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Background: Hepatocellular carcinoma (HCC) is the sixth most common malignancy
with a high mortality worldwide. N6-methyladenosine (m6A) may participate extensively
in tumor progression.

Methods: To reveal the landscape of tumor immune microenvironment (TIME),
ESTIMATE analysis, ssGSEA algorithm, and the CIBERSORT method were used. Taking
advantage of consensus clustering, two different HCC categories were screened. We
analyzed the correlation of clustering results with TIME and immunotherapy. Then, we
yielded a risk signature by systematical bioinformatics analyses. Immunophenoscore
(IPS) was implemented to estimate the immunotherapeutic significance of risk signature.

Results: The m6A-based clusters were significantly correlated with overall survival (OS),
immune score, immunological signature, immune infiltrating, and ICB-associated genes.
Risk signature possessed robust prognostic validity and significantly correlated with
TIME context. IPS was employed as a surrogate of immunotherapeutic outcome, and
patients with low-risk scores showed significantly higher immunophenoscores.

Conclusion: Collectively, m6A-based clustering subtype and signature was a robust
prognostic indicator and correlated with TIME and immunotherapy, providing novel
insight into antitumor management and prognostic prediction in HCC.

Keywords: m6A RNA methylation regulators, hepatocellular carcinoma, prognostic value, tumor immune
microenvironment, immune checkpoint blockade, The Cancer Genome Atlas

Abbreviations: AFP, alpha-fetoprotein; AUC, area under the curve; CTLA-4, cytotoxic T-lymphocyte antigen 4; CI,
confidence interval; CD274, also known as PD-L1; DMEM, Dulbecco’s minimum essential media; FBS, fetal bovine serum;
FDR, false discovery rate; FPKM, fragments per kilobase per million; GAPDH, glyceraldehyde-3-phosphate dehydrogenase;
GEPIA, gene expression profiling interaction analysis; GO, Gene ontology; GSEA, Gene set enrichment analysis; GTEx,
Genotype-Tissue Expression; HCC, hepatocellular carcinoma; HR, hazard ratio; HAVCR2, also known as TIM3; ICB,
immune checkpoint blockade; ICGC, International Cancer Genome Consortium; IDO1, indoleamine 2,3-dioxygenase; IPS,
immunophenoscore; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute shrinkage and selection
operator; m6A, N6-methyladenosine; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin;
OS, overall survival; PAC, proportion of ambiguous clustering; PD-1, Programmed Cell Death 1; PD-L1, Programmed Cell
Death-Ligand 1; PD-L2, Programmed Cell Death-Ligand 2; PDCD1, also known as PD-1; PDCD1LG2, also known as PD-L2;
qRT-PCR, quantitative real-time polymerase chain reaction; RNA, ribonucleic acid; ROC, receiver operating characteristic;
ssGSEA, single-sample gene set enrichment analysis; TCGA, The Cancer Genome Atlas; TICs, tumor-infiltrating immune
cells; TIME, tumor immune microenvironment; TIMER, tumor immune estimation resource; TIM-3, T-cell immunoglobulin
domain and mucin domain-containing molecule-3.
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INTRODUCTION

Hepatocellular carcinoma (HCC) characterized by high mortality
is one of the most common global malignancies (Bray et al.,
2018; Forner et al., 2018; Yang et al., 2019) with an estimated
841,080 newly added tumor cases and an almost 781,631
HCC-related mortality documented in 2018 (Bray et al., 2018).
Great progression has been reached in the early diagnosis, clinical
management, and prognosis supervision of HCC due to recent
advances in various technological applications; however, the
clinical outcome remains dismal (Grandhi et al., 2016; Song et al.,
2017). The 5-year prognosis remains very poor given the frequent
incidence of relapse and extrahepatic metastasis (Llovet et al.,
2016). Currently, available prognosis monitoring indicators like
alpha-fetoprotein (AFP) showed limited precision for prognostic
prediction for HCC (Agopian et al., 2017; Lou et al., 2017; Ahn
et al., 2020). Due to the risk of tumor seeding, liver biopsy
is not extended widely though it is able to reveal specimen
biology (Zhu and Hoshida, 2018; Xu et al., 2021a). Besides, the
high heterogeneity of HCC greatly weakened the therapeutic
effects and makes prediction of clinical outcome considerably
sophisticated (Forner et al., 2018; Zhang et al., 2019b). The
regulation of the immunological network plays a central role
in the response to treatment and tumor progression of HCC
(Nishida and Kudo, 2017). HCC-inducing lymphotoxin-α/β
produced by CD8+ T cells promoted development of tumor and
may play vital roles in tumor surveillance (Finkin et al., 2015).
Experimental evidence showed that CD4+ T cell depletion was
linked to HCC promotion (Ma et al., 2016). Due to the promotion
of angiogenesis of inflammatory monocytes, CCL2 and CCR2
may be promising therapeutic targets of HCC (Li X. et al., 2017).
Immune checkpoint blockade (ICB) immunotherapy has yielded
great therapeutic effects in a wide variety of malignancies due to
its precision and fewer side effects. Preclinical trial results showed
that about 20% of patients benefited from ICB immunotherapy,
indicating that immune checkpoint inhibitors may be conducive
to HCC clinical management (Cheng et al., 2019). It is therefore
imperative to screen robust and stable predictors to enhance
the prognostic precision of HCC patients. Hence, the most
effective tactic for the precise prognostic prediction of how
a given malignancy will respond to immunotherapy or how
clinical course will develop may be one derived from molecular
risk distribution, identifying tumor patients based on particular
biomarker signatures, generating an individualized program to
improve efficacy accordingly.

N6-methyladenosine (m6A), the most prevalent type of
modification on mRNA, refers to the methylation modification
at the sixth N atom of adenine (Wang et al., 2017; Du
et al., 2019). The level of m6A methylation depends on m6A
RNA methylation regulator expression level in eukaryotic cells.
The m6A modification can be reversed and is manipulated
by intracellular binding proteins (“readers”), demethylases
(“erasers”), and methyltransferases (“writers”) (Meyer and
Jaffrey, 2014; Liu et al., 2017). Dysregulated m6A methylation
levels serve as essential players in various physiological and
pathological processes, such as microRNA (miRNA) editing,

immune regulation, and tumor progression (Chen et al., 2015;
Cui et al., 2017; Li H. et al., 2017). Nishizawa et al. (2018) pointed
out that YTHDF1 is significantly overexpressed in colorectal
cancer samples relative to adjacent normal specimens, and closely
correlated to pathological stage. Taketo et al. (2018) revealed
that the low expression level of METTL3 makes pancreatic
cancer cells sensitive to radiotherapy and antitumor treatment.
Emerging studies have demonstrated that dysregulated m6A
modification level and its modulators are significantly linked
to HCC tumorigenesis and development (Ma et al., 2017; Yang
et al., 2017; Chen et al., 2018; Rong et al., 2019; Zhong et al.,
2019). However, the relationships between m6A methylation
modulators and tumor immune microenvironment (TIME) and
ICB immunotherapy of HCC remain elusive.

In this work, the potential players of m6A RNA methylation
modulators in prognosis, TIME, and ICB immunotherapy of
HCC were our primary concerns. Clustering subgroups and
risk signature for m6A-related genes were developed to enhance
prognostic risk classification and facilitate identification of
candidate promising therapeutic targets for clinical strategies
in HCC. Then, the correlation of clustering subtypes and risk
signature with immune infiltration and immune-related scores
were comprehensively performed to further investigate the
underlying influence of m6A RNA methylation regulators
upon TIME characterization. Furthermore, the response to
immunotherapy in patients with different risk scores was
predicted to contribute novel insights into management
decision-making for HCC immunotherapy. Finally, the
biological role of ZC3H13 was analyzed in the clinical outcome
and progress of HCC.

MATERIALS AND METHODS

Public Data Collection
RNA-sequencing transcriptomic data in the fragments per
kilobase per million (FPKM) format and the clinical information
of HCC cases were obtained from The Cancer Genome Atlas
(TCGA) portal1 for subsequent analysis. All analyses were
performed based on the publication guidelines of TCGA.
After patients lacking complete genomics or clinical data were
excluded, a total of 370 HCC specimens and 50 normal hepatic
tissue cases were employed for further analysis. The LIRI dataset
including 231 HCC samples and 202 normal tissues from the
ICGC database was employed as the external testing group. The
corresponding expression profiling information and the clinical
data were downloaded from the ICGC2. All data were publicly
available and open access, so it was unnecessary to obtain Ethics
Committee approval. Data were processed in accordance with
the NIH TCGA human subject protection3 and related data
access policies.

1http://cancergenome.nih.gov
2https://dcc.icgc.org
3http://cancergenome.nih.gov/publications/publicationguidelines
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Expression Pattern of m6A RNA
Methylation Regulators
The expression data of 21 m6A RNA methylation regulators
(ALKBH5, EIF3A, FTO, HNRNPA2B1, HNRNPC, IGF2BP1,
IGF2BP2, IGF2BP3, KIAA1429, METTL14, METTL16,
METTL3, RBM15, RBM15B, WTAP, YTHDC1, YTHDC2,
YTHDF1, YTHDF2, YTHDF3, and ZC3H13) were extracted for
further analysis based on previous research (Batista, 2017; Dai
et al., 2018; Chai et al., 2019). Subsequently, R package “Limma”
was used to analyze the expression of 21 m6A regulators in
the tumor specimen vs. the normal counterpart. Statistical
significance threshold was set as follows: absolute log2 fold
change (FC) > 1 and p-value < 0.05. Subsequently, a boxplot
was employed to present these m6A regulators’ expression
level in tumor tissues and normal samples. Pearson correlation
analysis was carried out via using the “corrplot” package to
reveal the relationship between m6A regulators. To further
elucidate the m6A regulators’ expression results from the
standpoint of fundamental biology, we conducted Gene ontology
(GO) annotation on m6A-related genes differentially expressed
between tumor sample and normal tissue.

Landscape of Immune Cell Infiltration in
a Tumor Immune Environment
Taking advantage of the CIBERSORT package4, the gene
expression information of TCGA and ICGC HCC cohorts was
analyzed to obtain a fraction matrix of TICs, which estimates
the cellular composition of immunity (Newman et al., 2015). To
explore the correlation of TICs with clinical variables, age, gender,
grade and stage were employed. To explore the prognostic
predictive significance of TICs, Kaplan–Meier curves analysis was
performed between the low- and high-fraction group.

Consensus Clustering of HCC Cases
To functionally comprehend the biological significance
of the m6A RNA methylation regulators in HCC, the
“ConsensusClusterPlus” package was employed to stratify
the HCC samples into two distinct subgroups, with a hierarchical
agglomerative consensus, based on the m6A RNA modification
regulator expression information. Unsupervised clustering
methods utilize the proportion of ambiguous clustering (PAC)
to verify different expression patterns between two different
HCC clusters. Next, the survival package was utilized to
determine the differential prognosis of two distinct subtypes
based on the Kaplan–Meier method. Analysis focusing on
the correlation of cluster 1/2 with clinicopathological features
(i.e., age and gender) was performed via the chi-square test.
A single-sample gene set enrichment analysis (ssGSEA) was
performed to assign the enrichment activity of 29 immune
function-associated pathways using the “GSEAbase” R
package. Additionally, the R package “ESTIMATE” was
applied to estimate the extent of infiltrating cells, namely,
immune cells and stromal cells, and level of tumor purity,
which could validate significant distinct characterization of

4http://cibersort.stanford.edu/

TIME. Then, the fraction of 22 immune cellular subtypes
for each tumor specimen was calculated through cell-type
identification by estimating relative subsets of RNA transcripts
(CIBERSORT; see footnote 4). Finally, the expression levels of
47 ICB-related genes (e.g., CTLA4) of each tumor tissue were
detected.

Establishment of Prognostic Risk
Signature
The candidate m6A regulators significantly correlated with
prognosis (p < 0.05) were screened by using univariate COX
regression on the expression level of 21 m6A regulators.
Subsequently, a gene’s risk coefficient was computed by
employing LASSO regression algorithm with the “glment”
package after the elimination of highly correlated genes. Next,
six m6A regulators were identified and employed to assemble
a prognostic risk signature. The risk score of each sample was
obtained using the following equation: risk score = sum of risk
coefficients ∗ expression level of m6A regulators.

Validation of Prognostic Risk Signature
According to the median risk score, HCC cases were assigned
into low-/high-risk subgroups. Kaplan–Meier survival curves
with “survival” R package were analyzed. Next, the time-
dependent receiver operating characteristic (ROC) curves were
plotted to validate the prognostic performance. Then, univariate
and multivariate Cox regression analyses were performed to
confirm the independent prognostic predictive factor. R package
“pheatmap” was employed to correlate clinicopathological
variables with the risk score, and differences in clinical data
between high- and low-risk sets were identified by the chi-square
test. To validate the external reliability of this m6A-based
prognostic signature, the ICGC LIRI dataset was extracted as
the validation group. Risk scores of LIRI patients were obtained
in the same equation as mentioned above. HCC samples were
separated into low- and high-risk subgroups after the median
risk score serving as the cutoff point. Next, Kaplan–Meier
survival analysis, ROC curve, and correlation between risk score
and clinical feature were employed to estimate the prognosis
predictive performance.

Risk Score in Characterization of TIME
To exhibit the comprehensive landscape of TIME in
low-/high-risk groups in both the TCGA and ICGC HCC
cohort, we conducted several analyses. The estimate score,
stromal score, immune score, and tumor purity of each case
were calculated with the ESTIMATE algorithm via the R
package “estimate” to reveal overall TIME characterization
of two different risk score groups. Besides, the R package
GSEABase of 29 immune-correlated enrichments was employed
to further identify the difference in immunity-related response
between different risk subgroups. Subsequently, the R package
“CIBERSORT” was employed to estimate subpopulations of 22
immune cells in TIME.
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Development of Prognostic Nomogram
To estimate the prognostic prediction of the risk model, age,
gender, WHO grade and clinical stage, and time-dependent
ROC curves of 1/2/3-year OS were analyzed to compute the
area under the curve (AUC) values (Blanche et al., 2013). To
provide a scoring system to predicting prognosis quantitatively,
a prognostic nomogram that consists of a risk score and
clinical variables was established to assess 1–, 2–, and 3-
year OS possibility. Additionally, the calibration curve, which
could validate the prognostic value of the as-constructed
nomogram, was analyzed.

Role of Risk Signature in Biological
Processes
Gene set enrichment analysis (GSEA) was conducted to
functionally understand biological players of the as-constructed
risk signature in HCC development. We analyzed the gene sets
of “c2.cp.kegg.v7.2.symbols.gmt [Curated]” from the Molecular
Signatures Database through GSEA (Subramanian et al., 2005).
To achieve a normalized enrichment score for each analysis, gene
set permutations with 1,000 times were carried out. A nominal
p < 0.05 and FDR q < 0.05 were retained as significant results.

ZC3H13 in the Context of TIME
Immune infiltration data consisting of immune cell fractions
(i.e., B cells, CD4 + T cells, CD8 + T cells, dendritic cells,
macrophages, and neutrophils) were obtained from Tumor
Immune Estimation Resource (TIMER)5. The correlation of
prognostic risk signature with immune cell infiltration was used
to investigate whether our risk model plays a crucial role in
the formation of complexity and diversity of TIME. Besides,
the relationship between ZC3H13 expression level and immune
infiltration was correlated and analyzed via TIMER portal.

Prediction of Patients’ Response to
Immunotherapy
Based on published articles, ICB-related genes expression
level may be correlated with treatment responses of immune
checkpoint inhibitors (Goodman et al., 2017). In this study,
six genes of ICB therapy—cytotoxic T-lymphocyte antigen 4
(CTLA-4), programmed death 1 (PD-1, also known as PDCD1),
programmed death ligand 1 (PD-L1, also known as CD274),
programmed death ligand 2 (PD-L2, also known as PDCD1LG2),
T-cell immunoglobulin domain and mucin domain-containing
molecule-3 (TIM-3, also known as HAVCR2), and indoleamine
2,3-dioxygenase 1 (IDO1)—were investigated (Kim et al.,
2017; Nishino et al., 2017; Zhai et al., 2018). To reveal the
potential role of risk score in ICB treatment, risk signature
was correlated with the expression level of six ICB genes.
Furthermore, the association between the expression level of
ZC3H13 and that of key immunological checkpoints (i.e.,
PDCD1, PDCD1LG2, CD274, CTLA4, IDO1, and HAVCR2) was
analyzed. Furthermore, the expression levels of 47 ICB-related
genes (e.g., PDCD1) were comprehensively determined.

5https://cistrome.shinyapps.io/timer/

Immunophenoscore (IPS) refers to four main parts
(effector cells, immunosuppressive cells, MHC molecules,
and immunomodulators) that determine immunogenicity and
is calculated without bias using machine learning methods. The
IPS (range, 0–10) is calculated based on the gene expression
in representative cell types. It has been verified that IPS could
predict the patients’ response to immunotherapy (Charoentong
et al., 2017). The IPSs of HCC patients were downloaded from
The Cancer Immunome Atlas (TCIA)6.

Distribution of ZC3H13 Based on
Single-Cell RNA Sequencing Analysis
To explore the potential players of ZC3H13 in TIME, single-
cell transcriptome sequencing data GSE140228 were employed
(Zhang et al., 2019a), which are the transcriptome data of
CD45 + immune cells made by Zemin Zhang’s team for HCC
patients. The researchers uploaded the hepatic carcinoma single-
cell RNA sequencing data of the study to an interactive website7

to facilitate researcher in-depth exploration of related fields. In
this work, 10 × Genomics sequencing data were used to analyze
the expression of ZC3H13 in tumor, adjacent liver, hepatic lymph
node, blood, and ascites, and compare the expression level of
ZC3H13 in immune cell subpopulations.

Experimental Validation
QSG-7701 (human hepatic cell line) and four human HCC
cell lines (Hep-3B cells, MHCC-97H cells, Huh7 cells, and
HCC-LM3 cells) were obtained from the Cell Bank of the
Type Culture Collection of the Chinese Academy of Sciences,
Shanghai Institute of Biochemistry and Cell Biology. The
cell lines were all cultured in Dulbecco’s minimum essential
media (DMEM) plus 10% fetal bovine serum (FBS; Invitrogen,
Carlsbad, CA, United States). These different cell lines were
subjected to quantitative real-time polymerase chain reaction
(qRT-PCR). qRT-PCR was analyzed as described previously
(Xu et al., 2021c). All samples were analyzed in triplicate.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels
were used as the endogenous control and the relative expression
of ZC3H13 was calculated using the 2−11 CT method. The
sequences of primers used for PCR were as follows: ZC3H13,
5′-CGGACAGTGATGCCTACAACAGTG-3′ (forward) and
5′-TGAGGTGCGAGGGACTAAGAGAAC-3′ (reverse); and
GAPDH, 5′-CAGGAGGCATTGCTGATGAT-3′ (forward) and
5′-GAAGGCTGGGGCTCATTT-3′ (reverse).

Statistical Analysis
The expression level of m6A regulators was compared using
one-way ANOVA in tumor tissue versus normal sample, while
t-tests were analyzed to identify the differential expression levels
of m6A regulators for age, gender, clinicopathological stage,
and TNM status. Overall survival (OS) refers to the interval
from the date of diagnosis to the date of death. Survival curves
were analyzed using the Kaplan–Meier log rank test. Subgroups,
risk scores, clinical variables, immune cell infiltration, and

6https://tcia.at/home
7http://cancer-pku.cn:3838/HCC/
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immune checkpoints were correlated with Pearson correlation
test. CIBERSORT algorithm results with p < 0.05 were employed
for further analysis. Univariate and multivariate COX regression
were analyzed to validate the independent prognosis predictive
performance of risk signature. p < 0.05 was considered as
statistically significant. R software (version 3.6.3) was utilized for
all statistical analyses.

RESULTS

Analysis of m6A Regulator Expression
Pattern in HCC
The landscape of 21 m6A regulators’ expression pattern (Table 1)
was comprehensively analyzed in tumor specimens and paired
normal samples from the TCGA HCC cohort. We observed
that the expression levels of most m6A regulators were
significantly distinct between tumor tissues and adjacent samples
(Figures 1A,B). Additionally, further validation was analyzed
in the ICGC-LIRI-JP dataset (Supplementary Figure 1A).
Concretely, m6A-related genes, including ALKBH5, EIF3A,
FTO, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3,
KIAA1429, METTL16, METTL3, RBM15, RBM15B, WTAP,
YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3 (all
p < 0.001), were dramatically higher in HCC specimens relative
to adjacent normal liver samples. However, we did not find
a statistically significant distinction in terms of METTL14
as well as ZC3H13 (p = 0.06 and 0.83, respectively). To
further elucidate the inherent relationship, we analyzed the
correlation among these m6A regulators. Notably, the intrinsic
connection between HNRNPC and HNRNPA2B1 is the most

significant one presented in Figure 1C. To further understand
the m6A regulators’ expression patterns from the standpoint
of biological procedures, we employed GO annotation on
genes whose expression level was abnormally regulated in HCC
tissues. Figures 1D,E show that upregulated m6A-related genes
were mainly enriched in mRNA-related regulatory processes,
including regulation of mRNA stability and regulation of mRNA
metabolic process.

Landscape of m6A Regulator Mutation in
HCC
Genetic alteration information of m6A regulators was explored
employing the TCGA HCC cohort on the cBioPortal database
to uncover the potential influence of genetic alteration upon the
corresponding gene expression (Figure 1F). On the whole, we
found that VIRMA had the highest alternation proportion and
exhibited 9% genetic alteration, and the most common alteration
manner was amplification.

Immune Cell Infiltration Subsets in a
Tumor Immune Environment of HCC
To assess the composition of 22 TIC types, the CIBERSORT
algorithm was employed in not only the TCGA dataset but
also the ICGC dataset. The overall fraction of immune cells
in HCC is shown in Figures 2A,B. The highest proportion
of TICs was resting CD4 memory T cells in the TCGA
cohort, whereas naive B cells accounted for the most abundant
infiltrating immune cells in the ICGC cohort, suggesting that
activated immune cells mediated in antitumor response may
exert an opposing player in HCC tumorigenesis and progression.

TABLE 1 | The basic information of the included m6A RNA methylation regulators.

Gene_name The role in m6A Ensemble Location

ALKBH5 Eraser ENSG00000091542 Chromosome 17, NC_000017.11

EIF3A Reader ENSG00000107581 Chromosome 10, NC_000010.11

FTO Eraser ENSG00000140718 Chromosome 16, NC_000016.10

HNRNPA2B1 Reader ENSG00000122566 Chromosome 7, NC_000007.14

HNRNPC Reader ENSG00000092199 Chromosome 14, NC_000014.9

IGF2BP1 Reader ENSG00000159217 Chromosome 17, NC_000017.11

IGF2BP2 Reader ENSG00000073792 Chromosome 3, NC_000003.12

IGF2BP3 Reader ENSG00000016797 Chromosome 7, NC_000007.14

KIAA1429 Writer ENSG00000164944 Chromosome 8, NC_000008.11

METTL14 Writer ENSG00000145388 Chromosome 4, NC_000004.12

METTL16 Writer ENSG00000127804 Chromosome 17, NC_000017.11

METTL3 Writer ENSG00000165819 Chromosome 14, NC_000014.9

RBM15 Writer ENSG00000162775 Chromosome 1, NC_000001.11

RBM15B Writer ENSG00000259956 Chromosome 3, NC_000003.12

WTAP Writer ENSG00000146457 Chromosome 6, NC_000006.12

YTHDC1 Reader ENSG00000083896 Chromosome 4, NC_000004.12

YTHDC2 Reader ENSG00000047188 Chromosome 5, NC_000005.10

YTHDF1 Reader ENSG00000149658 Chromosome 20, NC_000020.11

YTHDF2 Reader ENSG00000198492 Chromosome 1, NC_000001.11

YTHDF3 Reader ENSG00000185728 Chromosome 8, NC_000008.11

ZC3H13 Writer ENSG00000123200 Chromosome 13, NC_000013.11
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FIGURE 1 | Expression patterns of m6A RNA modification regulators in HCC. (A) The heatmap of m6A regulator expression levels in each case. The color from red
to blue shows a trend from high expression to low expression. (B) The boxplot visualizes the abnormally expressed m6A regulators in tumor. N represents normal
specimen and T represents tumor specimen. (C) Broad co-expression correlation among the 21 m6A RNA modification regulators in HCC. “ × ” means p > 0.05.
(D) Barplot and (E) clusterplot of gene ontology (GO) analyses of differentially expressed m6A-related genes in tumor. (F) Genetic alteration was analyzed via
cBioPortal database. The asterisks represented the statistical p value (***P < 0.001).

FIGURE 2 | Landscape of immune cell infiltration in tumor immune environment of HCC. Subpopulation of 22 immune cell subtypes in the TCGA cohort (A) and
ICGC cohort (B). Proportional heatmap of the 22 TICs in each patient of the TCGA cohort (C) and ICGC cohort (D). (E) Infiltrating resting dendritic cell was
significantly associated with patient gender. (F) Infiltration of regulatory T cells significantly decreased with advanced stages. Activated NK cell infiltration significantly
correlated with better prognosis in both the TCGA cohort (G) and ICGC cohort (H).
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Figures 2C,D show the distributions of 22 immune cells’
proportion together with HCC patients. To elucidate the clinical
significance of TICs, we correlated components of 22 TICs
with clinicopathological characteristics. We found that the
distribution of resting dendritic cells had a close correlation
with patient gender (Figure 2E). The composition of regulatory
T cells reduced significantly with advanced clinical stage (all
p < 0.05, Figure 2F), indicating that regulatory T cells might
serve as a suppressing role in HCC development. To estimate the
prognostic predictive performance of TICs, we analyzed patient
prognosis based on distinct TICs fraction. Taking advantage of
the Kaplan–Meier method, abundance of activated NK cells was
significantly correlated with better prognosis in the TCGA cohort
(Figure 2G, p = 0.046). Likewise, activated NK cells had a close
association with longer OS in the ICGC cohort (Figure 2H,
p = 0.038). These results suggested that Tregs and activated
NK cells may serve as non-negligible players in the antitumor
response of HCC.

Consensus Clustering in Prognosis,
Clinical Features, and TIME of HCC
To better reveal the clinicopathological value of 21 m6A
regulators, patients were clustered into two different subtypes
according to the expression pattern of m6A regulators. According
to similarities displayed in m6A modulators, we observed that

k = 2 had optimal clustering stability. An increasing trend of the
cumulative distribution function (CDF) value was regarded as an
indicator of excellent clustering (Supplementary Figures 1B–D).
To further support the result of consensus clustering, principal
component analysis (PCA) was performed, which showed
that cluster 1/2 were non-overlapping and differentiated well
(Figure 3A). Subsequently, OS time of cluster 2 was shorter than
cluster 1 in Kaplan–Meier analysis (Figure 3B, p = 2.682e–04).
Then, differences in the clinicopathological variables between
the two subgroups were investigated. As a result, most
m6A-related genes were remarkably upregulated in cluster 2
relative to cluster 1. In addition, Figure 3C shows that cluster
2 possessed significant correlation with female gender and
advanced clinicopathological stage (both p < 0.05). Therefore,
these results suggested that the expression pattern of m6A
modulators may act as key regulators in HCC malignancy.

To elucidate the correlation of m6A regulators with TIME
of HCC, we analyzed the immune infiltration type and extent
and calculated the corresponding immunoscore of cluster 1/2.
We explored whether there was a distinction between two HCC
subtypes regarding the immune score, estimate score, tumor
purity, and stromal score. Our results showed that relative
to cluster 1, cluster 2 obtained lower estimate, stromal, and
immune scores (Figure 3E) but higher tumor purity (Figure 3D).
The difference in immune-related signature between clusters 1

FIGURE 3 | Consensus clustering based on the expression pattern of m6A regulators. (A) Principal component analysis of the total RNA expression profile.
(B) Kaplan–Meier overall survival (OS) curves for the TCGA HCC cohort. (C) Heatmap together with clinical features of cluster 1/2. Blue represents downregulated
expression and red represents upregulated expression. (D,E) The estimate score, stromal score, immune score, and tumor purity differ well between these two
clusters. (F) Enrichment of immune-related signatures was significantly distinct between two HCC subtypes. (G) Comparison of infiltrating immune cell subtypes and
levels between clusters 1 and 2. (H) Expression levels of 47 immune checkpoint blockade-related genes in two different subgroups. The asterisks represented the
statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).
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and 2 was that subtype 2 was closely correlated with higher
aDCs and MHC class I, whereas subtype 1 experienced more
neutrophils, B cells, pDCs, NK cells, DCs, mast cells, cytolytic
activity, TIL, and Type I/II IFN response, indicating that the
distinction of m6A regulators’ expression pattern significantly
correlated with TIME characterization of HCC (Figure 3F and
Supplementary Figure 1E). Supplementary Figure 1F shows
immune-associated enrichment pathways with corresponding
immune scores of each sample in cluster 1/2. Next, the differential
subpopulation of infiltrating tumor immune cells between two
different subtypes was identified. The results showed that cluster
1 had a higher abundance of monocytes and memory B cells,
whereas infiltration of M0 macrophages and follicular helper T
cells was remarkably lower (Figure 3G).

To further uncover the involvement of m6A regulators with
ICB treatment, expression levels of 47 ICB-related genes were
analyzed between two clusters. Compared with the cluster
1 group, expression levels of the majority of ICB-associated
genes were dramatically higher in cluster 2 (i.e., PDCD1
and CTLA4; Figure 3H). Hence, the clustering results might
contribute to reveal the complexity of TIME and predict ICB
therapy outcome in HCC.

Construction of Prognostic Risk
Signature
To further explore the prognostic significance of m6A
modulators, univariate Cox regression analysis on 21 m6A
regulators’ expression levels was conducted. As a result, 14
out of 21 m6A regulators had a significant association with
OS (p < 0.05, Supplementary Figure 2A). Notably, YTHDF2,
YTHDF1, IGF2BP3, METTL3, RBM15B, HNRNPA2B1,
KIAA1429, HNRNPC, WTAP, IGF2BP1, YTHDC1, RBM15,
and IGF2BP2 were deemed unfavorable prognostic factors (all
HRs > 1, Supplementary Figure 2A), whereas only ZC3H13
was regarded as a beneficial prognostic indicator (HR < 1,
Supplementary Figure 2A). Then, LASSO algorithm was
analyzed to identify m6A regulators with the most powerful
prognosis predictive ability (Supplementary Figures 2B,C).

Finally, six m6A-related genes, namely, YTHDF1, YTHDF2,
IGF2BP3, KIAA1429, METTL3, and ZC3H13, were recognized
to constructed a m6A-based risk signature for HCC patients.
Supplementary Figure 2D shows the corresponding coefficients.

The risk score of HCC patients was calculated using the
following equation: risk score = (0.0262 ∗ expression level of
YTHDF1) + (0.0577 ∗ expression level of YTHDF2) + (0.1192
∗ expression level of IGF2BP3) + (0.027 ∗ expression level of
KIAA1429)+ (0.0795 ∗ expression level of METTL3) – (0.1018 ∗
expression level of ZC3H13).

Subsequently, each HCC patient obtained a corresponding
risk score and was randomized into low-/high-risk subgroups
based on the median threshold.

Confirmation of Prognostic Risk
Signature
Supplementary Figure 3A displays the distributions of six m6A
regulators’ expression level with corresponding subgroups and

patients. The allocations of dot pot and risk score of survival
status in the TCGA-LIHC cohort highlighted that high-risk HCC
samples experienced poorer prognosis (Supplementary Figures
3C,E). Additionally, survival analysis demonstrated that samples
in the low-risk group presented significantly longer OS time
than samples in the high-risk group (p = 1.544e–04; Figure 4A).
ROC curve analysis was performed to estimate the prognostic
predictive performance. AUC of risk score signature at 3-year
survival times was 0.724, highlighting the great specificity and
sensitivity of the prognostic value (Figure 4C). Moreover, results
of univariate Cox regression showed that the hazard ratio (HR)
of risk score was 3.713 (95% CI: 2.411–5.716; Supplementary
Figure 3G). Corresponding results were discovered in
multivariate Cox regression analysis (HR = 3.386, 95% CI: 2.168–
5.290; Supplementary Figure 3I), indicating that risk score
could act as an independent prognostic factor. Furthermore,
the involvement of m6A-related genes with clinicopathological
features was investigated and presented in the heatmap
(Figure 4E). We observed that with advanced clinical stage (two
out of six, p < 0.05, Figure 4G) and high pathological grade
(most p < 0.05, Figure 4H), risk score was significantly elevated.

Validation of Risk Prognostic Signature
To further estimate its external prognostic validity, we employed
the ICGC dataset (LIRI) as an external testing group. The
ICGC-LIRI cohort with 231 HCC samples was classified into
low-risk and high-risk subgroups using the median threshold
in the TCGA dataset. These results presented the distributions
of m6A regulators’ expression patterns, risk score, and survival
status in the external validation cohort (Supplementary Figures
3B,D,F) and the combination set (Supplementary Figures 4A–
C). Likewise, survival curves showed that high-risk samples
possessed significantly poorer prognosis relative to the low-risk
group in the validation cohort (Figure 4B, p = 6.69e–03) and
the combination set (Supplementary Figure 4D, p = 5.545e–
05). The value of area under the ROC (AUC) was 0.76 in the
external testing set (Figure 4D), suggesting the good prognostic
performance of risk prognostic signature among different
populations. Consistent with results in the training group, risk
signature as a prognostic factor independently affected OS in
both the validation group and the whole cohort (Supplementary
Figures 3H,J, 4E,F). Subsequently, we plotted the heatmap to
simultaneously present clinical relevance (Figure 4F). Notably,
the higher the risk score, the more serious the clinical stage (most
p < 0.05, Figure 4I).

Correlation of Prognostic Risk Score
With Characterization of TIME
To reveal the potential roles of risk score in immune regulation,
the correlation analyses of the risk score were performed with
immune score, ssGSEA enrichment, and TIC abundance, and
expression levels of 47 ICB-associated genes. It was discovered
that samples with low risk experienced a higher stromal score
than high-risk samples in the TCGA dataset but not the ICGC
cohort (Figure 4J and Supplementary Figure 5B). Conversely,
there was no significant difference in estimate score, tumor
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FIGURE 4 | Construction of the prognostic risk signature based on m6A regulators. Kaplan–Meier curve analysis presenting differences in overall survival between
the high-risk and low-risk groups in the TCGA cohort (A) and ICGC cohort (B). ROC analysis of the risk scores for overall survival predictive significance in the TCGA
cohort (C) and ICGC cohort (D). The AUC was calculated for ROC curves, and sensitivity and specificity were calculated to assess score performance. Heatmap
presents the distribution of clinical variables and the expression level of six m6A regulators in each patient in the TCGA cohort (E) and ICGC cohort (F). (G,H) Risk
score was significantly correlated with clinicopathological stage and clinical grade in the TCGA dataset. (I) Risk score had a significant correlation with
clinicopathological stage in the ICGC cohort. (J) Comparison of tumor purity between these two subtypes. The asterisks represented the statistical p value (**P <
0.01).

purity, and immune score (Supplementary Figures 5A,B).
Combining the ssGSEA results of the two datasets, the infiltration
of aDCs, Th2 cells, DCs, and some immune enrichments such
as MCH class I expression, checkpoint, and HLA molecule
expression level were significantly escalated with increased
risk score (Figures 5A,B and Supplementary Figures 5C,D).
Supplementary Figures 5E,F show the immune-associated
enrichment of each sample with the corresponding immune
score from two different datasets. The results of the CIBERSORT
algorithm suggested that abundance of Tregs (regulatory T
cells) was positively correlated with risk score in the TCGA
dataset (Figure 5C), whereas ICGC patients with high risk
presented fewer M1 macrophages, fewer gamma delta T cells,
and more neutrophils relative to the low-risk group (Figure 5D).
Subsequent correlation analysis showed that 25 of 47 (e.g.,
CTLA4) ICB-correlated genes were significantly overexpressed
in high-risk samples (Figures 5E,F). These findings highlighted
that m6A-based risk score may contribute a novel insight
into the immunity regulatory network and further forecast
immunotherapy outcome in HCC.

Prognostic Significance of m6A-Based
Risk Score in HCC
Then, ROC curves were analyzed and the values of AUC for
1–, 2–, and 3-year OS were 0.746, 0.725, and 0.731, respectively,

indicating good predictive accuracy (Figure 6A). To demonstrate
risk score as the best prognostic factor among various clinical
candidate variables, age, gender, clinical stage, and tumor grade
were employed as the candidate prognostic indicators. These
clinical variables were integrated to perform the AUC analysis for
1–, 2–, and 3-year OS, which showed that risk score experienced
the highest value of AUC (Figures 6B–D). Subsequently, a
prognostic nomogram including risk score and clinical stage was
developed to predict clinical outcomes (Figure 6E). Age, gender,
and tumor grade whose AUCs were less than 0.6 were rejected out
of construction of the nomogram. In addition, calibration curves
highlighted excellent prognostic prediction of the as-constructed
nomogram (Figures 6F–H).

Next, stratification analysis was performed to examine
whether risk score retained great prognostic performance when
samples were assigned into various subgroups according to
clinical features. Compared with low-risk samples, samples
in the high-risk group experienced shorter OS time in the
late- and early-stage subgroups (Supplementary Figures 6A,B).
Likewise, risk score exhibited great prognostic significance
for samples in the T1–2 or T3–4 category (Supplementary
Figures 6C,D), male samples (Supplementary Figure 6E),
samples in grades 1 and 2 (Supplementary Figure 6G), samples
aged ≤ 65 years (Supplementary Figure 6I), samples with
an N0 status (Supplementary Figure 6K), and samples with
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FIGURE 5 | Correlation of prognostic risk score with TIME characterization of HCC. Distinction of enrichment of immune-related signatures between low-risk and
high-risk group in the TCGA cohort (A) and ICGC cohort (B). Difference in infiltrating immune cell subpopulations and levels between the low- and high-risk group in
the TCGA cohort (C) and ICGC cohort (D). Comparison of 47 immune checkpoint blockade-related gene expression levels in two risk score subgroups in the TCGA
cohort (E) and ICGC cohort (F). The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).

FIGURE 6 | Validation of prognostic efficiency of m6A-based signature in HCC. (A) ROC analysis was employed to estimate the prediction value of the prognostic
signature. (B–D) Areas under curves (AUCs) of the risk scores for predicting 1–, 2–, and 3-year overall survival time with other clinical characteristics. (E) Nomogram
was assembled by age and risk signature for predicting survival of HCC patients. (F) One-year nomogram calibration curves of the combination of the TCGA and
ICGC cohort. (G) Two-year nomogram calibration curves of the combination of the TCGA and ICGC cohort. (H) Three-year nomogram calibration curves of the
combination of the TCGA and ICGC cohort.

an M0 status (Supplementary Figure 6L). Meanwhile, it was
discovered that the prognostic predictive ability of risk score was
lost in female samples (Supplementary Figure 6F), grade 3–4

samples (Supplementary Figure 6H) or samples aged > 65 years
(Supplementary Figure 6J). These findings indicated that it was
an outstanding prognostic indicator in HCC patients.
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Functional Annotation of Prognostic Risk
Signature
To further investigate the potential role of risk score mediated
in HCC from the perspective of biological processes, GSEA was
conducted in the low- and high-risk subgroups. The results
of GSEA showed that the high-risk score was significantly
enriched in pathways (i.e., prostatic cancer, non-small cell lung
cancer, Wnt signal pathway, mTOR signal pathway, MAPK
signal pathway, and the p53 signal pathway; Supplementary
Figure 4G).

Correlation of Risk Signature With
Infiltrating Immune Cells
Furthermore, the correlation of the as-constructed risk score
was explored with infiltrating immune cells in TIME. These
results showed that risk signature presented significant positive
correlation with the infiltration of B cells (r = 0.218;
p = 2.752e–05), infiltration of CD4+ T cells (r = 0.200;
p = 1.151e–04), infiltration of CD8+T cells (r = 0.209; p = 5.891e–
05), infiltration of dendritic cells (r = 0.305; p = 2.735e–09),
infiltration of macrophages (r = 0.404; p = 8.609e–16),
and infiltration of neutrophils (r = 0.349; p = 6.339e–
12; Supplementary Figures 7A–F). Our findings provided
strong evidence to validate that the m6A-based risk score
experienced complex interactions with immune cell infiltration
in HCC.

Predicting Patients’ Clinical Outcome to
Immunotherapy
Given that the information on immunotherapy was not available
in the TCGA-LIHC dataset, further analysis was explored for
response to immunotherapy. Firstly, the correlation of ICB genes’
(PDCD1, CD274, PDCD1LG2, CTLA-4, HAVCR2, and IDO1)
(Kim et al., 2017; Nishino et al., 2017; Zhai et al., 2018) mRNA
expression levels to risk score was analyzed (Figure 7A). It
was discovered that risk score presented significantly positive
correlation with CTLA4 (r = 0.15; p = 0.0013), HAVCR2 (r = 0.19;
p = 5.2e–05), IDO1 (r = 0.093; p = 0.05), PDCD1 (r = 0.11;
p = 0.021), and PDCD1LG2 (r = 0.12; p = 0.0097; Figures 7B–F).
To further forecast the immunotherapeutic efficacy of risk
score, two subtypes of IPS values (IPS-PD-1/PD-L1/PD-L2
positive and IPS-CTLA-4 positive) were employed as the
surrogates of the HCC patients’ responses to immunotherapy.
In this predictive model, IPS score, IPS–CTLA4 blocker
score, IPS–PD1/PDL1/PDL2 blocker score, and IPS–CTLA4 and
PD1/PDL1/PDL2 blocker score were higher in samples with low
risk (all p < 0.05; Figures 7G–J), suggesting that patients with a
low signature score might be suitable for immunotherapy.

ZC3H13 in Prognostic Prediction,
Immune Cell Infiltration, and
Immunotherapy
ZC3H13 was the only prognostic m6A regulator with
downregulated expression level in tumor samples. Thus,

FIGURE 7 | The estimation of two prognostic subtypes in immunotherapy response. Correlation between prognostic risk signature with crucial immune checkpoint
genes. (A) Correlation analysis between immune checkpoint inhibitors (CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1) with prognostic risk signature.
(B) Correlation between prognostic risk signature and CTLA4. (C) Correlation between prognostic risk signature and HAVCR2. (D) Correlation between prognostic
risk signature and IDO1. (E) Correlation between prognostic risk signature and PDCD1. (F) Correlation between prognostic risk signature and PDCD1LG2. (G) IPS
score distribution plot. (H) IPS–CTLA4 blocker score distribution plot. (I) IPS–PD1/PDL1/PDL2 blocker score distribution plot. (J) IPS–CTLA4 and PD1/PDL1/PDL2
blocker score distribution plot.
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FIGURE 8 | The clinical significance of ZC3H13 in HCC. ZC3H13 are downregulated in HCC samples based on the TCGA dataset (A) and cell lines (B), and lower
ZC3H13 expression level was significantly correlated with improved prognosis (C). Correlation analysis of prognosis-related genes with infiltrating CD4 + T cells (D),
CD8 + T cells (E), dendritic cells (F), macrophages (G), and neutrophils (H) using TIMER. The association between the expression levels of ZC3H13 with CD274 (I),
HAVCR2 (J), IDO1 (K), and PDCD1LG2 (L) using TIMER.

the potential role of ZC3H13 was further explored in subsequent
analyses in HCC. The expression levels of ZC3H13 between
tumor samples and normal tissues were detected and compared
based on TCGA and GTEx data. Compared with tumor samples,
the expression level of ZC3H13 was downregulated in adjacent
normal tissues (Figure 8A). Taking advantage of qRT-PCR,
the expression levels of ZC3H13 were determined in a human
hepatic cell line and four distinct HCC cell lines. Consistently,
ZC3H13 expression level was lower in tumor cells than in liver
cells (Figure 8B). To investigate the prognostic significance
of ZC3H13 in HCC, survival curve was analyzed between
ZC3H13 high- and low-expressed samples. As a result, the
higher expression level of ZC3H13 significantly indicated better
prognosis (Figure 8C, p = 2.514e–06).

To elucidate the intrinsic relationships between infiltrating
immune cells and the expression level of ZC3H13, the correlation
of the expression level of ZC3H13 with the immune cell
infiltration level was analyzed by using TIMER. Notably, the
expression level of ZC3H13 presented significant correlation with
CD4+ T cells (r = 0.125; p = 1.97e–02), CD8+ T cells (r = 0.171;
p = 1.47e–03), myeloid dendritic cells (r = 0.124; p = 2.11e–02),
macrophages (r = 0.134; p = 1.30e–02), and neutrophils (r = 0.244;
p = 4.62e–06; Figures 8D–H).

Subsequently, the correlation of the expression level of
ZC3H13 was analyzed with ICB genes adjusted by tumor purity
to reveal the potential roles of ZC3H13 in ICB treatment.
The results of TIMER showed that the expression level of
ZC3H13 was significantly and positively correlated with CD274
(r = 0.437; p = 1.73e–17), HAVCR2 (r = 0.14; p = 9.34e–03),

IDO1(r = 0.113; p = 3.57e–02), and PDCD1LG2 (r = 0.187;
p = 4.90e–04; Figures 8I–L), suggesting the crucial role of
ZC3H13 in ICB immunotherapy.

Role of ZC3H13 in the Context of TIME
To further elucidate the relationship between ZC3H13 and
TIME characteristics in HCC, we analyzed the correlation of
the ZC3H13 expression value with immune scores and tumor
purity (employing the ESTIMATE method), ssGSEA signatures
(using GSEABase algorithm), TIC subpopulation and level (via
CIBERSORT tool), and the expression levels of 47 ICB-associated
genes. HCC patients were assigned into low-/high-ZC3H13
subgroups according to the median value of the expression
level of ZC3H13. ESTIMATE results suggested that low-ZC3H13
samples obtained significantly lower stromal scores relative to
patients in the high-ZC3H13 subgroup in the TCGA cohort
but not the ICGC dataset. In terms of immune score, estimate
score, and tumor purity, however, there was no remarkable
distinction between these two groups (Figures 9A,B). Then,
a distinction in immune-associated enrichment was identified
between the low- and high-ZC3H13 subgroups. Taken together,
the infiltration fraction of Th2 cells, checkpoint, and T-cell
co-inhibition significantly increased when risk score declined,
whereas IFN-response type II was positively correlated with the
expression level of ZC3H13 (Figures 9C,D). The CIBERSORT
analysis results of the TCGA cohort showed that the abundance
of activated NK cells was significantly higher in patients with
low ZC3H13 (Figure 9E). However, there was no remarkable
distinction in the ICGC dataset (Figure 9F). Taking advantage
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FIGURE 9 | Discrepancy of low and high ZC3H13 expression subgroups in terms of TIME characterization. Comparison of the immune score (ESTIMATE algorithm)
between low- and high-ZC3H13 groups in the TCGA cohort (A) and ICGC cohort (B). Difference of immune-related signatures between low- and high-ZC3H13
subgroups in the TCGA cohort (C) and ICGC cohort (D). Distinction of infiltrating immune cell subpopulations and levels between low- and high-ZC3H13 groups in
the TCGA cohort (E) and ICGC cohort (F). Comparison of 47 immune checkpoint blockade-related gene expression levels in two ZC3H13 expression subgroups in
the TCGA cohort (G) and ICGC cohort (H). The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).

FIGURE 10 | Single-cell RNA sequencing analysis of ZC3H13 abundance in various tissues and immune cell subtypes of HCC patients. (A) Analysis of the
enrichment of ZC3H13 in tumor, adjacent liver, lymph node, blood, and ascites. (B) Analysis of the enrichment of ZC3H13 in immune cell subtypes in tumor tissue.
(C) UMAP (Uniform Manifold Approximation and Projection) map of immune cells in tumor. (D) UMAP map of ZC3H13 expression level in tumors.

of the correlation analysis, we found that three immune check
blockade-related genes (i.e., TNFSF14, TNFRSF4, and KIR3DL1)
were significantly upregulated, but TNFRSF14 and TNFRSF18
were lower in the high-ZC3H13 group based on two datasets
(Figures 9G,H). The results of single-cell sequencing data
analysis indicated that ZC3H13 is enriched mostly in tumor
samples (Figure 10A). Interestingly, ZC3H13 was predominantly
expressed in CXCL13+ CD4+ T cells and FOXP3+ CD4+ T
cells (Figures 10B–D). Figures 10C,D show the distribution of
ZC3H13 in infiltrating immune cells of TIME. Based on previous
findings, CD4-c6-FOXP3 corresponded to regulatory T (Treg)

cells (Guo et al., 2018), suggesting that ZC3H13 may serve as an
opposing player in HCC progression. Collectively, our findings
highlighted that ZC3H13 may play a critical role in TIME context
and immunological regulation of HCC.

DISCUSSION

Hepatocellular carcinoma, one of the most common malignant
cancers, is the fourth leading cause of tumor-associated
death worldwide. Because of genomic diversity and epigenetic
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complexity, HCC is characterized by high heterogeneity not only
in the clinical but also in the molecular level (Schulze et al.,
2016; Cancer Genome Atlas Research Network, 2017; Woo and
Kim, 2018). Due to lack of efficient clinical interventions, a sober
reality is that the mortality rate of HCC patients is still high
(Xu et al., 2021b). Thus, it is urgent to generate powerful tools
for prognosis monitoring and clinical outcome prediction, which
appears to contribute a novel insight into the decision of clinical
management in HCC.

As one of the most abundant forms of endochemical
modification in mammals, m6A possesses diverse and crucial
biological significance in various pathological processes
(He, 2010; Deng et al., 2018; Chen and Wong, 2020; Zhao
et al., 2020). Increasing lines of evidence have supported
the idea that m6A RNA methylation modulators, which
were upregulated or downregulated in numerous categories
of malignant tumors, act as promoters or inhibitors of
malignancy. Kwok et al. (2017) pointed out that, as a risky
predictive prognosis biomolecule of acute myeloid leukemia, the
downregulation of the ALKBH5 expression level is significantly
correlated with TP53 mutation. METTL3, which is dramatically
overexpressed in hepatoblastoma, modulates b-catenin to
facilitate cancer cell proliferation (Liu et al., 2019). Besides,
emerging studies devoted to exploring the key regulatory roles of
m6A methylation in TIME focus on elucidating the underlying
carcinogenic mechanisms of malignancy. Currently, little is
known about the underlying influences of m6A regulators on
TIME characterization and immunotherapy in HCC.

In this study, we aimed to elucidate the expression profiling,
prognosis predictive performances, and influences on TIME
context and ICB therapy of m6A modulators in HCC. We
uncovered the differential expression level and correlation of
21 m6A regulators between HCC tissue and normal hepatic
specimen based on TCGA-LIHC. The results of the GO analysis
showed that overexpressed m6A regulators were mainly enriched
in mRNA regulatory procedures, like regulation of mRNA
metabolic process and regulation of mRNA stability. Employing
consensus clustering, two HCC subtypes were screened based on
their m6A RNA modification regulator expression patterns to
further reveal their clinical significance and impact on formation
of TIME complexity and diversity.

The cluster 1/2 subgroup remarkably affected the OS and
distinct clinical parameters of HCC. They presented a significant
difference in terms of TIME (i.e., immune score and tumor
purity), subpopulation of infiltrating immune cells, and the
expression value of ICB-associated genes. Taking advantage of
univariate Cox regression followed by LASSO algorithm, a six-
gene prognostic risk signature was established, namely, YTHDF1,
YTHDF2, IGF2BP3, KIAA1429, METTL3, and ZC3H13. To
demonstrate its excellent prognostic performance, the prognostic
value was investigated in the TCGA cohort and validated
based on the ICGC dataset. We found that risk signature
could serve as an independent prognosis predictive indicator
through employing both univariable and multivariable COX
regression. Besides, a novel nomogram that integrated risk
signature and clinicopathological features was generated. GSEA
enrichment results indicated the underlying mechanism of risk
signature on HCC tumorigenesis and development through

mTOR (Mossmann et al., 2018), p53 (Meng et al., 2014; Kong
et al., 2017), Wnt (Dai et al., 2019; Hu et al., 2019; Huynh
et al., 2019; Li et al., 2019; Tan et al., 2019), and MAPK
(Drosten and Barbacid, 2020) signal pathways, among others.
Moreover, the as-constructed risk signature was validated to
retain a great prognostic value when HCC samples were assigned
into subgroups according to clinicopathological variables.

Upon article review, we found that several studies have
uncovered the intimate relationship between m6A modification
and infiltrating immune cells, which was unable to be clarified
by RNA intrinsic metabolic pathways. Dali et al. pointed out that
YTHDF1-mediated m6A modification improved TIME CD8+ T
cell anticancer efficacy. The inhibition of YTHDF1 enhanced
the objective response to ICB (Han et al., 2019). Wang et al.
(2019) pointed out that METTL3 bound to the transcripts
encoding lysosomal proteases, which enhanced the maturation
of dendritic cells (DCs). Therefore, we speculated that the
abundance and level of infiltrating immune cells were closely
associated with m6A RNA methylation modification. Herein,
we validated that clustering results, prognostic risk signature,
and the expression level of ZC3H13 were significantly associated
with immune infiltration (i.e., dendritic cells). In particular, we
observed that the high fraction of activated NK cells suggested
better prognosis. Next, we corroborated that clustering results
were significantly correlated with proportion of NK cells and
m6A-based prognostic signature was significantly associated
with NK cell infiltration. Further analysis showed that activated
NK cells were negatively associated with ZC3H13 expression,
which independently affected OS. These results suggest that m6A
regulators might play an undeniable role in the diversity of
TIME in HCC mainly through harnessing the activity of NK
cells. Furthermore, we discovered that abundance of Tregs was
positively correlated with risk score. Consistent results were
obtained from single-cell RNA sequencing analysis; ZC3H13
was mainly enriched in Tregs, suggesting that m6A regulators
may manipulate the behavior of Tregs to coordinate in the
immune network of HCC. Nevertheless, our results are required
to be validated in further studies focusing on the underlying
mechanism of immunity in HCC development.

With the proposed ICB theory, the administration of
immune checkpoint inhibitors has made great breakthroughs
in anticancer treatment (Pitt et al., 2016; Llovet et al., 2018;
Salik et al., 2020). However, ICB treatment provided few clinical
benefits for HCC patients, and less than 33% of patients exhibited
objective response to ICB treatment (Liu et al., 2020). Such
indicators as tumor mutational burden and expression level
of ICB-associated genes were unable to precisely estimate the
clinical outcome of immunotherapy. It is therefore of great
urgency to recognize predictors for further tailored clinical
decision and advance precision treatment (Nishino et al., 2017;
Mushtaq et al., 2018; Ng et al., 2020). Numerous studies
demonstrated that m6A regulators may play a key role in
predicting responsiveness to clinical treatment (Yi et al., 2020;
Zhang et al., 2020). Herein, we confirmed that clustering
results, m6A-based prognostic signature, and ZC3H13 expression
level were significantly correlated with ICB-related genes (i.e.,
PDCD1). Furthermore, this m6A modulator-based risk signature
was positively correlated with ICB-related genes (i.e., CD274),
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indicating that high-risk samples might be more affected by ICB
pathways and present with a better response for immunotherapy.
Additionally, increased levels of immunophenoscore, such as
IPS–CTLA4 blocker score and IPS–PD1/PDL1/PDL2 blocker
score, indirectly suggested the higher tumor immunogenicity
for subjects in the low-risk score group. As such, low-risk
score patients might be more sensitive to immunotherapy.
Notwithstanding, further validation is suggested for these results
at larger cohorts and different centers.

Among these m6A regulators, the biological roles of ZC3H13
and KIAA1429 have not been reported in HCC while other m6A
regulators (YTHDF1, YTHDF2, IGF2BP3, and METTL3) have
been investigated. Besides, the expression level of ZC3H13 but
not KIAA1429 could independently affect prognosis. ZC3H13
refers to a CCCH-type zinc finger protein and serves as a
vital modulator in the regulation of m6A RNA methylation
modification (Wen et al., 2018). Recently, increasing studies have
been published focusing on the biological function of ZC3H13 in
tumors. For example, a research from Zhu et al. pointed out that
ZC3H13 deactivated Ras-ERK to suppress the proliferation and
invasion of colorectal cancer (CRC) cells, indicating that ZC3H13
plays an antitumor role in CRC (Zhu et al., 2019). Gewurz
et al. (2012) reported that ZC3H13 may act as an oncogene
and a key upstream modulator of the NF-kB, which possesses
the ability to promote cancer cell invasion and proliferation.
Herein, this study was designed to elucidate the prognostic
significance and influences on TIME features and ICB treatment
of ZC3H13. It was discovered that the expression level of ZC3H13
was significantly downregulated in both cancer tissue and HCC
cell lines. Increased level of ZC3H13 expression suggested
longer OS time, suggesting that it can serve as a favorable
prognosis predictive indicator in HCC. ZC3H13 expression was
demonstrated to be positively correlated with the infiltration level
of immune cells (i.e., CD8 T cells), which indicated an immune-
activated condition, facilitating recognition and elimination of
tumor cells and then improving prognosis. The expression
level of ZC3H13 significantly and positively correlated with
ICB-related genes (i.e., PDCD1LG2), suggesting that samples
with high ZC3H13 might be more immunosuppressed by ICB
and might obtain benefit from immunotherapeutic treatment.
However, the underlying biological function of ZC3H13 in HCC
is still unclear, which demands further exploration.

Compared with previous research focusing on the potential
role of m6A regulator-mediated methylation in HCC, some
superiorities of this work should be noted. Firstly, all HCC
samples from the TCGA-LIHC project and the ICGC-LIRI-JP
dataset were adopted for comprehensive analysis, and the
total specimen size was considerably large. Moreover, the
potential players of m6A RNA methylation regulators in the
context of TIME (ESTIMATE analysis, ssGSEA algorithm, and
CIBERSORT method) and immunotherapeutic prediction (IPS
and ICB-related genes) were investigated, which has not been
elucidated before this study. In addition, a novel and robust
prognostic risk-clinical nomogram plot for clinical practice was
developed to predict individual sample OS time quantitatively.
Finally, to our knowledge, our study is the first to emphasize
on the biological functions of ZC3H13 using comprehensive

analysis (prognostic value, immune cell infiltration, and ICB-
related key genes) in HCC.

CONCLUSION

In summary, the expression pattern, prognostic significance,
and impact on TIME context and immunotherapy of
m6A RNA methylation regulators were comprehensively
analyzed in HCC. The comprehensive analysis of m6A
RNA methylation modification could help us understand
TIME characterization and facilitate the individualized
immunotherapeutic management. However, these findings
required validation in further experimental exploration and
clinical investigation focusing on the molecular mechanisms of
tumor progression and the biological functions of m6A RNA
methylation modification in HCC.
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