion, and bifurcation, can be used
to screen, evaluate, and treat different ocular abnormalities
[2]. Evaluation of retinal vascular properties, such as changes
in width, is used to analyze hypertension, while bifurcation
points and tortuosity can help identify cardiovascular disease
and diabetic retinopathy [3].

The retinal vessel extraction methods, including pattern
recognition, are classified into five core classes [4]. The pat-
tern recognition techniques are generally divided into two
categories: supervised learning and unsupervised learning.
The supervised learning method needs to use manual seg-

mentation images of ophthalmologists for training. This
method requires many training images, and the training time
is longer than that of other methods, but this method has an
excellent generalized effect and can be applied to other
images of the same type. Compared with supervised learning,
nonsupervised learning methods, such as matched filtering,
mathematical morphology operations, blood vessel tracking,
and clustering, do not require corresponding image labels but
analyze and process based on the existing data. These two
types of methods have been applied and innovated by many
researchers in recent years.

1.1. Unsupervised Learning Methods. Literature [5] proposed
a new kernel-based technique, viz, Fréchet PDF-based
matched filter. The new method performs a better matching
between the vessel profile and Fréchet template. Literature
[6] improved the extraction method of blood vessels, using
a series of morphological operations to extract small blood
vessels, and finally fused with the segmented image to supple-
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Figure 1: Proposed model.
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ment the small blood vessels. Compared with other algo-
rithms, it can segment as many tiny blood vessels as possible.
However, the steps of the algorithm are too complicated, and
although the final segmentation effect obtains the smallest
blood vessels, the small blood vessels are in an intermittent
state as a whole, and they are not well connected with thicker
blood vessels. Literature [7] proposed a newmatched filtering
method, which applies contrast-limited adaptive histogram
equalization and Gaussian second-derivative-based matched
filter in preprocessing and uses an entropy-based optimal
threshold method performing binarization. This algorithm
effectively improves the sensitivity metric of segmentation,
but like literature [6], it does not perform well with accuracy.

Literature [8] proposed an automatic segmentation method
of retinal blood vessels using a matched filter and fuzzy C
-means clustering. The algorithm uses contrast-limited adap-
tive histogram equalization to enhance the contrast of the
image. After using Gabor and Frangi filters for noise removal
and background removal, the fuzzy C-means are used to
extract the initial vascular network, and the integrated level
set method is used to refine segmentation further. The algo-
rithm has good sensitivity and specificity. The problem is that
the ability to segment small blood vessels is limited, and
many segmentation details are missed. Literature [9] pro-
posed a novel method to extract the retinal blood vessel using
local contrast normalization and a second-order detector.

(a) (b)

(c) (d)

Figure 2: Color fundus image and its different RGB channels: (a) original RGB image; (b) red channel; (c) green channel; (d) blue channel.

(a) (b)

(c) (d)

Figure 3: Typical images after each preprocessing step: (a) original RGB image; (b) red channel; (c) image after CLAHE operation; (d) image
after gamma correction.
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The proposed methodology achieves higher accuracy in ves-
sel segmentation than existing techniques. Literature [10]
proposed a novel matched filter approach with the Gumbel
probability distribution function as its kernel. The reason to
achieve the higher accuracy is due to a better matching filter
with the Gumbel PDF-based kernel.

1.2. Supervised Learning Methods. Literature [11] proposed a
method using deep conventional neural networks and a hys-
teresis threshold method to detect the vessels accurately. The
proposed method gives good performance in which more
tiny vessels are detected. Literature [12] proposed a multi-
level CNNmodel applied for automatic blood vessel segmen-
tation in retinal fundus images. A novel max-resizing
technique is proposed to improve the generalization of the
training procedure for predicting blood vessels from retinal
fundus images. Literature [13] proposed a new segment-
level loss used with the pixel-wise loss to balance the impor-
tance between thick vessels and thin vessels in the training
process. Literature [14] proposed a cross-connected convolu-
tional neural network (CcNet) to automatically segment ret-
inal vessel trees. The cross connections between a primary
path and a secondary path fuse the multilevel features. This
method has relatively advanced performances, including
competitive strong robustness and segmentation speed. Lit-
erature [15] proposed a method for retinal vessel segmenta-
tion using patch-based fully convolutional networks.
Literature [16] applied dilated convolutions in a deep neural
network to improve the segmentation of retinal blood vessels
from fundus images. Literature [17] proposed a new

improved algorithm based on the U-Net network model.
The algorithm integrates the Inception-Res structure module
and the Dense-Inception structure module into the U-Net
structure. The algorithm dramatically deepens the depth of
the network but does not add additional training parameters.
It has good segmentation performance in the image segmen-
tation of retinal blood vessels and has strong generalization
ability. Literature [18] proposed a new hybrid algorithm for
retinal vessel segmentation on fundus images. The proposed
algorithm applies a new directionally sensitive blood vessel
enhancement before sending fundus images to U-Net. Liter-
ature [19] proposed a supervised method based on a pre-
trained fully convolutional network through transfer
learning. This method simplifies the typical retinal vessel seg-
mentation problem into regional semantic vessel element
segmentation tasks. Generally, unsupervisedmethods are less
complex and suffer from relatively lower accuracy than
supervised methods [13].

To solve the problem of insufficient segmentation of
small blood vessels in most papers, we have devised a new
automatic segmentation framework for retinal vessels based
on improving U-Net and a multiscale matched filter. The cre-
ative points of this paper are summarized as follows:

(1) We proposed an improved black hat algorithm to
enhance the characteristics of blood vessels and
reduce the interference of other tissues

(2) An algorithm combining a multiscale matched filter
and U-Net neural network is proposed. This paper
mainly uses the improved U-Net convolutional

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: (a, e, i) The fundus images, (b, f, j) green channel images applying CLAHE and gamma transformation, (c, g, k) background
extracted by close operation, and (d, h, l) the final results. The different samples of (a–d) DRIVE, (e–h) STARE, and (i–l) CHASE_DB1.
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neural network combined with a multiscale matched
filter to performmultichannel blood vessel segmenta-
tion processing on the retinal fundus image

(3) We have devised a new loss function to train the
improved U-Net neural network to solve pixel imbal-
ance in the image better

The rest of this paper is organized as follows. Section 2
outlines the proposed method and datasets. The performance
of the proposed method and the discussion are described in
detail in Section 3. A conclusion is drawn in Section 4.

2. Materials and Methods

2.1. System Overview. The proposed algorithm consists of
three steps: preprocessing datasets, training U-Net in 3 chan-
nels, and postprocessing. This algorithm’s main feature
extraction framework is based on the improved U-Net
model, using three feature extraction channels. It is mainly
to perform a whole feature extraction of the image in channel
1 so that some morphological operations are performed in
the preprocessing part to reduce image artifacts and noise.
On the remaining two channels, matched filters are used to

extract retinal vessels of different scales, and then, the
improved U-Net model is used to extract features, and the
OR-type operator is used to fuse the final output image.
Experimental results verify that the image processed by mul-
tichannel matched filtering is better than the unprocessed
image. The overall flowchart is shown in Figure 1.

2.2. Datasets. To verify the effectiveness of the algorithm in
this paper, this paper chooses three commonly used public
datasets for training and testing: DRIVE, STARE, and
CHASE_DB1 datasets. These datasets include a wide range
of challenging images. The DRIVE contains 40 color retinal
fundus images divided into a training set and a testing set.
The plane resolution of DRIVE is 565 × 584. The STARE
contains 20 color retinal fundus images with a resolution of
605 × 700 pixels. Unlike the DRIVE, this dataset does not
have a training set and a testing set. The CHASE_DB1 con-
tains 28 color retinal fundus images with a resolution of
960 × 999 pixels, and the training set and testing set are also
not divided. Each image in these three datasets has a label
of retinal blood vessel image segmented manually by two
professional physicians. We randomly selected 5 images in
the STARE dataset as test images (im0002, im0077, im0163,

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 5: (a, f, k) The grayscale images after preprocessing operation, (b, g, l) large-scale matched filtered images, background extracted by (c,
h, m) close operation and (d, i, n) subtraction operation, and (e, j, o) final results. The different samples of (a–e) DRIVE, (f–j) STARE, and (k–
o) CHASE_DB1.
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im0255, and im0291), and the remaining 15 images were set
as the training set. In CHASE_DB1, we select the last 8
images as the test set and the remaining 20 images as the
training set. Note that mask images of STARE and
CHASE_DB1 are not available, so we extracted the green
channel of the images and then used some morphological
algorithms and threshold algorithm to obtain the mask
images.

2.3. Preprocessing. In this paper, the green channel is selected
as the input image of the preprocessing part. This is
because the retinal blood vessels presented by the green
channel have better contrast with the background com-
pared with the red channel and the blue channel [20,
21], as shown in Figure 2.

It can be seen from Figure 2 that the appearance of blood
vessels on the green channel of the color image consists of

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 6: (a, f, k) The grayscale images after preprocessing operation, (b, g, l) small-scale matched filtered images, background extracted by (c,
h, m) close operation and (d, i, n) subtraction operation, and (e, j, o) final results. The different samples of (a–e) DRIVE, (f–j) STARE, and (k–
o) CHASE_DB1.

3×3
Conv+BN+LReLU

2×2 Maxpooling

1×1Conv+Concat

Upsamling

Figure 7: U-Net model architecture.
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more information compared to that on the red and blue
channel images, but the overall image is still dark, and the
contrast is not obvious. In order to improve this situation,
adaptive histogram threshold processing (CLAHE) [22] and
gamma transformation are performed on the extracted green
channel grayscale image, as shown in Figure 3. In this part of
the process, CLAHE is used to enhance the contrast between
the nonvessels and blood vessels, and gamma transformation
is used to adjust and reduce the background noise in the
image. We can see Tables 1–3 in Supplementary Materials
for a comprehensive comparison of blood vessel enhanced
algorithms, and these data can prove that the CLAHE
method improves the general performance of the proposed
method.

2.4. Multichannel Feature Extraction

2.4.1. Channel 1. In order to retain all the blood vessel feature
information of the image as much as possible, some morpho-
logical operations are used in channel 1 to remove back-
ground noise, and then, the U-Net network is used for
feature extraction. For the artifacts caused by uneven illumi-
nation in the image and nonvascular structures, we use the
morphological closing operation algorithm to estimate the
background and then perform the result using the mathe-
matical operation shown in equation (1).

It can be seen intuitively from Figure 4 that the brighter
video disc structure in the original image is removed, and

most of the artifacts are also processed.

g x, yð Þ = 255 − Iclose x, yð Þ − I x, yð Þ + 1
m ∗ n

〠
m

x=1
〠
n

y=1
Iclose x, yð Þ

 !
,

f x, yð Þ = 255
max g x, yð Þð Þ −min g x, yð Þð Þ ∗ g x, yð Þ −min g x, yð Þð Þj j,

8>>>><
>>>>:

ð1Þ

where f ðx, yÞ is the processed image and Icloseðx, yÞ is the
image after a morphological closing operation. We select disk
type structuring elements for the closing operator having a
radius of eleven pixels. Iðx, yÞ is the original image; m and
n are the image pixel size.

2.4.2. Channel 2. By analyzing the gray image of retinal blood
vessels, it can be found that the cross-sectional gray intensity
of blood vessels is distributed in an inverted Gaussian curve,
the gray value of the center line of the blood vessel is low, and
the gray value at the edge of the blood vessel is high [5]. Aim-
ing at this remarkable feature of retinal blood vessel images,
Chaudhuri et al. [23] designed a Gaussian matched filter
and used its distribution to simulate the grayscale intensity
distribution of blood vessel cross sections and filter the blood
vessels in sections. In this paper, the matched filters are used
in channel 2 and channel 3 to separately enhance and extract
the large and small blood vessels to realize the comprehensive
segmentation of retinal blood vessels.

Input: Train imagesX, ground truth G
Input: Initial epochs E⟵ 30, batch size ⟵ 1, learning rate lr⟵ 0.01
Input: Initialize best loss bl⟵ Inf
Output: Predicted images P, U-Net parameter
1. Xpre⟵ preprocessing (X)
2. Xenh⟵ enhancement (Xpre)
3. fore⟵ 0 to Edo
4. ife = 1/3 ∗ Ethen
5. lr⟵0:1 ∗ lr
6. else ife = 2/3 ∗ Ethen
7. lr⟵0:1 ∗ lr
8. end if
9. N⟵ compute the number of train imagesX
10. par⟵ initial parameter of U-Net
11. whilen⟵ 1 <N + 1do
12. Yn⟵Unet ( Xenh

n, par)
13. lossn⟵DiceðYn, GnÞ + λCross entropyðYn, GnÞ
14. iflossn < blthen
15. bl⟵ lossn
16. par⟵ new par
17. end if
18. par⟵ SGDðpar, lrÞ
19. end while
20. end for
21. P⟵UnetðXenh, parÞ
22. returnP, par

Algorithm 1: Training of U-Net with dynamic learning rate.
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Define the two-dimensional Gaussian kernel function as

K x, yð Þ = −e− x2/2s2ð Þ, yj j ≤ l
2
, ð2Þ

where s is the width of the Gaussian kernel and l is the length
of the Gaussian kernel. The blood vessel starts from the cen-
ter of the optic disc and extends in multiple directions. Rotat-
ing the Gaussian kernel is used to filter the multidirectional
blood vessels.

Assuming that pðx, yÞ is a discrete point in the kernel
function, the rotation matrix is

gi =
cos θi −sin θi

sin θi cos θi

" #
: ð3Þ

θið0 ≤ θi ≤ pÞ is the angle of the i-th kernel function, and
the coordinate value of pðx, yÞ after rotation is �pi = ðu, vÞ;
then, the i-th template kernel function is

Ki x, yð Þ = −e− u2/2s2ð Þ, ∀�pi ∈N , ð4Þ

where N is the template field, and the value range is

N = u, vð Þ, uj j ≤ 3s, vj j ≤ l
2

� �
: ð5Þ

In actual algorithm applications, it is often necessary to
consider the mean value of the correlation coefficient of the

template filter, as shown in

mi = 〠
�pi∈N

Ki x, yð Þ
A

: ð6Þ

Among them, A represents the number of points in the
template area. So, the final template kernel function is

Ki′ x, yð Þ = Ki x, yð Þ −mi, ∀�pi ∈N: ð7Þ

This paper improves and optimizes the dependence of
Gaussian matched filter response on a vessel diameter. The
image enhancement result using large-scale Gaussian
matched filtering in channel 2 is shown in Figure 5, where
the parameters are set to l = 10:8, s = 1:9, and 8 directions
which means i = ½1, 2,⋯,8� in equation (3). It can be seen
from the image that the algorithm has a better segmentation
effect for thicker blood vessels and strong antinoise, but it has
a poor segmentation effect on small blood vessels, and there
is a problem that the smaller blood vessels cannot be distin-
guished from the background, and the blood vessels are easily
broken. In order to solve this problem, this paper proposes an
improved method based on the black hat algorithm, which
can effectively reduce the influence of background noise by
subtracting the original image before matching filter process-
ing and the obtained image after processing to enhance the
characteristics of blood vessels. We performed a series of pro-
cessing transformations as shown in equations (8) and (9) on
the images processed by large-scale matched filtering. We call

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 8: Comparison of postprocessing: (a–e) segmentation image without postprocessing; (f–j) segmentation image applying
postprocessing.
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this algorithm black hat2.

Bhat fð Þ = f x, yð Þ∙b u, vð Þð Þ − f x, yð Þ, ð8Þ

g x, yð Þ = 255 − f x, yð Þ − 2 ∗ Bhat fð Þ, ð9Þ
where ∙ is the morphological closing operation and bðu, vÞ is
disk type structuring element, Bhatð f Þ is the black hat trans-
formation, f ðx, yÞ is the original image, and gðx, yÞ is the
final processed image.

2.4.3. Channel 3. This paper uses a small-scale Gaussian
matched filter to enhance the image of small blood vessels,
as shown in Figure 6. After many experiments, the parame-
ters of the matched filter are set as l = 5, s = 0:1, and 18 direc-
tions which means i = ½1, 2,⋯,18� in equation (3). Using

small-scale filters can effectively enhance the small blood ves-
sels in the image, but at the same time, it also enhances much
striped noise in the image, and the enhancing effect on the
thick blood vessels with central reflection is poor. To reduce
the background noise, the black hat2 algorithm used in chan-
nel 2 is also used to remove the background in channel 3.

2.5. U-Net Model. In image semantic segmentation using
deep learning, the U-Net network model is the most widely
used, which is improved based on the classic full convolu-
tional network (FCN) [24]. U-Net is an image-to-image
pixel-level classification network, and its network structure
is apparent, as shown in Figure 7. U-Net is different from
other standard segmentation networks: U-Net uses an
entirely different feature fusion method—splicing. U-Net
stitches the features together in the channel dimension. This

Table 1: The parameters of the U-Net architecture.

Block name Layer name Image size Parameters

DoubleConv

Conv (ksize = 3, pad = 1) 3 ∗ 3 ∗ C1 + 1ð Þ ∗ C2

BN + LReLU 2 ∗ C2

Conv (ksize = 3, pad = 1) 3 ∗ 3 ∗ C2 + 1ð Þ ∗ C2

BN + LReLU 2 ∗ C2

9 ∗ C1 + C2ð Þ ∗ C2 + 6 ∗ C2

Input 1 × 576 × 576 0

Encoder block_1
DoubleConv_1 64 × 576 × 576 9 ∗ 1 + 64ð Þ ∗ 64 + 6 ∗ 64 = 37824

Maxpooling (ksize = 2) 64 × 576 × 576 0

Encoder block_2
DoubleConv_2 128 × 288 × 288 9 ∗ 64 + 128ð Þ ∗ 128 + 6 ∗ 128 = 221952

Maxpooling (ksize = 2) 128 × 288 × 288 0

Encoder block_3
DoubleConv_3 256 × 144 × 144 9 ∗ 128 + 256ð Þ ∗ 256 + 6 ∗ 256 = 886272

Maxpooling (ksize = 2) 256 × 144 × 144 0

Encoder block_4
DoubleConv_4 512 × 72 × 72 9 ∗ 256 + 512ð Þ ∗ 512 + 6 ∗ 512 = 3542016

Maxpooling (ksize = 2) 512 × 72 × 72 0

Encoder block_5
DoubleConv_5 512 × 36 × 36 9 ∗ 512 + 512ð Þ ∗ 512 + 6 ∗ 512 = 4721664

Maxpooling (ksize = 2) 512 × 36 × 36 0

Decoder block_1

Upsampling (bilinear) 512 × 72 × 72 0

Concat 1024 × 72 × 72 0

DoubleConv_6 256 × 72 × 72 9 ∗ 1024 + 256ð Þ ∗ 256 + 6 ∗ 256 = 2950656

Decoder block_2

Upsampling (bilinear) 256 × 144 × 144 0

Concat 512 × 144 × 144 0

DoubleConv_7 128 × 144 × 144 9 ∗ 512 + 128ð Þ ∗ 128 + 6 ∗ 128 = 738048

Decoder block_3

Upsampling (bilinear) 128 × 288 × 288 0

Concat 256 × 288 × 288 0

DoubleConv_8 64 × 288 × 288 9 ∗ 256 + 64ð Þ ∗ 64 + 6 ∗ 64 = 184704

Decoder block_4

Upsampling (bilinear) 64 × 576 × 576 0

Concat 128 × 576 × 576 0

DoubleConv_9 64 × 576 × 576 9 ∗ 128 + 64ð Þ ∗ 64 + 6 ∗ 64 = 110976

Output Conv (ksize = 1) 1 × 576 × 576 1 ∗ 1 ∗ 64 + 1 = 65

9BioMed Research International



method fuses the in-depth features extracted from the image
with the shallow features to form thicker features, while the
fusion operation of FCN only uses corresponding point addi-
tion and does not obtain thicker features.

Unlike the structure in the original literature [24], this
paper sets the padding value of 1 in each layer’s convolution
operation, and the convolution kernel size is 3 ∗ 3. The pur-
pose is to ensure that the output and input image sizes are
consistent and avoid the size increasing operation in the out-
put layer. It is essentially a binary classification operation in
the output layer of U-Net. We use an adaptive threshold seg-
mentation algorithm for processing in this paper. The idea of
this algorithm is not to calculate the global image threshold
but to calculate the local threshold according to different
areas of the image, so for different areas of the image, the
algorithm can adaptively calculate different thresholds and
perform binary segmentation. The specific calculation pro-
cess is shown in

T = −b + 1
2m + 1ð Þ × 2n + 1ð Þ〠

n

i=0
〠
m

j=0
g x ± i, y ± jð Þ, ð10Þ

where b is the fixed parameter, ð2m + 1Þ × ð2n + 1Þ is the
area, and T is the area’s threshold.

This paper proposes a new loss function that combines
the Dice coefficient with the two-class cross-entropy loss
function. The Dice coefficient is widely used in the evaluation
of image segmentation. In order to facilitate the formation of
the minimized loss function, as shown in

Ldice = 1 −
2 X ∩ Yj j
Xj j + Yj j , ð11Þ

where X ∩ Y represents the common elements of the predic-

tion graph and the label graph, X and Y represent the num-
ber of elements of the prediction graph and the label. In order
to facilitate the calculation, approximate ∣X ∩ Y ∣ as the dot
product between the predicted probability map and the label,
and add the elements in the result. ∣X ∣ and ∣Y ∣ are quanti-
fied by summing the squares of each element. As shown in

Ldice = 1 −
2∑N

i p k, ið Þq k, ið Þ
∑N

i p
2 k, ið Þ +∑N

i q
2 k, ið Þ

, ð12Þ

where N is the number of pixels, pðk, iÞ ∈ ½0, 1� and qðk, iÞ ∈
½0, 1� are the predicted probabilities and true labels of the
pixel belonging to category k.

The cross-entropy loss function used to optimize the net-
work is shown as

Lr = −〠
N

i

1 −
TP
Np

 !
y log pð Þ + 1 −

TN
Nn

� �
1 − yð Þ log 1 − pð Þ

" #
,

ð13Þ

where TP and TN are the numbers of true positive and true
negative pixels, respectively; Np and Nn are the numbers of
segmented pixels and nonsegmented pixels, respectively; y
is the label value (y = 1, segmentation target; y = 0, back-
ground); and p is the predicted probability value of the pixel.

(a) Retinal image (b) Channel 1 (c) Channel 2 (d) Channel 3 (e) Fusion result

Figure 9: Performance of each channel’s segmentation result.

Table 2: Segmentation results of improvements on DRIVE.

Channel Se Sp ACC AUC

Channel 1 0.8174 0.9768 0.9626 0.8971

Channel 2 0.8008 0.9741 0.9587 0.8875

Channel 3 0.8113 0.9748 0.9633 0.8931

3 channels of fusion 0.8745 0.9624 0.9546 0.9185

10 BioMed Research International



A coefficient λ is introduced to define the new loss func-
tion Loss, as shown in

Loss = Ldice + λLr: ð14Þ

Notably, the coefficient λ is set to 0.5 in this work, and the
flowchart of U-Net is summarized in Algorithm 1.

2.6. Postprocessing. In the postprocessing, since the final seg-
mentation image merges the three segmentation images, the
noise in the resulting image is also superimposed on all the
noises of the three images. Noises will undoubtedly have a
significant impact on the actual effect of the segmented
image, so this paper addresses this issue in the final postpro-
cessing step. In this paper, a morphological algorithm is used
to calculate the size of the connected area of the image. The 8-
adjacent connection method is adopted to eliminate the area
with the connected area less than 25 pixels, which is to reclas-
sify the area pixels as background. This paper selects a test
image in the DRIVE dataset for experimental comparison,
and the comparison images are shown in Figure 8.

2.7. Experimental Design

2.7.1. U-Net Implementation Details. The U-Net model used
in this paper is slightly different from the structure in litera-
ture [24]. In order to keep the input and output image sizes
of the model consistent, the convolution structure is adjusted
accordingly. The specific model structure parameters are
shown in Table 1.

In training, we set the epoch to 30 and the initial learning
rate lr to 0.01, and then, the learning rate is set to update in a
three-stage formula, as shown in

lr =

0:01, epoch > 10,

0:001, 10 < epoch ≤ 20,

0:0001, 20 < epoch ≤ 30:

8>><
>>: ð15Þ

Setting a larger learning rate at the beginning is to make
the model obtain the vicinity of the optimal global parame-
ters faster, and this operation can reduce the training time
of the model. After training for a particular epoch, the learn-
ing rate needs to be reduced accordingly in order to make the
parameters closer to the optimal value in subsequent updates.
The stochastic gradient descent (SGD) algorithm is used in
the optimization of the loss function.

2.7.2. Training Image Preparation. We randomly select 15
images from STARE and the first 20 images from CHASE_

Table 3: Comparison of the proposed method with other methods
on the DRIVE dataset.

Method Se Sp ACC AUC

Khan et al. (2016) [9] 0.7373 0.9670 0.9501 0.8522

Khan et al. (2016) [29] 0.780 0.972 0.952 0.876

Soomro et al. (2017) [11] 0.746 0.917 0.946 0.8315

Ngo and Han (2017) [12] 0.7464 0.9836 0.9533 0.8650

Biswal et al. (2017) [30] 0.71 0.97 0.95 0.84

Yan et al. (2018) [13] 0.7653 0.9818 0.9542 0.8736

Oliveira et al. (2018) [15] 0.8039 0.9804 0.9576 0.8922

Wang et al. (2019) [25] 0.7648 0.9817 0.9541 0.8733

Guo et al. (2019) [31] 0.7800 0.9806 0.9551 0.8803

Feng et al. (2019) [14] 0.7625 0.9809 0.9528 0.8717

Ribeiro et al. (2019) [32] 0.7880 0.9819 0.9569 0.8850

Dharmawan et al. (2019) [18] 0.8314 0.9726 — 0.902

Saroj et al. (2020) [5] 0.7307 0.9761 0.9544 0.8534

Dash and Senapati (2020) [33] 0.7403 0.9905 0.9661 0.8654

Biswas et al. (2020) [16] 0.7823 0.9814 0.9561 0.8819

Budak et al. (2020) [34] 0.7439 0.9900 0.9685 0.8670

2nd human observer 0.7760 0.9724 0.9472 0.8742

Proposed method 0.8745 0.9624 0.9546 0.9185

Table 4: Comparison of the proposed method with other methods
on the STARE dataset.

Method Se Sp ACC AUC

Khan et al. (2016) [9] 0.7359 0.9708 0.9502 0.8534

Khan et al. (2016) [35] 0.7728 0.9649 0.9518 0.8689

Khan et al. (2017) [36] 0.778 0.966 0.951 0.872

Soomro et al. (2017) [11] 0.748 0.922 0.948 0.835

Biswal et al. (2017) [30] 0.70 0.97 0.95 0.835

BahadarKhan et al. (2017) [37] 0.758 0.963 0.946 0.861

Yan et al. (2018) [13] 0.7581 0.9846 0.9612 0.8714

Oliveira et al. (2018) [15] 0.8315 0.9858 0.9694 0.9087

Wang et al. (2019) [25] 0.7523 0.9885 0.9640 0.8704

Guo et al. (2019) [31] 0.8201 0.9828 0.9660 0.9015

Feng et al. (2019) [14] 0.7709 0.9848 0.9633 0.8779

Dharmawan et al. (2019) [18] 0.7924 0.9827 — 0.8876

Saroj et al. (2020) [5] 0.7278 0.9724 0.9509 0.8501

Tamim et al. (2020) [38] 0.7806 0.9825 0.9632 0.8816

2nd human observer 0.8952 0.9384 0.9349 0.9168

Proposed method 0.8903 0.9744 0.9699 0.9323

Table 5: Comparison of the proposed method with other methods
on the CHASE_DB1 dataset.

Method Se Sp ACC AUC

Biswal et al. (2017) [30] 0.76 0.97 — 0.865

Yan et al. (2018) [13] 0.7633 0.9809 0.9610 0.8721

Oliveira et al. (2018) [15] 0.7779 0.9864 0.9653 0.8822

Wang et al. (2019) [25] 0.7730 0.9792 0.9603 0.8761

Guo et al. (2019) [31] 0.7888 0.9801 0.9627 0.8845

Soomro et al. (2019) [39] 0.8020 0.968 0.891 0.885

Tamim et al. (2020) [38] 0.7585 0.9846 0.9577 0.8716

Joshua et al. (2020) [40] 0.7796 0.9864 0.9722 0.8830

2nd human observer 0.7686 0.9779 0.9560 0.8733

Proposed method 0.8916 0.9596 0.9561 0.9256
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DB1 as their respective training set. Due to the limited num-
ber of images in the existing dataset, to avoid the overfitting
phenomenon in the model training, we perform data expan-
sion processing on the training set of each dataset. Thanks to
the translation invariance of the convolutional structure, the
images in the training set in this paper were flipped horizon-
tally and vertically and rotated 180 degrees to increase the
amount of data 4 times.

2.7.3. Measuring Metrics. In order to evaluate the segmenta-
tion performance of this algorithm, we use the following met-
rics to perform a comprehensive evaluation of the
segmentation result. These metrics are accuracy (ACC), sen-
sitivity (Se), specificity (Sp), and AUC and calculated as fol-
lows:

ACC = TP + TN
TP + FN + TN + FP

, ð16Þ

Se =
TP

TP + FN
, ð17Þ

Sp =
TN

TN + FP
, ð18Þ

AUC =
1
2

TP
TP + FN

+
TN

TN + FP

� �
, ð19Þ

where TP is true positive, FP is false positive, TN is true neg-
ative, and FN is false negative. Se is the sensitivity, which
indicates the degree of classification of blood vessels and
nonvascular pixels. In this paper, higher sensitivity indicates
that more tiny blood vessels can be detected. Sp is specificity,
which is used to express the ability of the algorithm to recog-
nize nonvascular pixels. ACC is the accuracy of algorithm
segmentation, reflecting the gap between the algorithm seg-
mentation result and the natural result. AUC is the area
under the ROC curve, and we adopt another calculation
method to get the AUC, as shown in equation (19) [11].

Besides, we also use two other evaluation metrics to mea-
sure the effect of segmentation: MCC and CAL.

MCC =
TP × TN − TP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ × TP + FNð Þ × TN + FPð Þ × TN + FNð Þp :

ð20Þ

MCC is a correlation coefficient between the segmenta-
tion output of the algorithm and ground truth. It compre-
hensively considers TP, TN, FP, and FN, which is a
relatively balanced metric. Finally, it is more suitable for an
imbalanced class ratio.

CAL can be expressed as the product of C, A, and L as fol-
lows:

f C, A, Lð Þ = C × A × L: ð21Þ

Suppose S and SG are the segmentation result and the
corresponding ground truth, respectively. These functions
are defined as follows:

(1) Connectivity (C): it evaluates the fragmentation
degree between S and SG by comparing the number
of connected components:

C = 1 −min 1, #C SGð Þ − #C Sð Þj j
# SGð Þ

� �
, ð22Þ

where #Cð∙Þ means the number of connected components,

Table 6: Segmentation results of all test images of the three datasets.

Image ACC Se Sp AUC

DRIVE

01_test 0.946 0.928 0.947 0.938

02_test 0.952 0.914 0.956 0.935

03_test 0.955 0.817 0.970 0.894

04_test 0.959 0.868 0.968 0.918

05_test 0.958 0.838 0.971 0.904

06_test 0.958 0.811 0.973 0.892

07_test 0.954 0.851 0.964 0.907

08_test 0.958 0.820 0.971 0.896

09_test 0.959 0.849 0.969 0.909

10_test 0.957 0.863 0.965 0.914

11_test 0.945 0.870 0.952 0.911

12_test 0.958 0.875 0.966 0.920

13_test 0.953 0.859 0.963 0.911

14_test 0.954 0.901 0.959 0.930

15_test 0.951 0.917 0.954 0.935

16_test 0.954 0.889 0.961 0.925

17_test 0.958 0.845 0.968 0.907

18_test 0.954 0.913 0.958 0.935

19_test 0.954 0.937 0.956 0.946

20_test 0.955 0.925 0.957 0.941

Avg. 0.955 0.875 0.962 0.918

STARE

im0002 0.972 0.839 0.981 0.910

im0077 0.967 0.966 0.961 0.964

im0163 0.961 0.976 0.960 0.968

im0255 0.970 0.872 0.979 0.926

im0291 0.980 0.798 0.990 0.894

Avg. 0.970 0.890 0.974 0.932

CHASE_DB1

11L 0.946 0.937 0.947 0.942

11R 0.942 0.950 0.942 0.946

12L 0.953 0.878 0.959 0.919

12R 0.958 0.872 0.965 0.918

13L 0.958 0.884 0.963 0.923

13R 0.956 0.850 0.963 0.907

14L 0.970 0.895 0.968 0.931

14R 0.966 0.867 0.971 0.919

Avg. 0.956 0.892 0.960 0.926
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while #ð∙Þ means the number of vessel pixels in the consid-
ered binary image.

(2) Area (A): it evaluates the degree of intersecting area
between S and SG and is defined as

A =
# δα Sð Þ ∩ SGð Þ ∪ δα SGð Þ ∩ Sð Þð Þ

# S ∪ SGð Þ , ð23Þ

where δαð·Þ is a morphological dilation using a disc of α
pixels in radius. We set α = 2.

(3) Length (L): it evaluates the equivalent degree between
S and SG by computing the total length:

L =
# φ Sð Þ ∩ δβ SGð Þ� �

∪ δβ Sð Þ ∩ φ SGð� �� �� �
# φ Sð Þ ∪ φ SGð Þð Þ , ð24Þ

where φð·Þ is the homotopic skeletonization and δβð∙Þ is a
morphological dilation with a disc of β pixel in radius. We
set β = 2.

According to [26], the CAL metric is essential to quantify
thick and thin vessels more equally.

Table 7: MCC and CAL metrics of existing techniques on the three datasets.

Method
DRIVE STARE CHASE_DB1

MCC CAL MCC CAL MCC CAL

Azzopardi et al. (2015) [41] 0.719 0.721 0.698 0.709 0.656 0.608

Orlando et al. (2016) [42] 0.740 0.675 0.726 0.665 0.689 0.571

Dharmawan et al. (2017) [18] 07991 0.8834 0.7959 0.8181 — —

Yang et al. (2018) [43] 0.725 — 0.662 — — —

Strisciuglio et al. (2019) [44] 0.729 0.728 0.698 0.709 0.663 0.620

Khan et al. (2020) [45] 0.739 0.696 0.707 0.566 0.629 0.547

2nd human observer 0.770 0.771 0.741 0.622 0.626 0.722

Proposed method 0.756 0.796 0.796 0.837 0.566 0.733

(a) Original image (b) Ground truth (c) Literature [5]

(d) Literature [11] (e) Literature [14] (f) Literature [10]

(g) Literature [27] (h) Proposed result

Figure 10: Comparison of different methods on the DRIVE dataset.
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3. Results and Discussion

As shown in Figure 9, one test image is selected from each of
the three datasets to display the segmentation results of each
channel and the fusion results. It can be seen that some of the
intermittent blood vessels of each channel are reconnected
after fusion, and the number of small blood vessels in the
fusion map is significantly higher than that of each channel
segmentation map.

The DRIVE dataset is selected as the experimental object
and compares the three channels’ metric data in this paper.
The results show that the overall fusion effect of the three
channels is better than the segmentation results of every sin-
gle channel; in particular, the sensitivity has been dramati-
cally improved, as shown in Table 2.

To illustrate this paper’s segmentation effect, we list var-
ious metrics on the DRIVE, STARE, and CHASE_DB1 data-
sets of different papers in recent years in Tables 3–5. It can be
seen that the algorithm in this paper is superior to most sim-
ilar papers in sensitivity and AUC metrics. To have a more
comprehensive understanding of the overall segmentation
effect of the test set, we show the relevant indicators of the
prediction results of all test set images in Table 6. The other
essential metrics are MCC and CAL, and they achieved by
the proposed method has been contrasted with existing seg-
mentation techniques on the DRIVE, STARE, and CHASE_
DB1 datasets shown in Table 7.

We selected image 19_test from the test set of the DRIVE
dataset to display the segmentation results, as shown in
Figure 10. Literature [5, 27] segmented some small blood ves-
sels, but it is still slightly insufficient compared to this paper’s

segmentation diagram. Literature [10] lacks many details,
and the small blood vessels are not segmented. The segmen-
tation result of literature [11] contains a lot of edge noise, and
there are many intermittent blood vessels. Compared with
the existing segmentation methods, the segmentation results
in this paper have a good performance in terms of the integ-
rity of the whole blood vessels and the segmentation of small
blood vessels.

As shown in Figure 11, we select the test results of the
image im0163 in the STARE dataset for comparison. It can
be shown that the segmentation results of this paper are sim-
ilar to those of literature [13, 14], but the background noise in
literature [13] is not eliminated. Compared with literature [5,
10, 27], the algorithm in this paper illuminates the optic disc
structure in the original image as much as possible in the pre-
processing part, so the problem that is incorrectly dividing
part of the optic disc structure into blood vessels like these
papers did not appear in the final segmentation result.

The CHASE_DB1 dataset is not used in most of the
papers about retinal blood vessel segmentation. One of the
reasons is that the dataset contains half of the abnormal
images, which may cause some interference to the trained
segmentation model. Meanwhile, this dataset is also a new
and challenging dataset compared to the classic DRIVE and
STARE datasets. We selected four images image_12R,
image_13L, image_13R, and image_14L from the test set of
the CHASE_DB1 dataset to compare the segmentation
results in order to verify the generalizability of the proposed
algorithm, as shown in Figure 12. The segmentation result
of the algorithm in literature [19] has much noise, and some
blood vessels are not effectively separated. Literature [28]

(a) Original image (b) Ground truth (c) Literature [5]

(d) Literature [13] (e) Literature [14] (f) Literature [10]

(g) Literature [27] (h) Proposed result

Figure 11: Comparison of different methods on the STARE dataset.

14 BioMed Research International



does an excellent job in the segmentation of small blood ves-
sels, but there is a problem that some blood vessels are not
connected. Due to the postprocessing in this paper, the seg-
mentation result on this dataset contains less noise and guar-
antees the continuity of most blood vessels. However,
compared with the manual label, some tiny blood vessels
cannot be completely segmented from the image
background.

The source codes of the proposed framework have been
running on the PC (Intel Core i5-6300HQ CPU, 2.30GHz,
12.0GB RAM, NVIDIA GTX 950M GPU). DRIVE, STARE,

and CHASE_DB1 have spent 11.3 h, 7.1 h, and 16.4 h on
training separately in each channel. The average testing
time of test images was 1.34 s. Table 8 shows the parame-
ter comparison of the proposed method with other
methods based on U-Net, which can help us compare
the framework complexity of different methods. Note that
the parameters are not equal to the training time because
some methods use slices of a train image as input of the
network. For example, literature [19] has 42421 slices as
the training set, which means it needs more time to train
the network.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 12: (a, e, i, m, q) Image_12R, (b, f, j, n, r) image_13L, (c, g, k, o, s) image_13R, and (d, h, l, p, t) image_14L from the CHASE_DB1
dataset. (a–d) Original images, (e–h) ground truth, (i–l) literature [19], (m–p) literature [28], and (q–t) proposed segmentation images.
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4. Conclusion

This paper proposes a new retinal blood vessel segmentation
method, which combines a multiscale matched filter with a
U-Net neural network model of deep learning. First of all,
we use an improved morphological image algorithm to effec-
tively reduce the impact of image background in feature
extraction. Additionally, in order to avoid ignoring the char-
acteristics of small blood vessels, this paper performs multi-
channel feature extraction and segmentation on retinal
blood vessel images. Finally, the segmented images of the
three channels are merged, and various characteristics of ret-
inal blood vessels are obtained as much as possible. In the
training of the U-Net model, we used the loss function
weighted by the Dice coefficient and the binary cross-
entropy to solve the image pixel imbalance problem. The
algorithm of this paper is tested on the existing public data-
sets DRIVE, START, and CHASE_DB1. The experimental
results show that there is better performance in four metrics
compared with similar papers. The average sensitivity of the
algorithm in this paper reached 0.8745, 0.8903, and 0.8916 on
the DRIVE, STARE, and CHASE_DB1 datasets, respectively.
This result is nearly 0.1 higher than the average sensitivity of
other papers. The improvement of the sensitivity metric also
reflects that the algorithm in this paper has a good perfor-
mance in extracting small blood vessels. The focus of this
paper is to combine the advantages of unsupervised algo-
rithms and supervised algorithms. We did not make too
many improvements to the U-Net network. Therefore, how
to prune the deep learning network model structure will be
an interesting research direction in the future.
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