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Abstract
Bee species interactions can benefit plant pollination through synergistic effects and com-

plementary effects, or can be of detriment to plant pollination through competition effects by

reducing visitation by effective pollinators. Since specific bee interactions influence the for-

aging performance of bees on flowers, they also act as drivers to regulate the assemblage

of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model

system to study the foraging response of honey bees to the occurrence of bumble bees at

two types of sites surrounded by a high amount of natural habitats (� 58% of land cover)

and a low amount of natural habitats (� 12% of land cover) in a highland agricultural eco-

system in China. At the individual level, we measured the elapsed time from the departure

of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flow-

ers occupied by bumble bees, and the length of time used by honey bees to explore floral

resources at the two types of sites. At the community level, we explored the effect of bumble

bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively,

bumble bee visitation caused an increase in elapsed time before flowers were visited again

by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers

occupied by bumble bees, and a shortened length of time the honey bee takes to examine

and collect floral resources. The number of overall bumble bees on squash flowers was the

most important factor explaining the difference in the distribution patterns of honey bees at

the community level. Furthermore, decline in the number of overall bumble bees on the

squash flowers resulted in an increase in the number of overall honey bees. Therefore, our

study suggests that bee interactions provide an opportunity to enhance the resilience of

ecosystem pollination services against the decline in pollinator diversity.
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Introduction
Wild bees and managed honey bees are declining at both local and global scales [1–3]. Habitat
loss is one of the key factors driving the decline of wild bees. The responses of wild bees and
managed honey bees to habitat loss are often quite different due to their diverse life history [4],
and are affected differently according to the intensity of environmental disturbances [5]. In
many cases, when wild bee diversity declines due to anthropogenic disturbances, honey bee
abundance does not respond in kind [4–6]. While the spatial-temporal patterns of visiting den-
sities of wild bees and honey bees in agricultural ecosystems have been well documented [5],
the species interactions between wild bees and honey bees in degraded habitats are not well
understood.

Inter- and intra-specific bee species interactions act as important factors regulating the
foraging activities of bees on flowers and the services they provide to plants. Conspecific and
heterospecific encounters benefit crop pollination through several mechanisms known as syn-
ergistic effects [3,7,8] or complementary effects [9,10]. On the contrary, bee interactions are
recognized as drivers to repel effective pollinators [11,12], showing negative effects on plant
pollination. Numerous studies have revealed the negative influence of alien pollinators, such as
Apis mellifera and Bombus terrestris, on the restricted foraging activities of native pollinators
[13,14], leading to pollinator replacement and reduced pollination [14,15]. However, the func-
tions of bee interactions are not fully understood. Since bee interactions show diverse effects on
pollinator performance [12,16], they can influence the flower visitors and result in different
pollination services to plants [17]. Therefore, bee interactions may act as drivers regulating pol-
linator assemblages and pollination services of ecosystems.

In this study, we selected the squash flower (Cucurbita pepo L.) and its pollinators as a
model system in the highland agricultural ecosystems in China to explore the effects of species
interactions between bumble bees and honey bees on the foraging activities and assemblages of
honey bees. Bumble bees and Asian honey bees (Apis cerana Fab.) are native pollinators of
squash in this region [18]. At the individual level, we explored the variability of foraging activi-
ties of honey bees in response to the occurrence of bumble bees on squash flowers. At the com-
munity level, we studied the assemblages of honey bees in response to the occurrence of
bumble bees. Specifically, we examined the following four questions: 1. Do flowers previously
visited by a bumble bee experience a longer period of time before it is revisited by another
newly-arriving bee compared to the flowers previously visited by a honey bee? 2. What are the
selections of flowers by honey bees which have been previously occupied by bumble bees? 3.
Do honey bees take an increasing amount of time to collect food resources from squash flowers
when bumble bees are present and visiting the flowers? 4. How do bumble bees influence the
distribution patterns of honey bees on squash at a community level?

Materials and Methods

Ethics statement
This study was carried out in private, farm-owned fields, and all farmers gave permission to
conduct the study. No additional permits or approvals were needed to sample the bees because
the fields are not protected in any way. The field studies did not involve endangered or pro-
tected species.

Study site, crop and pollinator
The study was carried out at eight sites near Kunming (25°07’N, 102°50’E), Yunnan Province,
China. The study sites were characterized by two different land-use types, with four sites
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surrounded by a high proportion (� 58%) of natural and semi-natural habitats (forest and
grassland) (hereafter HN habitats) and another four sites by a low proportion (� 12%) of natu-
ral and semi-natural habitats (hereafter LN habitats) (Table 1). Previous studies have demon-
strated that natural and semi-natural habitats surrounding agricultural ecosystems determined
bumble bee visitation rates to squash flowers and thereby secure crop pollination in the high-
land agricultural ecosystems [18]. Only honey bees were observed on squash flowers at the four
sites in the LN habitats according to our field observations for five years (2009–2014). Managed
Asian honey bees, A. cerana, were abundant at both types of sites [18]. Our interviews with
local farmers and residents indicated that at least five colonies of managed honey bees were set
within a distance of 500 m to the fields, ensuring all fields had large honey bee populations
nearby. As a result, the four sites in the HN habitats had both bumble bees and honey bees
present, whereas the other four sites in the LN habitats had only honey bees. The minimum
distance between each of the sites was 2.0 km, which was longer than the general foraging dis-
tance of bumble bees [19,20] and Asian honey bees [21]. Wild flowering plants around the
fields included Trifolium spp., Vicia spp., Rosa spp., Hypericum bellum Li, and Oenothera rosea
L. The small populations of wild flowers were irregularly located at the field margins, hedge-
rows, and surrounding natural habitats. Areas of squash fields ranged from 221 m2 to 340 m2

(mean = 257), whereas wild plants were often in small patches and covered several square
meters per occurrence, suggesting that the squash flowers at the peak of blooming produced a
higher amount of floral resources (nectar and pollen) than the wild plants. There was no other
massive flower crop at the two types of fields during the field surveys. Pesticides and herbicides
were applied at all field sites, but field surveys were conducted at least two days after chemical
applications.

Cucurbita pepo had separate pistillate or staminate flowers, both of which produced a high
volume of nectar, ranging from 90 to 120 ul for pistillate flowers and 25 to 40 ul for staminate
flowers [22,23]. Additionally, the staminate flowers produced an average of 16 × 103 pollen
grains per flower [23]. Pollinators directly imbibed the nectar distribution around the base of
the style bordered by an annulus [23]. On the staminate flowers, pollinators collected the nectar
through nectary pores at the base of staminate flowers by extending their proboscises to the

Table 1. The eight study sites exploring the influences of bumble bee visitation on the foraging behaviors and distribution patterns of honey bees.

Effects at the individual level b Effects at the community
level b

Sites Percentage of
natural and semi-
natural habitat a

Occurrence of
bumble bee
visitation on
squash flowers

Period for
Departure-
arrival Route

Period for
Behavioral
Encounters on
Flower Petals

Period for
Examining and
Collecting Food
Resources

Foraging
patterns of
honey bee
community

No. of
fields

Zhuangfan 0.65 yes
p p p

8

Tuanshan 0.58 yes
p

7

Dabai 0.62 yes
p p p p

2

Sansimu 0.69 yes
p p p

2

Dabanqiao 0.02 no
p p p

5

Shuanglong 0.12 no
p p p p

6

Shujie 0.09 no
p p p

3

Changkou 0.02 no
p

2

a Percentage of natural and semi-natural habitats (forest and grassland) was calculated at 750 m spatial scale.
b p indicates the sites where field sampling was carried out.

doi:10.1371/journal.pone.0144590.t001
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underneath the antheriferous columns (anthers) [23]. All field observations and sampling were
conducted at peak flowering time, on sunny days with wind speeds less than 0.3 m/s.

Effects on foraging behaviors of honey bees at the individual level
Foraging behavior of pollinators collecting floral resources on squash flowers was arbitrarily
divided into three successive periods, based on both the bees’ positions on squash flowers (e.g.
pre-arrival at the flowers; landing on the petal of the flowers; and lingering near the stigma/
anther of the flowers) and the differences in which pollinators interacted with other individu-
als. The three periods were named as: the Period for Departure-arrival Route, the Period for
Behavioral Encounters on Flower Petals, and the Period for Examining and Collecting Food
Resources (Fig 1).

The Period for Departure-arrival Route referred to the duration lasting from the departure
of prior bee(s) to the arrival of conspecifics or heterospecifics. It was measured using the
elapsed time (in seconds) from the departure of the prior pollinator(s) to the arrival of another
pollinator, also formulated here as a departure-arrival route. During this period, pollinators
mainly use olfactory cues to locate the flowers, without any physical contact with other individ-
uals. We hypothesized that the flowers previously visited by bumble bees required a longer
time to be revisited by a newly-arriving honey bee, compared to the flowers last visited by
honey bees (Fig 1).

The Period for Behavioral Encounters on Flower Petals referred to the duration from the
bee landing on a petal surface to its arrival at the base of the stigma/anther. It was measured
using the behavioral response (e.g. probing or leaving) of the newly-arrived pollinators to the
flowers occupied by other conspecifics or heterospecifics. During this period, pollinators
mainly used visual and tactile cues, potentially with physical contacts with other individuals.
We expected that honey bees preferred leaving the flower after encountering bumble bees
(Fig 1).

The Period for Examining and Collecting Food Resources referred to the duration from bee
arrival to the base of stigma/anther to departure always from the flower, and this period

Fig 1. Three periods of foraging behavior of honey bees on a squash flower. (A) top view; (B) lateral view.

doi:10.1371/journal.pone.0144590.g001
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potentially contained behaviors such as examining and collecting nectar and pollen. We mea-
sured using the length of time (in seconds) for pollinators to examine and collect the floral
resources. During this period, pollinators had physical contact with other conspecifics or het-
erospecifics. The length of time was associated with the amount of floral resources. Honey bees
were assumed to spend more time in handling floral resources at sites within the LN habitats
than at sites within the HN habitats (Fig 1).

Differences in foraging activities of the pollinators during the three periods were compared
between the HN and LN habitats. Differences in bee interactions across the three periods (a
full analysis of foraging behavior on a squash flower) could be revealed by the aggregate effects
from the three individual periods we measured.

The period for departure-arrival route. We conducted sampling in two fields, with one
field within the HN habitats (called Dabai) and another field within the LN habitats (called
Shuanglong) (Table 1). One 20 m × 2 m transect was set in the center of each field; five 2 m × 2
m sample plots separating each other with a distance of 2 m were placed within the transect.
One pistillate flower and one staminate flower from each plot were randomly marked and all
observations were conducted on the flowers. In total, five pistillate flowers and five staminate
flowers were selected from each field. The observers stood outside the sample plots and
recorded all bees (both honey bees and bumble bees) subsequently visiting the flower. Using a
stopwatch, we measured the elapsed time (in seconds) from the departure of the prior bee(s)
until the arrival of the next bee landing on the petal of the flower. Bees were recorded as honey
bees or bumble bees in fields because we wanted to know how honey bees and bumble bees
influenced each other. If two or more honey bees were simultaneously occupying the flower
during the field sampling, which occurred in Shuanglong, the elapsed time was recorded from
the departure of last bee. We did not find any two individuals (either two bumble bees or two
honey bees) simultaneously foraging on a single flower at Dabai. The two flowers within the
sample plot, as well as the plots within the transect, were sampled successively, with each flower
sampled for at least 20 minutes. This methodology was useful to measure the length of time for
a departure-arrival route with known prior bee(s) and the next-arriving bee in field conditions.
Field sampling was conducted between 08:00 am to 10:30 am fromMay 10 to June 7, 2014. A
total of 300 min were sampled at Dabai and 280 min at Shuanglong, which included 187 and
120 departure-arrival routes, respectively.

At Dabai, the elapsed time sampled on pistillate and staminate flowers were analyzed sepa-
rately due to their differences in rewards and attractiveness to bees [22,23], using student t test.
At Shuanglong, the sample size of the elapsed time on staminate flowers was quite small
(n = 13). Moreover, the elapsed time was just recorded for staminate flowers previously occu-
pied by only one honey bee. We compared the elapsed time for the pistillate flowers and the
staminate flowers both previously occupied by only one honey bee and found there was no sig-
nificant difference between them (t test: t = 0.304, df = 15.34, p = 0.765; log (x+1) transforma-
tion of variables). Therefore, the elapsed time for pistillate and staminate flowers both
previously occupied by one honey bee was pooled together. One-way Analysis of Variance
(ANOVA) was conducted to test the differences in the elapsed time for the flowers previously
occupied by one, two, three, or four honey bees. The elapsed time was log (x+1) transformed to
meet the assumption of potential normally distributed residuals and homogeneity of variance.
Student t test and ANOVA were conducted using R 3.1.0 software [24].

The period for behavioral encounters on flower petals. Field sampling was carried out in
six fields, with three fields within the HN habitats and three fields within the LN habitats
(Table 1). One 20 m × 2 m transect was placed in the center of each field. The observers walked
along the center line of transect and selected the flowers occupied by bees (e.g. bumble bees or
honey bees) collecting floral resources. When a newly-arriving bee landed on the petal, we
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recorded the response of the newly-arriving bee as ‘Probing’ if it walked towards stigma/anther
to examine food resources; otherwise, we recorded the response of the newly-arrived bee as
‘Leaving’ if it flew away within two seconds. The newly-arrived bee and the bee(s) already occu-
pying the flower were recorded as bumble bees or honey bees. The foraging responses were not
used if two bees simultaneously arrived and landed on the petal of the same flower, because we
were not interested in exploring the responses of one newly-arrived bee to another newly-
arrived bee. Each transect was sampled four times to achieve a large sample size between 07:30
am– 11:30 am fromMay 15 to June 7, 2013, and May 7 to June 16, 2014. The transect was sam-
pled once in 2013 and re-sampled three additional times in 2014. In total, 126 instances of
behavioral encounters were engaged at the three fields within the HN habitats and 205
instances at the three fields with the LN habitats.

Four types of encounters (one honey bee encountering one bumble bee, one honey bee
encountering another honey bee, one bumble bee encountering another bumble bee, and one
bumble bee encountering one honey bee, see Results) were observed across the three fields
within the HN habitats. Since sample sizes per-field and per-year were small and insufficient to
test individually, each type of the four encounters from different years and fields were pooled,
respectively. Meanwhile, three types of encounters (one honey bee encountering another
honey bee, one honey bee encountering two honey bees, and one honey bee encountering three
honey bees, see Results) were sampled across the three fields within the LN habitats. Each type
of the three encounters from different years and fields were also pooled due to a small sample
size, respectively. The chi-square goodness-of-fit test was applied to test whether the bees had
an equal probability in flower selection (leaving or probing).

The period for examining and collecting food resources. Field sampling was carried out
in six fields, with three fields within the HN habitats and three fields within the LN habitats
(Table 1). One 20 m × 2 m transect was placed in the center of fields. The observers walked
along the center line of the transect and selected the flowers unoccupied by any bees. If a
newly-arriving bee (e.g. honey bee or bumble bee) happened to land on the flowers and arrived
near the base of the stigma/anther, the observers recorded the time, using a stopwatch, from
the arrival until the departure of the bee(s). The flowers were abandoned if two pollinators
simultaneously accessed the same flower, because the two newly-arrived bees likely disturbed
each other and reduced the length of time used to examine and collect floral resources. Each
transect was sampled once with a similar speed (approximately 10 minutes). Fields were sam-
pled on sunny days, with favorable ambient temperatures (18–22°C). Field sampling was con-
ducted fromMay 20 to June 10, 2014.

The length of time was analyzed separately for pistillate and staminate flowers due to their
differences in rewards and attractiveness to visitors. Since sample sizes of fields between the
HN habitats and the LN habitats were not balanced, we conducted general linear mixed models
(LMMs) to examine the differences in the length of time. In the LMMs, the length of time was
treated as the response variable, with the occurrence of bumble bee visitation (categorical fac-
tors: present or absent) as the fixed explanatory factor and the site as the random explanatory
factor. The length of time was logarithmic transformed to achieve the potential normally dis-
tributed residuals and homogeneity of variance. LMMs were conducted using lmerTest pack-
age [25], which was built upon the lme4 package [26] to calculate the p value for coefficients
using Satterthwate's approximations for degrees of freedom [25]. We ran the anova[kmd] func-
tion in the lmerTest package to perform the ANOVA.

Influence of Bee Interactions on Foraging Activities of Honey Bees
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Effects on assemblages of honey bees at the community level
A total of 19 fields from four sites within the NH habitats and 16 fields from another four sites
within the LH habitats were selected (Table 1). Within the sites, the number of fields was deter-
mined by the availability of squash fields. Mean distance between fields within the site was 115
m. A 35 m × 2 m transect was set in the center of each field. The observers walked along the
center line of the transect with a similar speed (approximately five minutes) and recorded the
number of flowers with only one honey bee (hereafter one-honey-bee instances), exactly two
honey bees (hereafter two-honey-bee instances), three honey bees (hereafter three-honey-bee
instances) and four honey bees (hereafter four-honey-bee instances) simultaneously collecting
the floral resources on a single flower (S1 Fig). Furthermore, we also counted the number of
flowers with one (hereafter one-bumble-bee instances), two, three, and four bumble bees col-
lecting the floral resources. We did not find any flower simultaneously visited by more than
four honey bees, more than one bumble bee, or with one honey bee and one bumble bee
together on the same flower. The occurrences of one, two, three, and four honey bees on a sin-
gle flower were identified in this experiment because we aimed to explore the assemblages of
honey bees at the community level. The total number of overall honey bees within the transect
was achieved by summing the number of honey bees in the four instances. The bumble bees
were identified to a genus level in field. After sampling the pollinator abundance, we imple-
mented a random field collection for bumble bees for 10 minutes. Bumble bee specimens were
deposited in our laboratory and identified to a species level. Bumble bees contained the most
abundant five species Bombus flavescens, B. motivagus, B. breviceps, B. impetuosus and B. ava-
nus. Ten sample circles with a 0.5 m radius (approximately 0.79 m2) separating each other by a
distance of 1 m were placed randomly within the transect. Pistillate and staminate flowers in
the sample circles were counted and flower sex ratio was calculated as the percentage of pistil-
late flowers accounting for the total flowers. Each field was surveyed once and carried out
between 08:00 am to 10:30 am fromMay 15 to June 20, 2013.

Distribution patterns of honey bees foraging on squash flowers at the community level were
defined here by the percentages of the four instances of honey bees (one, two, three, or four
honey bees visiting a single flower) accounting for the overall instances of flowers occupied by
honey bees. We used the percentage, instead of the absolute number, of the four instances of
honey bees as an indicator to describe the distribution patterns of honey bees on squash flowers
because the percentage depicted the dynamics of the four instances of honey bees and revealed
their movements between the flowers in field conditions at the community level. For example,
behavioral switches or movements of honey bees between flowers, which were potentially
driven by bee species interactions, could subsequently lead to variations in the percentages of
the four instances of honey bees, but unlikely changed the absolute number of honey bees on
the flowers.

Since the percentages of the four instances of honey bees were highly correlated across the
35 fields (S1 Table), we conducted the principal component analysis (PCA) and used the first
principal component (PC1) to measure the distribution patterns of honey bees. The two low
correlations between the four-honey-bee instances with the two-honey-bee instances and the
three-honey-bee instances (S1 Table) unlikely disturbed the results of the PCA because the
four-honey-bee instances were only recorded twice in the fields within the LN habitats (see
Results) and accounted for less than 0.9% of flower visitations. The PC1 reduced the four vari-
ables into a single measure and integrated 96.98% information of original variables. The per-
centage of the one-honey-bee instances (variable score = -0.82) had a negative loading on PC1,
whereas the percentages of two-honey-bee instances (variable score = 0.69), three-honey-bee
instances (variable score = 0.12), and four-honey-bee instances (variable score = 0.02) all had
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positive loadings on PC1. The PC1 score of each field entered into our next analysis. The PCA
was conducted using the vegan package [27].

We hypothesized that the distribution patterns of honey bees on the squash flowers at the
community level were influenced by the following four factors: the number of overall honey
bees, the number of overall bumble bees, flower sex ratio, and flower density. A generalized
Boosting Regression Trees (BRT) model was applied to explore how the four factors influenced
PC1 when traditional modeling techniques, such as general and generalized linear models,
could not achieve the normal residuals for our dataset [28]. The BRT modeling technique is
widely used in ecology due to its strengths in compatibility for modeling non-linear behavior
of ecological processes and tolerance to spatial autocorrelation [29,30]. BRT models were built
with the gbm package [31] and the dismo package [32]. The dismo package supported the
extended codes for BRT models written by Elith [30], such as the gbm.step function. The
Gaussian loss function was selected in the BRT models because the response variable (PC1)
was a continuous variable. Tree complexity was set to 3, with a learning rate of 0.001 and a bag
fraction of 0.75, respectively [30,33]. The Individual Variance Inflation Factor (VIF) was less
than 4, under the acceptable level of multicollinearity [34]. Goodness-of-fit of models were
measured by: (i) the estimated mean cross-validation deviance, (ii) the coefficient of determi-
nation (R2), and (iii) the Root Mean Squared Error (RMSE) [35,36]. Since flower density and
sex ratio explained totally less than 6.3% of PC1 in the full model (four explanatory variables),
we removed flower sex ratio and/or flower density from the explanatory variables and refitted
the BRT models [30]. However, a reduction in explanatory variables did not increase the
RMSE and the coefficient of determination (R2), nor did it reduce the estimated mean cross-
validation deviance (S2 Table). Therefore, we accepted the full model.

The Wilcoxon test was conducted to test the differences in the percentages of the four
instances of honey bees and the number of the four instances of honey bees between the two
types of sites. The Pearson correlation coefficients were used to measure the relationship
between the number of overall honey bees and the number of overall bumble bees within the
sample transect between the two types of sites.

Results

Effects on foraging behaviors of honey bees at the individual level
In the fields within the HN habitats, the pistillate flowers previously visited by a bumble bee
experienced a significantly longer elapsed time before being revisited again by a new visitor
than the flowers previously visited by a honey bee, no matter if the new visitor was a honey bee
(Fig 2A left: t = 3.16, df = 70.56, p = 0.002) or a bumble bee (Fig 2A right: t = 2.07, df = 55.65,
p = 0.04). Similarly, the staminate flowers previously visited by a bumble bee also experienced a
significantly longer elapsed time before being revisited by a newly-arrived honey bee than the
flowers previously visited by a honey bee (Fig 2B left: t = 3.95, df = 34.51, p< 0.001). However,
while although the staminate flowers previously visited by a bumble bee experienced a longer
time lapse before being revisited by a newly-arrived bumble bee than the flowers previously vis-
ited by a honey bee, significant difference was undetectable (Fig 2B right: t = 0.35, df = 20.11,
p = 0.31). In the fields within the LN habitats, the flowers previously visited by a honey bee
required a significantly shorter elapsed time before the arrival of a new honey bee than the
flowers previously visited simultaneously by two honey bees, three honey bees, and four honey
bees (Fig 2C: ANOVA, F = 18.89, df = 3, p< 0.001).

In the fields within the HN habitats, if a bumble bee had already occupied the flowers, the
newly-arriving visitors, regardless it was a honey bee or a bumble bee, preferred leaving the
flowers. Likewise, the newly-arriving bumble bee also preferred leaving the flowers if a honey
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bee had already occupied the flowers. However, the newly-arriving honey bee preferred prob-
ing the flowers if a honey bee was visiting the flowers (Fig 3A). In the fields within the LN habi-
tats, if a honey bee had already occupied the flowers, the newly-arriving honey bee preferred

Fig 2. Elapsed time (mean ± se) of the Period for Departure-Arrival Route. (A) pistillate flowers at the
fields within the HN habitats; (B) staminate flowers at the fields within the HN habitats; and (C) pistillate and
staminate flowers at the fields within the LN habitats. Numbers in parentheses indicate sample size.
*** < 0.001; * < 0.05; ns: not significant.

doi:10.1371/journal.pone.0144590.g002
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probing the flowers. However, the new-arriving honey bee had an equal probability in response
(leaving or probing) to the flowers occupied by two honey bees or three honey bees (Fig 3B).

The honey bees in the fields within the HN habitats spent a significantly shorter amount of
time to examine and collect floral resources on pistillate flowers (F = 73.39, dfdensity = 4.6,
p< 0.001) (Fig 4A) and staminate flowers (F = 19.65, dfdensity = 3.87, p = 0.01) (Fig 4B) than
those in the fields within the LN habitats.

Effects on assemblages of honey bees at the community level
Across the 35 fields within the HN habitats and the LN habitats, 485 one-honey-bee instances,
134 two-honey-bee instances, 24 three-honey-bee instances, and 2 four-honey-bee instances
were recorded, which totally corresponded to 833 honey bee visitations. In addition, 110 one–
bumble-bee instances were recorded in the fields within the HN habitats. The percentage of
one-honey-bee instances was significantly higher in the fields within the HN habitats than in
the fields within the LN habitats, whereas the percentages of two-honey-bee instances and
three-honey-bee instances were both significantly lower in the fields within the HN habitats
than in the fields within the LN habitats. Nevertheless, the difference in the percentage of four-
honey-bee instances was not examined between the two types of fields (Table 2).

The differences in the distribution patterns of honey bees at the community level (measured
by PC1) between the two types of fields were mainly explained in the BRT model by the num-
ber of overall bumble bees and the number of overall honey bees (Fig 5; S2 Table). The number
of overall bumble bees made the largest contribution to explain the model power (54.7%), fol-
lowed by a second important contributor, the number of overall honey bees (39.0%). Moreover,
the number of overall bumble bees had a negative effect on PC1, whereas the number of overall
honey bees had a positive effect on PC1 (Fig 5).

In field conditions, the number of overall honey bees was significantly negatively correlated
with the number of overall bumble bees, no matter whether the fields within the HN habitats
were analyzed alone (Pearson correlation, r = -0.74; t = -4.35, df = 16, p< 0.001) or in the con-
text of both types of sites together (Pearson correlation, r = -0.69; t = -5.36, df = 32, p< 0.001).

Fig 3. Behavioral responses of a newly-arrived bee to flowers occupied by conspecifics or heterospecifics. (A) responses of a newly-arrived bee in
the fields within the HN habitats; (B) responses of a newly-arrived bee in the fields within the LN habitats. Numbers in bars showed the sample size.

doi:10.1371/journal.pone.0144590.g003
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Consequently, individually the number of one-honey-bee instances, two-honey-bee
instances and three-honey-bee instances were significantly lower in the fields within the HN
habitats than in the fields within the LN habitats, but the difference was undetectable for the
four-honey-bee instances between the two types of sites. Taken together, the number of
instances of overall honey bees (1–4 honey bees) was significantly lower in the fields within the
HN habitats than in the fields within the LN habitats (Table 3).

Fig 4. Length of time (mean ± se) used by a honey bee to examine and collect the floral resources. (A)
pistillate flowers; (B) staminate flowers. Numbers in parentheses indicated sample size. *** < 0.001.

doi:10.1371/journal.pone.0144590.g004
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Discussion
Bee species interactions influenced the foraging activities of honey bees on squash flowers in
the highland agricultural ecosystems, leading to a longer elapsed time for the flowers to be
revisited by a honey bee (Fig 2), an avoidance by the newly-arrived honey bees to visit a flower
occupied by a bumble bee (Fig 3), and a short length of time used by honey bees to examine
and collect floral resources (Fig 4). Nectar and pollen were two major components for which
flower visitors foraged. Different bee species show different capabilities in exploring floral
resources [37,38]. The bumble bees had larger body size than honey bees, suggesting they were
more effective in exploiting floral resources [18]. After finishing visiting the squash flowers,
bumble bees likely left only a little amount of floral resources on the squash flowers, which
reduced the attractiveness of the flowers to the new visitors. Moreover, it has been evidenced

Table 2. Differences in the percentages (median and range) of the four instances of honey bees (one,
two, three, and four honey bees visiting a single squash flower) between the HN habitats and the LN
habitats.

Sites within the HN habitats Sites within the LN habitats Significance

One honey bee 1.00 / 0.82–1.00 0.67 / 0.56–0.76 p < 0.001

Two honey bees 0.00 / 0.00–0.14 0.28 / 0.13–0.38 p < 0.001

Three honey bees 0.00 / 0.00–0.04 0.04 / 0.00–0.13 p < 0.001

Four honey bees 0.00 / 0.00–0.00 0.00 / 0.00–0.04 p = 0. 14

doi:10.1371/journal.pone.0144590.t002

Fig 5. Partial dependence plots for explanatory variables in the BRTmodel. Y axes were centered on the mean of the response variable. The relative
contributions of explanatory variables averaging overall BRT model ensembles are showed as the percentage values in parentheses.

doi:10.1371/journal.pone.0144590.g005
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that flower visitors secrete chemical components on flowers [39], which can be detected by
conspecifics and heterospecifics [40]. Pollinators show different responses (avoidance or accep-
tance) to the cues [11,41]. The flower visitors (e.g. honey bees and bumble bees) in the squash
agro-ecosystem also may use the cues to find the flowers. The chemical components from bum-
ble bees were likely deterrents to honey bees, resulting in the avoidance by honey bees to visit a
flower previously visited by a bumble bee. The chemical components left behind in a flower
from honey bees were likely detrimental to bumble bees as well, but neutral to honey bees. The
two mechanisms could explain why bumble bee visitations caused an increase in the amount of
elapsed time before flowers were visited by a honey bee. Furthermore, species recognition dur-
ing flower visitation might occur and alter the foraging behavior of bees [12,16], propelling
them to move between flowers [8,42] or among crop rows [7]. Our field observations were con-
sistent with those studies. Honey bees avoided the flowers occupied by bumble bees, but
accepted the flowers occupied by honey bees.

The effect of specific interactions at the individual level can be amplified and further trans-
ferred to all pollinators at the community level, causing a change in the assemblages of honey
bees on squash flowers (Table 3). This mechanism by which bee interactions influenced the
number of pollinators on squash flowers was different from those already comparatively well
understood [43], which found that decline in pollinator visitations was derived from a loss of
pollinator populations in habitats [8,44,45]. However, in the highland agricultural ecosystems,
a decline in the number of honey bees on squash flowers in the HN habitats was explained by
bee species interactions, not by the change in the local honey bee populations. Indeed, bee
interactions occur when two individuals forage for the same floral resources [16]. Noticeably,
its intensity and direction should be specified to bee species and their abundances, with a high
likelihood of occurrence in situations where one species over-exploits the floral resources.
Therefore, a decline in the number of honey bees on squash flowers should only be treated as a
short-term behavioral response to bumble bees co-foraging for the same floral resources.

Bee interactions have a critical role in ecosystem functioning. Honey bees and bumble bees
are two functional groups in pollinating the squash flowers in the highland agricultural ecosys-
tems, with bumble bees being more effective in transferring and depositing pollen than honey
bees [18]. Our experiments found an increase in the number of honey bees on squash flowers
in the fields that had a low occurrence of wild bumble bees (Table 3). Although the squash
flowers in the LN habitats experienced a decline in bumble bees (Table 1), they had an increase
in the number of overall honey bees on flowers, thus providing an opportunity to enhance the
flower visitation rate of honey bees. From this point, bee interactions could enhance, to some
level, the resilience of pollination services of agricultural ecosystems against biodiversity loss. It
is also important, however, to notice that the amount of overall pollen deposited on a stigma
surface (pollination services) is related to a pollinator’s efficacy (e.g. single visit deposition of

Table 3. Differences in the number (median and range) of the four instances of honey bees (one, two,
three, and four honey bees visiting a single squash flower) between the HN habitats and the LN
habitats.

Sites within the HN habitats Sites within the LN habitats Significance

One honey bee 11.5 / 2–23 14 / 11–33 p = 0.031

Two honey bees 0 / 0–4 7 / 2–14 p < 0.001

Three honey bees 0 / 0–1 1 / 0–4 p < 0.001

Four honey bees 0 / 0–0 0 / 0–1 p = 0.139

Total 12.5 / 2–28 24 / 15–25 p < 0.001

doi:10.1371/journal.pone.0144590.t003
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pollen grains) [18,46]. An increase in the number of honey bees in the fields does not necessar-
ily stand for an improvement of overall pollen gains on stigmas.

Deliberate importation of managed honey bees into agricultural ecosystems often improves
crop pollination when wild pollinators are insufficient [47,48]. The effectiveness of those prac-
tices needs to consider the spatial variation of wild pollinators (also feral honey bees) within
the landscapes. The number of honey bees in the HN habitats was negatively associated with
the number of bumble bees. Therefore, placing additional managed honey bee colonies in
those fields likely would lead to resource competitions and force some bees to select different
floral resources. Economic benefits could be achieved only when honey bee colonies are placed
where wild bees are already very sparse and discrete. Similarly, the farming practices which
introduce floral and nesting resources into ecosystems to restore and rebuild wild bee popula-
tions also need to consider the feral and managed honey bees already in the landscapes.

Supporting Information
S1 Fig. Four instances of honey bees (one, two, three and four honey bees visiting a single
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S1 Table. Pearson correlation coefficients among the percentages of the four instances
of honey bees (one, two, three, and four honey bees visiting a single squash flower).
��� < 0.001; �� < 0.01; � < 0.05; ns: not significant.
(DOC)
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