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Hyperuniformity and phase enrichment in vortex
and rotor assemblies
Naomi Oppenheimer 1✉, David B. Stein 2, Matan Yah Ben Zion 3 & Michael J. Shelley 2,4✉

Ensembles of particles rotating in a two-dimensional fluid can exhibit chaotic dynamics yet

develop signatures of hidden order. Such rotors are found in the natural world spanning vastly

disparate length scales — from the rotor proteins in cellular membranes to models of

atmospheric dynamics. Here we show that an initially random distribution of either driven

rotors in a viscous membrane, or ideal vortices with minute perturbations, spontaneously self

assemble into a distinct arrangement. Despite arising from drastically different physics, these

systems share a Hamiltonian structure that sets geometrical conservation laws resulting in

prominent structural states. We find that the rotationally invariant interactions isotropically

suppress long-wavelength fluctuations — a hallmark of a disordered hyperuniform material.

With increasing area fraction, the system orders into a hexagonal lattice. In mixtures of two

co-rotating populations, the stronger population will gain order from the other and both will

become phase enriched. Finally, we show that classical 2D point vortex systems arise as

exact limits of the experimentally accessible microscopic membrane rotors, yielding a new

system through which to study topological defects.
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Two-dimensional (or nearly so) fluid flows show rich and
complex vortical dynamics. These can arise from flow
interactions with boundaries1,2, the inverse cascades of 2D

turbulence3–5, from Coriolis force-dominated atmospheric flows6,
and from quantization effects in superfluid He-II7,8. Point vor-
tices have long been staples for the modeling of such inertially
dominated inviscid flows. Kirchoff9 was the first to describe
point vortices using a Hamiltonian framework. His work was
extended by many others10–13, notably, Onsager14 in his statis-
tical mechanics treatment of 2D turbulence as clouds of point
vortices.

Remarkably, structurally identical Hamiltonian and moment
constraints can arise in the microscopic, viscously dominated realm
from a strict balance of dissipation with drive on immersed rotating
objects. These objects include models of interacting transmembrane
ATP-synthase rotor proteins15–17, and the planar interactions
of rotors—microscopic particles driven to rotate by an external
torque18,19. We refer to such systems as BDD systems, as in
balanced drive and dissipation. In modeling rotational BDD systems,
other physical effects may also come into play, such as steric
interactions, that can yield interesting complexities17. Assemblies of
interacting, driven-to-rotate particles have become an area of
intensifying interest in the active matter community18–26.

Here, we study both a BDD system of rotating microscopic
particles—membrane rotors—immersed in a flat membrane, and
point vortices which are a particular limit of this BDD system. For
both, symmetries in the Hamiltonian, H, lead to conservation
laws that are geometrical in nature, bounding the proximity and
distribution of particles. We derive a connection between
the Hamiltonian and the structure factor, S(q) (where q is
the wavevector), which can be used to place bounds on spatial
correlations,

H½ρðrÞ� ¼ NΓ2

4π

Z
dqSðqÞeΨðqÞ; ð1Þ

where eΨ is the Fourier transform of the stream function. In the
case of point vortices, eΨðqÞ ¼ 1=q2, where q= |q|. As we show,
Eq. (1) argues that this system should tend towards hyper-
uniformity. That is, the long-wavelength configuration at steady
state is characterized by an isotropically vanishing structure fac-
tor, S(q→ 0)→ 0, leading to an isotropic band-gap27–29. To
investigate this prediction, we numerically simulate assemblies of
both BDD and point vortices and observe (see Fig. 1): (i)
hyperuniformity for BDD systems; (ii) evidence that point vortex
systems can become hyperuniform depending on how they are
perturbed; (iii) phase enrichment (in both cases); and (iv) crys-
tallization (for BDD). Our observations lead us to conclude that
rotational dynamics provide a mechanism for the self-assembly of
particles into a disordered hyperuniform 2D material.

Results
Dynamics of vortex/rotor ensembles. We begin by introducing a
single vortex in an ideal inviscid fluid. We then describe the flow
generated by a point rotor in a viscous membrane and show that
the two flows are identical in a biologically relevant limit. We use
this equivalence and apply known tools from the study of ideal
vortices on both systems. Namely, the linearity of the equations
enables extending the result of a single vortex to the flow gen-
erated by an ensemble of vortices, which, in turn, could also be
described by a Hamiltonian.

An ideal point vortex is given by a singular vorticity,
ω=∇ × v= δ(r). A 2D incompressible fluid can be described
using a stream function Ψ such that the velocity, v, is given by
v= ∂⊥Ψ. This equation, combined with the equation above gives,
Ψ ¼ � 1

2π log r (ref. 12). The flow, v(r), therefore, scales as 1/r,
where r= ∣r∣.

We switch now to a point rotor in a viscous membrane,
driven by an external torque τ (see Fig. 2A for a schematic
representation). Following Saffman and Delbrück’s seminal
work30, and others that followed15,16,31–33, we assume that the
membrane is incompressible (∇ ⋅ v= 0), and that inertia is
negligible. Under these assumptions, the Stokes momentum
conservation equation for the membrane reads,

0 ¼ η2D∇
2v þ η3D

∂u±

∂z

����
z¼0±

þ τ∂?δðrÞ; ð2Þ

where v is the 2D velocity in the plane of the membrane, u± is the
3D flow in the outer fluids, η2D is the 2D viscosity, and η3D is the
viscosity of the outer fluids. The second term on the right-hand
side is the surface shear stress of the outer fluids, and the third
term is the force due to a rotating point object. There is no
pressure contribution when the motion is purely rotational. This
equation is coupled to the equations of the outer fluids. It is easy
to solve the above equations using a 2D Fourier transform
(eFðqÞ ¼ R1

�1
R1
�1 FðrÞe�iq�rd2r), giving:

evðqÞ ¼ Γ∂?eΨ ; eΨ ¼ 1

qðqþ λ�1Þ ; ð3Þ

where Γ= τ/η2D, and λ= η2D/2η3D is the Saffman Delbrück
length. At small distances (r ≪ λ), momentum travels in the
plane of the membrane. At large distances (r≫ λ), momentum
travels through the outer fluid as well34,35. In real space, Ψ(r)= 1/
4(H0(r/λ)− Y0(r/λ)), where H0 and Y0 are zeroth-order Struve
function and Bessel function of the second kind, respectively.

In the limit of small distances, r ≪ λ, the stream function is,
Ψ � � 1

2π log r, i.e., exactly the same as for an ideal point vortex.
In the opposite limit, r≫ λ, the stream function becomes Ψ ¼ 1

2πr
as in quasigeostrophic (QG) flows—atmospheric or oceanic flows
coming from gradients in pressure coupled to the Coriolis force36,

Fig. 1 Three different structural states of 2D vortices/rotors. (A) Hyperuniformity for Euler point vortices, (B) Hyperuniformity for QG rotors/surface
rotors, (C) Phase enrichment induced by circulation differences where green (black) represents vortices of high (low) circulation, and (D) Crystallization
arising from hydrosteric interactions. The insets of (A), (B), and (C) show the structure factor, S(q). In (A) and (B), S(q) decays to zero at small q,
indicating that the distribution is hyperuniform. In (C), the structure factor shows the six distinct peaks of a hexagonal lattice.
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or driven rotors on the surface of a fluid22. A membrane rotor,
therefore, transitions from a point vortex for Euler at small
distances to that of QG flow at large distances. Thus, the velocity
diverges (decays) as 1/r (1/r2) in the limit of small (large)
distances (see Fig. 2B, C). For simplicity, we work primarily in the
limit of small distances, r ≪ λ, since in this limit the dynamics
in a membrane converge with those of point vortices (many
results still apply to the more general case as shown in the
Supplementary Figs. 5 and 6). In what follows, we will use the
term point vortices when there are only hydrodynamic interac-
tions and the term rotors when the particles have steric
interactions in addition to hydrodynamic ones.

The dynamics of N point vortices are dictated by Hamilton’s
equations,

Γivi ¼ ∂?i H; with H ¼ 1
2
∑
i≠j
ΓiΓjΨðjri � rjjÞ; ð4Þ

where ∂?i ¼ ð∂yi;�∂xiÞ, vi is the velocity of the ith vortex, and Γi
is the circulation (proportional to the magnitude of the torque
for rotors, Γi= τi/η2D). The Hamiltonian depends on the
conjugate variables ri= (xi, yi), [normalized by the circulationffiffiffiffiffiffiffijΓij
p

sgnðΓiÞ], i.e., the positions of the vortices12. The symmetries
of the Hamiltonian correspond to conservation laws37. In this
case, we have symmetries with respect to translation in time,
space, and rotation, corresponding to the conservation of the
Hamiltonian itself, and of the first and second moments of
vorticity, L=∑iΓiri= 0 wlog, and M ¼ ∑i;jΓir

2
i . The conserva-

tion of L andM are analogous to the conservation of the center of
mass and to the moment of inertia, with sums weighted by
circulation instead of mass. From the conservation laws we can
deduce that the initial area cannot change dramatically. Particles
cannot drift to infinity since the second moment is fixed, nor can
they collapse to a point since the Hamiltonian is conserved. These
properties are readily observed in simulations. Figure 2D shows
typical trajectories of 200 membrane rotors. The initial distribu-
tion is random in a predefined finite area, and the dynamics are
chaotic38. The final configuration occupies nearly the same region
of space as the initial configuration does, and the conservation
laws hold to high precision in our simulations, as detailed in
“Methods”. This self confining property of vortex dynamics has
further consequences, as we now show.

Hyperuniformity. Hyperuniformity is the suppression of density-
density fluctuations at small wavenumbers (or correspondingly, at
large distances)39–41. Disordered hyperuniformity can emerge due to

short-ranged interactions such as those that arise in sheared
suspensions42–44, jammed materials45, and for spinning particles46.
Here, we will show hyperuniformity emerging from long-ranged
interactions, similar to its emergence in sedimentation of irregular
objects47. A good way to characterize hyperuniformity is the struc-
ture factor, defined as SðqÞ ¼ N�1jeρðqÞj2, where ρ(r)=∑iδ(r− ri) is
the coarse-grained density. In a hyperuniform material, S(q) goes to
zero as a power law at small wavenumbers. We present an argument
that a density of point vortices should be hyperuniform due to the
conservation of the Hamiltonian. For a density of rotors, the
Hamiltonian is given by H½ρðrÞ� � Γ2

2

R
dr

R
dr0ρðrÞρðr0ÞΨðjr� r0jÞ:

Using the convolution theorem, we find a general relation between
the Hamiltonian and the structure factor given by Eq. (1). In the case
of point vortices, eΨðqÞ ¼ 1=q2, which gives

H½ρðrÞ� ¼ NΓ2

2

Z
SðqÞ
q

dq: ð5Þ

For the integral of Eq. (5) to converge in 2D, S(q) ~ qα near the
origin, and we must have α > 0. In other words, an ensemble of point
vortices should be hyperuniform. Figure 3B shows an apparent
α ~ 1.3 scaling for point vortices, consistent with the above argument.

Using simulations, we show that a set of N vortices, uniformly
distributed within a radius R, evolves to a disordered steady state
with a hidden order visible to the naked eye (compare Fig. 3A left
and right). We quantitatively characterize the system in steady
state in three ways: (1) The structure factor: At steady-state S(q)
shows a distinct cavity, at q ≈ 0, S(q)→ 0, for both points
vortices (Fig. 3A) and rotors (Fig. 3C). (2) Perturbations: We
demonstrate that hyperuniformity is robust under different
perturbations, be it in the form of numerical errors, repulsive
interactions, or impurities (in the next section). For point
vortices, the steady state appears later and later as the timestep is
decreased (see Supplementary Fig. 1), suggesting that perturba-
tions are necessary for convergence, here very small but
persistent time-stepping errors48. We suspect that perturbations
that break the rotational symmetry of the Hamiltonian are
required, as testing a smaller ensemble of 1000 point vortices
with a symplectic integration scheme, based on the exact solution
of pair interactions49, showed little sign of hyperuniformity (see
Supplementary Fig. 2 and “Methods”). The observed relaxation
toward hyperuniformity is consistent with the critical slowing
down reported for other systems40. Adding steric interactions,
hyperuniformity appears on a timescale that is independent of
the timestep. Moreover, with steric interactions, as the area
fraction ϕ of the particles is increased, the system transitions

Fig. 2 Fluid flow and dynamics for membrane rotors. A A representation of a membrane rotor—a disk rotating due to a torque τ in the plane of the
membrane. B The velocity field due to a membrane rotor (solid line) which scales as a point vortex v ~ 1/r at small distances (dotted), r/λ ≪ 1, transitioning
to a QG behavior at large distances v ~ 1/r2 (dashed). C Contour dynamics of an ellipse with radii ratios rl/rs≤ 3, where rl (rs) is the major (minor) axis.
Starting from the same contour, the dynamics differ according to the radius relative to the SD length. Blue is in the limit rl ≪ λ. In this limit, the ellipse is
rotating as a rigid body, as predicted by Kelvin65 for an elliptic patch in an Euler fluid. Black is in the limit rl≫ λ, no longer conserving its shape since the
large distance flow is in the quasigeostrophic regime. D 200 point membrane rotors, blue is the initial random configuration, black is the final configuration.
Solid line shows typical trajectory of an individual vortex. Note that the area did not change considerably since the system of vortices is self-bounding.
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from disordered hyperuniform, to an ordered hyperuniform
hexagonal lattice at ϕ ~ 0.5, as can be seen in Fig. 3C (as a sanity
check we show in Supplementary Fig. 3 that a confined,
rotationally sheared suspension does not become hyperuniform).
The inset of Fig. 3B shows the averaged structure factor where at
intermediate area fractions we see Percus–Yevick type features
for the structure factor of disks50. (3)The relative deviation: We
observe that at late times the ensemble of point vortices rotates
almost as a rigid body and each particle nearly goes back to its
position at the previous cycle (see Supplementary Fig. 4). The
system may seem to have reached an absorbing state, but note
that the relative deviation (as defined in Fig. 3D) only measures
changes over a single cycle. The motion of vortices over many
cycles is still chaotic. Figure 3D shows the trajectory of a few
vortices over ~115 cycles, showing Brownian-like dynamics.
Similar results were obtained for membrane rotors at an area
fraction of ϕ= 0.1. For sufficiently large area fractions, the
system crystallizes and the ensemble rotates as a rigid body
where relative deviations are close to zero over many cycles.

Rotation-induced phase enrichment. We now show that for
mixed populations of fast and slow rotating particles, there is
phase enrichment of both populations and hyperuniformity of
the fast ones. Consider a mixture of two equally numbered
populations (ρl= ρh at t= 0) initially placed within the same
radius R. ρl rotates slowly with Γl ≪ Γh, where Γh is the circu-
lation of the second population. Figure 4A shows long-time
simulation results for 10,000 point vortices. The two populations
behave very differently. The fast vortices remain in a disk of only
slightly smaller size than their initial area (Fig. 4B). The slow
particle distribution shows a significant expansion. In addition,
there is a striking difference when comparing the independently
computed structure factors of these two populations, the fast
vortices are hyperuniform with S(q) ~ q1.4, whereas the slow ones
show no signs of hyperuniformity (Fig. 4C). This difference is
dramatic enough to be visible in a cursory examination of the
separate distributions; see Fig. 4A.

A heuristic model sheds light on this phenomenon (see
Supplementary Note 1). Above, each vortex population starts

Fig. 3 Hyperuniformity in ensembles of point vortices and rotors. A Snapshots of 10,000 point vortices initially (left) and at steady state (right). Insets
show the structure factor, S(q) with a distinct cavity at steady state. B Angular average of the structure factor shown in (A), in a log-log scale with solid line
showing a q1.3 scaling. Error bars are standard deviation over ten well-separated timesteps. Inset shows the structure factor of the rotors shown in (C) with
increasing hue corresponding to increased concentration ϕ= (0.14, 0.24, 0.37, 0.54). Solid line is the same α ~ 1.3 scaling. C Steady-state configurations
of 2000 membrane rotors with the corresponding structure factors, showing a transition from disordered hyperuniformity to a hexagonal lattice. Particles
are colored according to their local bond orientation parameter ψ6. For particle j, ψj

6 ¼ ∑ie
6iθij , with the sum taken over nearest neighbors as found by a

Voronoi diagram. The table gives ensemble-averaged values, N�1∑jψ
j
6. D A plot of the relative deviation for each particle, with the relative deviation of

particle i defined by how far it is displaced from its position at the previous cycle, i.e., ∣ri(t+ tcyc)− ri(t)∣. The cycle time is calculated at steady state as the
average time it takes the system to rotate by 2π. Particles are colored by their relative deviation, from blue to yellow with increasing deviation. The plot at
the bottom shows the strobed position of four particles during a time interval of Δt≈ 115 cycles; the particles in the strobed frame move along Brownian-
like trajectories.
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with uniform density within the disk of radius R. Consider as a
candidate long-time solution one where each population remains
of uniform density, ρl and ρh respectively, and confined within
concentric circles of radii Rl and Rh. The circulations of each
population, Γl and Γh, and the system Hamiltonian H and second
moment M are fixed by the initial configuration, which restricts
the possible values of Rl and Rh. There are two possible solutions.
In the first, Rl= Rh= R. In the second, the radius of the fast
vortices slightly decreases to Rh, allowing the slow vortices to
expand to a larger radius Rl given by R2

l ¼ ðγþ 1ÞR2 � R2
hγ,

where γ= Γh/Γl (see Fig. 4D). For large γ, we find that
Rh≃ R(1− β/γ), where β is a positive prefactor of order 1. The
slow vortices radius asymptotes to Rl ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β

p
þ Oð1=γÞ.

The numerical results indicate that the outer radius indeed
asymptotes to a finite constant as γ→∞ (see Fig. 4D and
Supplementary Figs. 6–8).

Why are solutions with two different radii those observed in our
simulations? Such a solution is favored entropically as it maximizes
the number of available states. At large γ, the main entropical
contribution is volumetric, ΔSvolume ¼ 2N logðRfinal=RinitialÞ. Since
the high-circulation vortices hardly change radius, Rh �!γ!1

R, the
change in entropy is coming mainly from the expansion of the low
circulation vortices and is given by ΔStotal � N logð1þ 2βÞ > 0.
Coupling the two populations allows one population to expand
where before it was bounded. The situation is analogous to
depletion interactions, where the net entropy of a system increases
by condensing the large particles allowing for the small particles to
explore a larger volume51. As Onsager first suggested14, in a bound
system, configurational entropy must have a maximum as a
function of energy above which demixing of two populations can
be observed.

A simple way to estimate the entropy in a system is by using
LOSSLESS compression, as suggested by refs. 52,53. Compressing
plots of particle positions in a system of 10,000 point vortices with

circulation ratio Γh/Γl= 128 shows an increase in file size for ρl and a
decrease for ρh, while the combined system is increasing, see Fig. 4E.

Discussion
We have shown that driven rotors in a membrane or a soap film,
like point vortices in an ideal 2D fluid, have geometrical con-
servation laws which limit their distribution. These conservation
laws suggest different possible structural states such as hyper-
uniformity and phase enrichment. We suspect that a completely
pure system of point vortices may never reach hyperuniformity
due to a dynamical bottleneck, but have shown that hyper-
uniformity is robust to two forms of perturbations, whether
arising due to numerical errors or steric interactions. For rotors
with steric interactions, the unbounded ensemble crystallizes into
a hexagonal lattice when the area fraction ϕ≳ 0.5 (see also ref. 17).
We have limited the discussion to membrane rotors and vortices,
but the results for hyperuniformity and phase enrichment hold for
other settings in which particles are restricted to a 2D plane, e.g.,
rotors at the surface of a fluid (see Supplementary Figs. 5 and 6).
In fact, while this paper was under review, hyperuniformity was
reported in populations of algae swimming in right circles at an
interface54.

What is especially interesting about our particular BDD system is
its potential for experimental realizability, its moment and Hamil-
tonian structure, and that its near-field interactions (i.e., below the
Saffman–Delbruck length) are identical to those of Euler point
vortices. Further, the far-field interactions of membrane rotors are
identical to those of point vortices of the semi-quasigeostrophic
equations36,55,56 used to model atmospheric flows. Thus, to observe
the interesting dynamical features we describe, one does not need to
go to the atmospheric scale, or cool a fluid to near-zero tempera-
ture. In principle, one can simply observe microscopic particles on a
soap film, in smectic films, a membrane, or even at the surface of a
fluid19,22,57,58.

Fig. 4 Two populations of vortices with different circulations showing phase enrichment, Γl= 2π in black and Γh= 256π in green. A Steady-state
configuration for ten thousand point vortices of a circulation ratio γ= Γh/Γl= 128. Each inset shows a close-up view of one of the populations within the
same physical region. B Density of the configuration in (A), ρ(r), averaged over angle as a function of distance from the center. Note how density
fluctuations are suppressed for the high-circulation vortices, as is more clearly observed by the averaged structure factor, S(q), in (C), where the dashed
green line shows a ~ q1.4 power law. Error bars are standard deviation over ten well-separated timesteps shown as transparent dots on top of the average
result. D The second moment for N= 10,000 vortices. Plotted separately for the high (in green) and low (in black) vortices at steady state as a function of
γ (i.e., increasing Γh). E LOSSLESS compression for the two populations showing an increase (decrease) in file size (an estimate of entropy) for the low
(high) circulation vortices over a couple of cycles. In blue is the file size for the total system. Solid line is a moving average, time is normalized by an
average cycle time tc.
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Methods
Simulations. Simulations were performed in Python. Random initial configura-
tions within the unit disk were found by rejection sampling (points in the unit
rectangle were sampled uniformly, transformed to the rectangle [−1, 1]2, and those
whose radius exceeded the target radius were discarded). The initial Hamiltonian
H0 and second moment M0 are computed at t= 0, and the relative errors
ϵH(t)= ∣Ht−H0∣/H0 and ϵM(t)= ∣Mt−M0∣/M0 are monitored as a measure of
fidelity. For simulations of rotors (i.e., with steric repulsion), a 5th order explicit
Runge–Kutta method based on the Dormand–Prince scheme59 with a fixed
timestep size of δt= 10−7 was used. Long integration times were required for
simulations of point vortices, and for these simulations an explicit eighth-order
adaptive method based on the Dormand–Prince scheme60,61 was used, with both
relative and absolute tolerances set to 10−6. The specific implementation of the
scheme used was the DOP853 method of scipy.integrate62. For simulations of
10,000 point vortices with Γ= 2π, ϵH(t) < 1.5 × 10−3 and ϵM(t) < 4 × 10−5 up to
t ≈ 1.6 × 104 cycles, while for simulations with 5000 vortices with Γ= 2π and 5000
vortices with Γ= 256π, ϵH(t) < 0.1, and ϵM(t) < 4 × 10−5 up to t ≈ 105 cycles. Time
is normalized by the average cycle time, tc ≈ 4π2R2/∑iΓi, where R is the initial
radius. We tested running these simulations for 1000 particles with symplectic time
integration based on an exact solution of two point vortices49. Simulations were
run up to t ~ 1.4 × 105 cycles. Due to numerical constraints, we did not run larger
ensembles or longer times. At these times, we did not observe clear signatures of
hyperuniformity, though there was an indication of a slight decrease in S(q) for low
q. Beginning the simulation with a hyperuniform state, and running the symplectic
integration over 5 × 104 cycles preserved hyperuniformity (see Supplementary
Fig. 1).

Steric interactions were taken as the repulsive part of a harmonic potential, i.e.,
for two particles whose centers are distance ri apart, F=− krij if rij < 2a and zero
otherwise. The use of a harmonic potential, rather than a sharp step function for
hard core particles, provided improved numerical stability and convergence. A
large k value was chosen to ensure no overlap between particles, k= 106, for
particles of radius a= 0.01.

Structure factor. To accurately compute the structure factor S(q) we use a type-1
non-uniform fast-Fourier transform63. Explicitly, points are restricted to a win-
dowing region that is confined entirely within the unit disk. The frequencies eρðqÞ
are computed for the first 512 modes in each direction, and the average value (i.e.,eρð0Þ) is set to 0. This results in structure factors in the plane, such as those shown in
Fig. 3. Except in those cases where crystallization occurs, these structure factors are
azimuthally isotropic. To summarize this information, the angular average over the
structure factor was calculated by slicing the result to 1000 equal bins between qmin
and qmax and taking the mean of the results that fell within each slice.

Compression. A plot of the positions of the point vortices was compressed using
PNG with AGG backend. Each vortex was plotted by a single pixel. The total size of
the plots was kept fixed in time. The figure size was chosen to minimize overlap
between neighboring vortices but maintaining a computationally accessible file size.

Data availability
All data that support the findings of this study can be reproduced using the code available
on https://github.com/dbstein/rotor_hyperuniformity64. Data files are also available
upon request.

Code availability
The code for generating and analyzing the data presented in this paper is available at
https://github.com/dbstein/rotor_hyperuniformity64.
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