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ABSTRACT

Good scientific practice is important in all areas of science. In recent years this has gained more and more attention,
especially considering the ‘scientific reproducibility crisis’. While most researchers are aware of the issues with good
scientific practice, not all of these issues are necessarily clear, and the details can be very complicated. For many years it
has been accepted to perform and publish sequencing based microbiome studies without including proper controls.
Although in recent years more scientists realize the necessity of implementing controls, this poses a problem due to the
complexity of the field. Another concern is the inability to properly interpret the information gained from controls in
microbiome studies. Here, we will discuss these issues and provide a comprehensive overview of problematic points
regarding controls in microbiome research, and of the current standards in this area.
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INTRODUCTION

The microbiome field is a relatively new field of research. The
hallmark publication by (Venter et al. 2004) is not even 15 years
old. It was, and still is, exciting to sequence the microbial com-
munity of an environment to its full extent, and to learn about
all its inhabitants and their possible functions. The subsequent
rise in interest in this field was tremendous, leading to numer-
ous publications in highly respected journals, e.g. (Tringe et al.
2005; Turnbaugh et al. 2009; van Nood et al. 2013).

The use of shotgun sequencing or targeted DNA amplicon
sequencing to characterize the microbiome has its complica-
tions though. Most researchers are aware of the tremendous

impact that DNA extraction has on the outcome of any micro-
biome study (Costea et al. 2017; Sinha et al. 2017a). It is also
clear that these various DNA extraction methods might not pro-
duce very overlapping results (e.g. (Angelakis et al. 2016), among
many others), which makes their interpretation difficult. There
are various other concerns which are not specific to this field, but
also apply here, like the crisis in reproducibility (Schloss 2018),
or the public availability of data in a FAIR (Findable, Accessi-
ble, Interoperable and Reusable) way (Langille, Ravel and Fricke
2018).

One particular problem exists, which has been overlooked
for a long time: the lack of controls in microbiome research.
It is good practice to perform experiments with controls, to
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ensure that all procedures were correctly performed, and that
none of the steps have introduced false positive or false nega-
tive results. In microbiome research, however, controls have not
been included in the majority of published studies. To clarify
the extent of this, we reviewed all publications from the 2018
issues of Microbiome and the ISME journal (manually, as well as
keyword searches for ‘mock’, ‘blank’ and ‘control’). From the 265
publications utilizing high-throughput community sequencing
of any type (16S, metagenomics, metatranscriptomics, 18S, ITS,
virome, PacBio, Nanopore, others), only 30% (79) reported using
any type of negative control, and only 10% (27) reported using a
positive control. In some of these cases, however, it was unclear
if the negative controls were actually sequenced (e.g. when sam-
ples were also used for qPCR), or the descriptions were insuffi-
cient to judge whether controls were adequate (e.g. ‘appropriate
controls were used at all steps’, without further details or ‘meth-
ods have previously been validated with positive controls’). Dur-
ing our research we also still noticed several high impact pub-
lications, which report results which are potentially indistin-
guishable from contaminations. Common to all these publica-
tions is the lack of controls, paired with the investigation of rel-
atively low biomass microbiomes like mucosa (Zuo et al. 2019),
amniotic fluid (Wang et al. 2018) (despite being heavily discussed
earlier (Lauder et al. 2016)), gastric environment (Ferreira et al.
2018), pancreatic cancer (Pushalkar et al. 2018), respiratory tract
(Nicola et al. 2017), human milk (Drago et al. 2017) (although the
authors report a clean negative control) and sometimes pure in-
silico studies might identify contaminations as biologically rele-
vant (Tackmann et al. 2018). These examples come in addition to
further publications mentioned in (de Goffau et al. 2018), which
also did not use negative controls in their study setups. The sub-
stantiality of microbiome studies without controls might have
been due to a combination of lack of knowledge, unavailabil-
ity of positive controls and perceived costs associated with the
inclusion of non-biological control samples. Indeed, there are
numerous challenges with both types of controls in microbiome
research, which will be summarized here, together with current
developments in this field.

POSITIVE CONTROLS IN MICROBIOME
RESEARCH

Selection of organisms

For a long time, positive controls were not used in micro-
biome research due to their unavailability. Positive controls
are now commercially available in the form of defined syn-
thetic communities, but their validity for specific research
questions is uncertain, depending on the exact microbiome
under investigation. For example, the controls from BEI
resource, 〈0:ext-link 3:href=”https://www.beiresources.org/Cat
alog.aspx?f instockflag=In±Stock%23∼%23Discontinued%23∼
%23Temporarily±Out±of±Stock&q=mock%20community”0:
ext-link-type=”uri”〉https://www.beiresources.org/Catalog.asp
x?f instockflag=In±Stock%23∼%23Discontinued%23∼%23Tem
porarily±Out±of±Stock&q=mock%20community〈/0:ext-link〉,
and ATCC, 〈0:ext-link 3:href=”https://www.lgcstandards-atc
c.org/en/Products/Cells and Microorganisms/By Focus Area/
Microbiome Research/Mock Microbial Communities.aspx”0:
ext-link-type=”uri”〉https://www.lgcstandards-atcc.org/en/P
roducts/Cells and Microorganisms/By Focus Area/Microbio
me Research/Mock Microbial Communities.aspx〈/0:ext-link〉,
contain only bacteria, while the ZymoResearch control,
〈0:ext-link 3:href=”https://www.zymoresearch.eu/products/m

icrobiomics”0:ext-link-type=”uri”〉https://www.zymoresearch
.eu/products/microbiomics〈/0:ext-link〉, contains bacteria and
fungi. Though the manufacturers took care to select relevant
bacterial species, including pathogens and Gram-negative
and -positive bacteria, it needs to be considered whether
such a control is a valid representative for the investigated
environment since archaea, viruses and other eukaryotes
are not included. Therefore, the presence of archaea, viruses
and other eukaryotes might be overlooked in the investigated
samples (Bakker 2018). These microbes also pose their own
challenges like variable amplicon length and within-species
divergence (Palmer et al. 2018). New bacterial phyla are also still
being discovered, sometimes even multiple phyla with various
representatives at once (Karst et al. 2018), and we do not know
anything about their physiology, including how resistant these
organisms will be to the current DNA extraction methods and
how they compare to well-studied organisms used in mock
communities. This is not a problem of the controls, but of the
microbiome field itself, where many of the microbes in these
environments are unknown or uncultured. For a proper positive
control, we would actually already need to know what microbes
are present in a sample. All of this needs to be considered when
selecting a positive control. When commercially available con-
trols are unsuitable, custom designed positive controls might
be needed, but standardized protocols to do so are currently
lacking.

The interdependency between kits and controls

Another problem is the interdependency between the DNA
extraction kit manufacturers and the positive control manufac-
turers. A kit or a method will be benchmarked using a positive
control and this must be a part of the development process of
the kit itself. At the end of development, the kit will be able
to extract the correct proportions of DNA from the correspond-
ing positive control. Despite the rigorous testing, it cannot be
guaranteed that the kit will be able to extract correct DNA pro-
portions from any type of community. Other factors within the
community, like physical interactions between different cells or
different kinds of metabolites (e.g. glycans) might interfere with
the extraction (Angelakis et al. 2016), and these factors will vary
between communities. This also applies to other potential pos-
itive controls, which might have different properties. Using one
extraction kit on one mock community will therefore in some
cases only indicate its performance on this mock community,
and does not necessarily indicate its suitability for real biological
samples or even other mock communities. The performance of
different kits on varying mock communities has not been tested,
and some kits might perform well on some mock communities,
and rather poorly on others. The test of one kit with one mock
community might therefore not in all cases be sufficient.

Amplification bias and related errors

If an approach is used which uses PCR amplification during
library preparation (including all amplicon technologies), then
it also needs to be considered that this step could introduce
problems for accurately determining the composition of the
microbiome. It has been shown that amplification biases exist,
and that DNA fragments with a high or low GC content are
not amplified in the same rate as fragments with an average
GC content (Aird et al. 2011; Benjamini and Speed 2012). The
possibly presence of this issue can be discovered with posi-
tive controls, since some organisms might be less efficiently
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amplified. Both ZymoResearch and ATCC offer a pre-extracted
DNA mix, which can be used to verify sequencing-related pro-
cedures, e.g. library preparation (Jones et al. 2015).This will help
the researcher to distinguish amplification bias issues from DNA
extraction issues (Costea et al. 2017; Sinha et al. 2017a), but can
also give insight into issues related to using varying amounts
of DNA for amplification (Bowers et al. 2015). Furthermore the
various sequencing machines used in the field display differ-
ent kinds of sequencing errors (Minoche, Dohm and Himmel-
bauer 2011), which can be specific to the sequenced DNA (Naka-
mura et al. 2011). Errors related to sequencing might further-
more appear randomly, without being reproducible (Yeh et al.
2018). This error might lead to the same faulty interpretation like
amplification bias, which is that some bacteria might be absent
in the sequenced samples, or less abundant than they are. Usage
of a positive control will prevent this issue.

Influence of bioinformatics processing—clustering and
filtering

Bioinformatics processing of the sequencing data also con-
tributes to the issues of accurately determining community
composition. There are no fully agreed upon standards for raw
data processing, and the various parameters of 16s rRNA gene
sequence analysis software, like QIIME (Caporaso et al. 2010),
often need to be tweaked. Ideally, positive controls in micro-
biome research aid in correct data processing and the param-
eters can be optimized with working positive controls. A fre-
quently considered parameter is the OTU similarity level for
clustering, e.g. 97%, 98.5% or 100% (Patin et al. 2013). But any type
of clustering based on a similarity of less than 100% might lump
two sequences that differ by at least one nucleotide into a single
OTU and produce inaccurate results (He et al. 2015). Not cluster-
ing sequences is not necessarily the solution to this problem,
since there can be heterogeneity within the rRNA genes in the
same microorganism, and this and other effects might inflate
the number of OTUs detected (Nguyen et al. 2016; Nearing et al.
2018).

Influence of bioinformatics processing—taxonomic
assignment and binning

Usage of a positive control will furthermore enable the
researcher to pinpoint a limited amount of possible issues in
the taxonomic assignment. As it is known, the public sequence
databases contain various errors, including contaminations
(Sheik et al. 2018), and sequences with incorrectly assigned tax-
onomy or incorrectly assigned names (Nilsson et al. 2006; Feder-
hen 2015). If such an error falls into the taxonomic range of the
positive control, the taxonomic assignment might come back
faulty. Since the content of the control is known, the researcher
might be able to find the sequences which obstruct the correct
assignment, and remove these from their database. The gen-
eral occurrence of this error is not likely, since many of the
used pipelines for the assignment of taxonomy based on 16S
will discard assignments which are not predominant. In case of
metagenomics, this case could be less clear. The full genomic
diversity of a species is often not sampled, with only a few spec-
imen being sequenced, and one misassigned species might dis-
turb the taxonomic assignment severely.

Another issue related to this topic is the potential depth of
assignment. In some circumstances it is not possible to assign
sequences to the correct genus or species, e.g. when genera are

too closely related (e.g. Escherichia and Shigella). If this is the case
for some species in the positive control, the researcher will get
assignments on e.g. the respective family level, and will be made
aware of this restriction and can interpret his data with this in
mind. In the case of 16S amplicon data, most researchers will be
aware that e.g. their assignment in the family of Enterobacteri-
aceae might be their specific organism of interest like E. coli, but
for metagenomics, this problem can be more prevalent. A posi-
tive control can obviously aid here only in a limited way, but it
makes a researcher potentially aware of this issue.

If binning (Sangwan, Xia and Gilbert 2016) of a genome will
be attempted in a metagenomic sample, then it needs to be
also considered that a different type of positive control might be
more applicable. Having multiple more strongly related organ-
isms (e.g. two strains of the same species) of different abun-
dances in a positive control would be beneficial to in-depth con-
firm the result of the binning process, especially when more
organism-specific parameters like GC content are one of the fac-
tors used during the binning process.

NEGATIVE CONTROLS IN MICROBIOME
RESEARCH

Negative controls in microbiome research face also different
problems. Some of these are the same as for the positive con-
trols. E.g. it needs to be considered at which step which control
is necessary, and which way to sample these is the most suit-
able. The details of the most important steps will be described
below.

Sampling controls

The first step in which negative controls should be taken into
account is at sampling. If a cohort of patients is sampled from
a similar site (such as oral swabs) by a trained researcher then
a chance exists that either the researcher, the used sampling
equipment or the environment could contaminate the sam-
ples. Including an appropriate negative control is, however, not
always easy. In this setting, a control swab could easily be taken,
unpacked in the same surrounding and handled by the same
researcher without taking any sample. But the question arises
how a negative control would be taken if for example faecal
material is considered, since no material to perform a negative
DNA extraction would be available, and sampling the air or con-
tainer with any other kind of instrument like a swab would not
be a true negative control. Being consistent when taking sam-
ples (Vandeputte et al. 2017) is therefore key to minimize techni-
cal variation.

Contamination by the researcher

One of the potential sources of contamination, the researcher
itself, also needs to be taken into account. With large numbers
of samples, we cannot assume that potential contamination by
the researcher will be evenly distributed over all samples dur-
ing processing. If Cutibacterium (formerly Propionibacterium) acnes
(a common skin commensal) unexpectedly appears in samples,
but not in the negative controls, it cannot necessarily be con-
cluded that it is not a contaminant from the sample processing,
since the possibility exists that only some samples in a bigger
cohort are contaminated. This could be resolved by culturing
the suspicious organisms from the original sample, but specific
bacterial species may be difficult to culture (Staley and Konopka



4 FEMS Microbiology Ecology 2019, Vol. 95, No. 5

1985; Rinke et al. 2013; Boers et al. 2018) from samples contain-
ing many different bacterial species. Therefore, a negative cul-
ture would not give us definitive proof of absence. Furthermore
it does not exclude that the contamination occurred in the orig-
inal sample, and not during processing.

The ‘kitome’

The most influential discovery regarding the necessity of includ-
ing negative controls, is the recognition of a ‘kitome’ (Salter et al.
2014). It has become apparent that various DNA extraction kits
contain their own unique microbiome, which may be indistin-
guishable from the real microbiome (e.g. often discussed (Bhatt
et al. 2013) and mentioned in (Salter et al. 2014), as well as multi-
ple examples in (de Goffau et al. 2018)). This means that even
if the researcher in the laboratory has worked in a complete
sterile environment with appropriate techniques, outcomes are
affected by the DNA in the extraction kit. While this has been
studied extensively, and specific organisms have been identi-
fied as common kit contaminants (Laurence, Hatzis and Brash
2014), this might cause problems when environments are stud-
ied where these organisms could be present (as mentioned in
Jousselin et al. 2016), or where it is unknown if they could be
present. While these extraction kits are not sold as ‘sterile’, it
should also be noted that even if material is sold as ‘sterile’,
it might still contain bacterial DNA, and therefore cannot be
excluded as a source of contamination (van der Horst et al. 2013).
Therefore extraction controls need to be performed, but index
hopping (see further below) might interfere with this procedure.

Index hopping

Index hopping is another problem in microbiome research
(Costello et al. 2018; MacConaill et al. 2018), as well as in other
fields (Sinha et al. 2017b; Griffiths et al. 2018). It can occur 0%–
10% of the sequenced data (Sinha et al. 2017a), depending on the
used Illumina platform. If samples are multiplexed during the
same run, the possibility exists that indexes from one sample
will be incorrectly assigned to another sample. This is caused by
non-ligated adapters from one sample (possible a low-biomass
sample, where more adapters were in the sample than actual
DNA), which will randomly ligate to free DNA from another sam-
ple on the same sequencing run. Negative controls might there-
fore contain data, which incorrectly originates from the other
samples during the same sequencing run (although not always,
since this can depend on the way the samples are loaded onto
the sequencer). In practice, the negative controls might contain
exactly the same profile as the sequenced samples. In these
cases it is impossible to distinguish between true contamina-
tion and index hopping, making the controls (negative as well
as positive) potentially useless. Also, proposed practices like the
subtraction of shared OTUs between negative controls and sam-
ples (Edmonds and Williams 2017) would falsify the results in
this situation, since the contamination is derived from the sam-
ples, and not from the researcher, DNA extraction kit, or the
environment. This could be circumvented by sequencing neg-
ative controls on a separate run, but again, in practice this will
increase the price of sequencing to an unacceptable high level,
and is therefore highly unlikely to happen. If the sequencing is
not performed in-house, this would also complicate the proce-
dure even more, since it would be necessary to request differ-
ent lanes for different samples. The final result would also no
longer be a control of the whole process, since samples will not

be sequenced at the same time and on the same machine any-
more. While evaluating a sample, it therefore needs to be consid-
ered if data in a low biomass sample and negative controls could
be derived from a high biomass sample or positive control, and
results need to be interpreted with caution.

CURRENT STANDARDS AND DEVELOPMENTS

No easy solutions exist for many of the above mentioned prob-
lems. It can be advised to take negative controls during the sam-
pling process and at all further steps, if feasible (for example
Galan et al. 2016; Jousselin et al. 2016; Zhong et al. 2018). New
methodologies, that reduce the amount of contamination dur-
ing processing, might also be necessary, e.g. (Boers, Hays and
Jansen 2017; Minich et al. 2018), but their implementation in the
laboratory is not always easy.

For the data analysis of negative controls it is mainly advised
to focus on the number of reads obtained. A clean negative con-
trol should have few reads, which excludes major contamina-
tions from all possible sources. Kitome components or actual
contaminations in these negative controls are in such cases
unlikely to be abundant, and unlikely to have a significant
impact on the analysis, even if present. The outcome of the
negative controls are particularly relevant for samples with low
microbial biomass (Biesbroek et al. 2012; Lusk 2014; Glassing et al.
2016; Karstens et al. 2018; Velasquez-Mejia, de la Cuesta-Zuluaga
and Escobar 2018), since even low amounts of contamination
could have an impact here. Especially in these cases the con-
nection between the samples and the corresponding negative
controls needs to be carefully evaluated. A possibility to resolve
this contamination is to remove OTUs identified in the negative
controls from the actual samples (e.g. Edmonds and Williams
2017). This is only applicable, when it can be ensured that these
are actually contaminants, and not e.g. derived from another
sample, as explained in the index hopping section. If a posi-
tive control in the same run has potentially acquired contam-
inations, then this would help in resolving this issue partially.
Additional low abundance OTUs in the positive controls will give
the researcher an idea which level of minor abundances can be
reasonably filtered out. This again applies mainly for samples
with a high biomass, while for low biomass samples more cau-
tion is needed.

Further developments to prevent index hopping by usage of
multiple indexes at the same time (Costello et al. 2018; Mac-
Conaill et al. 2018) will hopefully make this interpretation eas-
ier in the future, since then it would be possible to also exclude
contamination from high biomass samples on a run with low
biomass samples. Currently this is not yet the case, which makes
resolving the source of contamination often complicated.

The observation that the concentration of contaminants
is inversely correlated to amplicon concentration has been
reported multiple times (Salter et al. 2014; Jervis-Bardy et al. 2015;
Lazarevic et al. 2016). While it has not yet been implemented, the
microbiome research community might need to consider using a
dilution series of single samples as a control, to make the iden-
tification of contaminants easier, although specific challenges
also apply (Multinu et al. 2018). Standards need to be agreed
upon, since having different dilution ratios might make the com-
parison between studies complicated. The dilution steps will
most likely be dependent on the expected biomass, and a gen-
eral protocol how to determine the appropriate steps will be nec-
essary. Software solutions to address the outcome of such neg-
ative controls have already been developed (Davis et al. 2018),
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and seem to be performing well (Karstens et al. 2018), so that
researchers are directly able to deal with their control samples.

Another indicator of contamination in metagenomic sam-
ples can be derived from the insert size of the reads (Olm et al.
2017). Olm et al. identified a contaminant in their dataset by
aberrant insert size distribution, indicating another origin of the
DNA. The low heterogeneity within the contaminant data may
also be an useful indicator, though it is not applicable in all cases,
e.g. when strain transfer between microbiomes is a part of the
research question (Smillie et al. 2018).

The idea of adding spike-in controls (addition of external
microbial DNA to a sample) could be an interesting approach.
It will not only allow tracking of samples, but also aid absolute
quantification and quantification of cross-contamination/index
hopping (Galan et al. 2016; Hardwick et al. 2018; Palmer et al.
2018; Tourlousse, Ohashi and Sekiguchi 2018), and should prob-
ably be implemented for low-biomass samples. Furthermore, it
seems that some kind of quality control regarding misassigned
sequences is even possible after the experiment has been con-
ducted (Wright and Vetsigian 2016), but as the authors point out,
this might need to be investigated on a per experiment basis,
and therefore does not seem to be very practical in most circum-
stances. Another computational method to correct for misas-
signed sequences has been developed for single-cell data (Lars-
son et al. 2018), but its potential applicability to metagenomics
data still needs to be shown.

For positive controls, the most diverse mock community
available should be chosen, if it is applicable for the proposed
research project. This should minimally prevent overfitting of
a protocol to the used control, although it does not deal with
the microbial dark matter. The possibility of creating one’s own
mock community can be considered, in case these samples will
be processed more often and in case the available mock com-
munities are not enough comparable to the investigated micro-
biome.

If expected organisms do not appear in the mock commu-
nity, then a PCR for identifying species specific genes in the mock
community needs to be performed, to ensure that this organism
was actually present in the sequenced sample. The same applies
for unexpected occurrences of contamination in the mock com-
munity.

In general, for good scientific practice, controls should be
included at all steps. This should be done with the consideration
that the microbiome field is developing rapidly and during the
progress of a research project new methods might be published,
which will help with proper interpretation. Even if proper inter-
pretation is not possible, publishing the results from the positive
and negative controls needs to be mandatory, so that the reader
can interpret the findings with caution if necessary.

CONCLUSIONS

While the field of microbiome studies has become an estab-
lished research area, and many best practices exist (Goodrich
et al. 2014; Boers, Jansen and Hays 2016; Kim et al. 2017; Knight
et al. 2018; Martin et al. 2018; Pollock et al. 2018), they have not
gone in-depth regarding the usage of controls. We summarized
the issues regarding good scientific practice in light of controls,
to make scientists aware of these issues, so that they can be
addressed in their own research. Many of the problems regard-
ing the lack of controls have been recognized very recently, many
even last year, and new strategies to prevent these are likely to be
developed soon. While no standards exist for the processing and
interpretation of controls, any further studies in this field need

to include controls to prevent erroneous results and improve
data interpretation. We therefore urge that future study designs
must include all the necessary controls, as listed below, until the
scientific community has agreed upon better standards:

� A negative control for sampling, to ensure that sampling
equipment (tubes, swaps, etc) are not contaminated.

� A negative control for DNA extractions, to ensure identifica-
tion of potential kit contaminations.

� A negative control for sequencing, to ensure that no large-
scale cross-contamination between samples takes place.

� A positive control for DNA extraction, to ensure that the con-
tained organisms can be sufficiently extracted with the used
methods.

� A positive control for sequencing (a pre-extracted DNA mix),
to ensure that the sequencing itself did not introduce any
errors.

We furthermore would like to appeal to the journals in the
microbiome field to introduce a screening procedure/checklist
for these items, e.g. some journals have done to ensure proper
replication within their publications.
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