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The knowledge of the molecular effects of the C313Y mutation, responsible for the
“double muscle” phenotype in Piedmontese cattle, can help understanding the actual
mechanism of phenotype determination and paves the route for a better modulation
of the positive effects of this economic important phenotype in the beef industry,
while minimizing the negative side effects, now inevitably intersected. The structure
and dynamic behavior of the active dimeric form of Myostatin in cattle was analyzed
by means of three state-of-the-art Molecular Dynamics simulations, 200-ns long, of
wild-type and C313Y mutants. Our results highlight a role for the conserved Arg333 in
establishing a network of short and long range interactions between the two monomers
in the wild-type protein that is destroyed upon the C313Y mutation even in a single
monomer. Furthermore, the native protein shows an asymmetry in residue fluctuation
that is absent in the double monomer mutant. Time window analysis on further 200-
ns of simulation demonstrates that this is a characteristic behavior of the protein, likely
dependent on long range communications between monomers. The same behavior, in
fact, has already been observed in other mutated dimers. Finally, the mutation does not
produce alterations in the secondary structure elements that compose the characteristic
TGF-β cystine-knot motif.

Keywords: Myostatin, Piedmontese mutation, C313Y, double muscling, molecular dynamics, dimer asymmetry

INTRODUCTION

Myostatin (MSTN), also named growth differentiation factor-8, is a member of the transforming
growth factor-beta (TGF-beta) superfamily and is the primary negative regulator of skeletal muscle
development (Beyer et al., 2013). MSTN circulates in the blood as a full-length precursor, which
is cleaved into a N-terminal pro-peptide and a C-terminal mature region (Hill et al., 2002; Lee,
2008). In Figure 1, we show the functional state ofMSTN, composed by two C-terminal monomers
(residue 267–375) linked by an inter-chain disulfide bond between residues Cys339 (Figure 1A;
PDB id: 3HH2; Cash et al., 2009). MSTN is also characterized by four intra-monomer disulfide
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FIGURE 1 | (A,B) 3D structure of myostatin (MSTN) in dimeric form. The two
dimers are in red and blue colors. Each monomer is composed by four curved
beta strands (fingers), an alpha-helix (wrist helix), a pre-helix loop, and a
cystine-knot motif composed by disulfide bonds between residues 272–282;
281–340; 309–372; and 313–374. Moreover an inter-chain disulfide bond
between residues Cys339 links the two monomers. The active dimer presents
two convex type II receptor-binding sites and two concave type I
receptor-binding sites (indicated as convex and concave, respectively).
Piedmontese-derived MSTN mutation C313Y eliminates the disulfide bond
313–374.

bonds between cysteines 272–282; 281–340; 309–372; and 313–
374. These nine highly conserved cysteine residues are typical
of the members of the TGF-β superfamily (McPherron et al.,
1997), and together with the inter-chain disulfide bond form the
characteristic TGF-β cystine-knot structural motif.

Myostatin signaling acts through the activin receptor type
IIA (ActRIIA) or ActR-IIB and either TβRI/ALK-5 or ALK-
4, type I receptors on skeletal muscle, triggering the activation
of TGF-β–specific Smads, Smad2 and Smad3 followed by
oligomerization with Smad4 (Massagué and Wotton, 2000). The
Smad protein complex translocates into the nucleus, where it
regulates transcription of specific myogenic regulatory genes
such as Myod (Langley et al., 2002). Inhibition of this pathway

results in muscle hyperplasia (Lee and McPherron, 2001; Lee,
2007). Smad7 has been shown to inhibit both TGF-β1 and
MSTN signaling, and to enhance skeletal muscle differentiation
(Kollias et al., 2006). MSTN-Propeptide exhibits high binding
affinity for MSTN, and it has been shown to be a potent
inhibitor of MSTN. Antagonists of MSTN activity such as the
follistatin which hinders access to signaling receptors on skeletal
muscle (Sumitomo et al., 1995), are considered as potential
therapeutics in the treatment of muscle-wasting disorders such
as muscular dystrophy and sarcopenia (Bogdanovich et al., 2002,
2005).

Myostatin dimer activity can be inhibited by non-covalent
binding of two monomeric MSTN pro-peptides (self-regulation)
with each binding a concave type I receptor-binding site (in
the sheet or “finger” region) and a convex type II receptor-
binding site (composed of the “fingertip” and the “wrist”
helix, see Figure 1A; Lee and McPherron, 2001; Yang et al.,
2001).

Myostatin gene is highly conserved among vertebrate species
and knockout mouse line for the MSTN gene shows a significant
increase in skeletal muscle mass. The so-called “double muscling”
phenotype has been observed in different animal species such
as dogs (Mosher et al., 2007), sheep (Clop et al., 2006; Kijas
et al., 2007), cattle (Grobet et al., 1997), pigs (Stinckens
et al., 2008), and human (Schuelke et al., 2004). In cattle
several different breeds harbor mutations in MSTN gene and
show a hereditary muscular hyperplasia (double-muscled cattle):
Belgian Blue, Piedmontese, Charolais, Limousin, Ford, Holstein-
Friesian, Angus, Marchigiana, Maine-Anjou, Blonde d’Aquitaine,
Parthenaise, Gasconne, Asturiana de los Valles, and Rubia Gallega
(Table 1).

All these mutations, located in the bioactive carboxyl-terminal
domain, result in an impairment ofMSTN function and promote
muscle growth (McPherron and Lee, 1997). However, the most
powerful mutations are those affecting the highly conserved
cysteine residues (Cash et al., 2009). In particular, the deletion in
Belgian Blue introduces a frame shift and a stop codon, while in
Piedmontese a “simple” transition G→A at nucleotide position
938 results in the substitution of a cysteine by a tyrosine (C313Y;
Kambadur et al., 1997), thus eliminating one of the disulfide
bond (313–374) that is part of the TGF-β cystine-knot structural
motif. At the best of our knowledge the destabilizing effect of this
mutation has not yet been investigated by a molecular point of
view.

Molecular dynamics (MD) simulation is a powerful tool
for examining structural and dynamic properties of biological
macromolecules since it provides a description at atomic level
and at the appropriate time scale. Comparing MD of native
and mutant proteins, in particular, can efficiently highlight the
perturbation effect of single residue mutations (Chillemi et al.,
2005, 2008).

In the present paper, we aim at studying how the substitution
C313Y could affect the structure and function of MSTN. We will
report three 200-ns long MD simulations of the MSTN dimer
(1) in the native form; (2) in the mutant, which lack the 313–
374 disulfide bond in the bioactive carboxyl-terminal peptide
of both monomers (i.e., The “Piedmontese mutation”); (3) in
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TABLE 1 | Summary of major mutations in the myostatin gene.

Mutation name Change at gene level Change at protein level Breed Reference

nt821 Deletion of 11 bp at
nucleotide position 821

Truncated protein due to a
premature STOP codon in the
bioactive C-terminal domain

Belgian Blue, Blonde
d’Aquitaine, Limousin,
Parthenaise, Asturiana de
Valles, Rubia Gallega

Dunner et al., 1997; Grobet
et al., 1997, 1998; Kambadur
et al., 1997; McPherron and
Lee, 1997; Allais et al., 2010

C313Y G→A transition at
nucleotide position 938

Substitution of a highly conserved
cysteine involved in a intramolecular
disulfite bridge in the bioactive
C-terminal domain, by a tyrosine

Piedmontese, Gasconne McPherron and Lee, 1997;
Libor, 2008

nt419 (del7- ins10) Insertion/deletion at
nucleotide position 419

truncated protein due to a
premature STOP codon in the
N-terminal latency-associated
peptide

Maine-Anjou Grobet et al., 1998

Q204X C→T Transition at
nucleotide position 610

Truncated protein due to a
premature STOP codon in the
N-terminal latency-associated
peptide

Charolais, Limousin Allais et al., 2010

E226X G→T Transversion at
nucleotide position 676

Truncated protein due to a
premature STOP codon in the
N-terminal latency-associated
peptide

Maine-Anjou Grobet et al., 1998

E291X G→T Transversion at
nucleotide position 874

Truncated protein due to a
premature STOP codon in the
bioactive C-terminal domain

Marchigiana Cappuccio et al., 1998;
Marchitelli et al., 2003

T–371 > A–371G–805 > C-805 T→A Transversion at
nucleotide position –371;
G→C transversion at
nucleotide position –805

Promoter Marchigiana, Chianina,
Romagnola, Piedmontese,
Holstein Friesian, Italian
Red Pied, Brown Swiss,
Belgian Blue, Limousine

Crisà et al., 2003

G-7828 > C-7828 G→C Transversion at
position -7828

5′-Flanking region Holstein-Friesian Sadkowski et al., 2008

T3811 > G3811 Intronic mutation An abnormal transcript with a
premature termination codon

Blonde d’Aquitaine Bouyer et al., 2014

the heterodimer with the mutation only in one monomer. We
focused on this mutation because of the simplicity of the model
that allows for a precise understanding of the mechanism of a
single aminoacidic substitution. Moreover, we hoped to clarify
how such apparently minimal difference could explain a large
phenotypic variation between wild-type and homozygous mutant
individuals.

Our results indicate that the mutation does not alter the local
structure of the protein, while it affects its dynamical properties
far from the mutation site.

MATERIALS AND METHODS

Model Generation and Simulation
Protocol
Atomic coordinates of MSTN in the active dimeric state were
obtained from protein data bank (id: 3HH2; Cash et al., 2009).
Note that the residue numbering in the PDB file is 1–109,
corresponding to residue 267–375. The starting model was built
with the gromacs pdb2gmx tool (Pronk et al., 2013) andmodeling
the four cysteine disulfide bonds between residues 272–282;
281–340; 309–372; and 313–374 in each monomer, plus the
inter-monomer disulfide bond between Cys339. Two additional

models were built introducing the Piedmontese-derived MSTN
mutation C313Y (Grobet et al., 1997; Kambadur et al., 1997) in
one (1-copy) or both monomers (2-copy), thus eliminating the
313–374 disulfide bond.

The starting structures were embedded in a dodecahedron
box, extending up to 12 Å from the solute, and immersed in
TIP3P water molecules (Jorgensen et al., 1983). Counter ions
were added to neutralize the overall charge with the genion
gromacs tool. After energy minimizations, the systems were
slowly relaxed for 5 ns by applying positional restraints of
1000 kJ mol−1 nm−2 to the protein atoms. Then unrestrained
MD simulations were performed from the final structures of
the restrained runs for a length of 200 ns with a time step of
2 fs (i.e., for 100,000,000 steps). V-rescale temperature coupling
was employed to keep the temperature constant at 300 K
(Bussi et al., 2007). All the MD simulations were performed
with the Gromacs 4.5.6 package (Pronk et al., 2013) and the
amber99sb-ildn force field (Lindorff-Larsen et al., 2010). The
Particle-Mesh Ewald method was used for the treatment of
the long-range electrostatic interactions (Darden et al., 1993).
Only the 0-copy and 2-copy systems were simulated for further
200 ns in order to investigate the RMSF asymmetry of the
two monomers in the first system but not in the second
one.
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Molecular Dynamics Analyses
The dynamic cross-correlation (DCC) map (McCammon and
Harvey, 1988) was built with the gromacs g_covar tool. Per-
residue RMSF, hydrogen bonds and secondary structure content
were obtained with the gromacs tools g_rmsf, g_hbond and
do_dssp, which is an interface to the DSSP program (Kabsch and
Sander, 1983). The figures in the 3D structures were generated
with vmd (Humphrey et al., 1996).

RESULTS

The structural and dynamic effect of the C313Y mutation on the
MSTN protein has been investigated in the dimeric form, i.e., the
functional state ofMSTN,with the following models: (1) the wild-
type form (0-copy); the heterodimer composed by the monomer
in mutated form and the second in wild-type one (1-copy); (2)
the homodimer mutant (2-copy).

The root mean square deviation (RMSD) plot as a function
of simulation time is usually used to check the protein stability
during the simulation. An unfolding protein, in fact, has a
RMSD always growing. The RMSD plot of all the three simulated
systems (Supplementary Figure S1) is very stable for the whole
time window, therefore telling us that the system has reached
a potential energy minimum and is sampling the available
conformational space.

In line, the secondary structure of both monomers, i.e., the
β strands forming the fingers and the wrist helix (Figure 1),
are conserved in both wild-type and mutant systems during the
whole simulation (Supplementary Figure S2).

Therefore our results indicate that the loss of the 313–374
disulfide bond in one or both monomers, is not enough to
destroy the highly stable cysteine-knot structure. A compensative
structural effect, in particular, is likely performed by the 309–372
disulfide bond.

Figure 2 shows the per-residue root mean square fluctuations
(RMSF) in black, green, and red lines for 0-, 1-, and 2-copy
mutations, respectively. The loop corresponding to the 354–
358 residues is always the most fluctuating region. Note that
this loop forms part of the concave type I receptor-binding
site (Figure 1A). The 2-copy system shows a significant greater
fluctuation in the 332–337 residues, at the C-term of the
wrist helix. The 0-copy system is quite stable in this region,
while the 1-copy shows an intermediate behavior. It is quite
interesting that the greatest RMSF differences between mutant
and native systems are not located close to the mutation
site.

Comparison of fluctuations between the two monomers in
each of the three systems (Supplementary Figure S3) shows that
both the 0- and 1-copy systems have an asymmetric fluctuation
of their monomers, while the RMSF profile in the 2-copy system
is very similar in both monomers. It is likely to assume that the
asymmetric fluctuations in 1-copy system is due to the presence
of the mutation in only one of the two monomers. The RMSF
differences between 0- and 2-copy systems are further discussed
in the following sections, after the long range interaction and
hydrogen bond analyses.

FIGURE 2 | Per-residue root mean square fluctuations (RMSF) are
shown in black, green, and red lines for the 0-, 1-, and 2-copy dimers,
respectively. Horizontal black lines indicate the pre-helix and wrist helix
regions. Blue horizontal lines link the cysteine residues connected by the
disulfide bonds in each monomer. The dark green horizontal lines highlight the
disulfide bond between Cys313 and Cys374, abolished by the C313Y
mutation. The blue horizontal dashed line connects the inter-monomer
Cys339 disulfide bond.

In order to further investigate the long range interactions
in these systems, we have built the Dynamic Cross Correlation
Maps (DCCMs) and reported the comparison between the three
systems in Figure 2. This analysis gives an overall picture of the
correlated motions that occur between protein residues during
the simulation. Highly positive peaks of the elements of the map
(Cij) are indicative of a strong correlation between the movement
of residues i and j (colored in green, yellow, and red in Figure 3);
the diagonal of each DCCM is black because each residue has a
correlation of 1 with itself; negative Cij values denote that the
two residuesmove in opposite directions (anti-correlated motion;
colored in cyan, light, and dark blue in Figure 3). Both positive
correlation than anti-correlation movements are relevant when
investigating biological macromolecules, particularly in couples
of residues that are located far apart in the 3D structure.

Since each map is symmetrical, we combined two DCCMs in
one as in the following: the comparison between 0-copy (upper
left triangle) and 1-copy dimers (lower right triangle) is reported
in Figure 3A; the comparison between 0-copy and 2-copy dimers
(lower right triangle) is reported in Figure 3B. The most striking
difference between native and mutant systems is in the anti-
correlated motions between monomer 1 and 2. Two specific
regions in the 0-copy system, composed by residues 288–298 and
351–359 inmonomer 2 and highlighted by two horizontal arrows,
are strongly anti-correlated with several regions of monomer 1.
The same two regions in monomer 1 show an analogous anti-
correlated motion with several regions of monomer 1 but with
reduced intensity.

These coordinated motions of monomer 1 with monomer 2
are lost in both the mutant systems. Both 1-copy and 2-copy,
in fact, show a monomer 1-monomer 2 anti-correlation motion
concentrated only between the respective finger regions (residues
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FIGURE 3 | Dynamic Cross Correlation Map (DCCM). (A) Comparison of 0- and 1-copy system is reported in the upper left and lower right triangles,
respectively. (B) Comparison of 0- and 2-copy system is reported in the upper left and lower right triangles, respectively.

80–105), while the remaining portions of the protein do not show
significant correlations in their movements.

The observed great perturbation in inter-monomer
communications can be further analyzed by the hydrogen
bond analysis. In Table 2, the hydrogen bonds with residence
time greater than 40% of simulation time are reported. It is
worth noting that four out of five long residence hydrogen
bonds in the wild-type system involve Arg333, at the C-term of
the wrist helix and very well conserved among mammals. The
interaction between Arg333 and Tyr308 of the other monomer,
in particular, is very stable and present in both monomers of the

TABLE 2 | Inter-monomer hydrogen bonds with residence time greater
than 40% of simulation time (in bold residues belonging to monomer 2).

Donor Acceptor % Residence time

0-copy TYR308 OH ARG333 O 58.3

ARG333 NE TYR308 OH 94.6

ARG333 NH1 ASP273 O 40.9

ARG333 NH2 GLU274 OE1 82.4

GLY334 N TYR308 OH 42.8

1-copy GLN329 NE2 GLU291 OE2 52.7

GLN329 NE2 ALA292 O 88.5

GLN329 NE2 PHE293 O 50.1

ARG333 NH1 GLU274 OE2 46.6

ARG333 NH2 TYR308 OH 41.7

THR341 OG1 SER375 OC2 43.5

2-copy ARG333 NH1 GLU274 O 91.5

ARG333 NH1 SER276 O 90.6

ARG333 NH1 TYR284 OH 47.4

copy-0 system. A snapshot of the MD simulation with the two
highlighted residues is shown in Figure 4.

The C317Y mutation strongly perturbs the h-bond network
observed in the copy-0 system. The Arg333-Tyr308 interaction,
in fact, is observed in the 1-copy-dimer only between the native
monomer 2 and the mutant monomer 1; and it is completely
lost in the 2-copy system, with Arg333 interacting only with the
N-terminal region of the corresponding other monomer.

The observed RMSF asymmetry between the two monomers
of 0-copy are nearly abolished in the 2-copy system (Figure 2
and Supplementary Figure S3). Furthermore, we carried out
two simulations of these two systems, each 200 ns long and

FIGURE 4 | 3D snapshot of the inter-monomeric interactions between
Arg333 and Tyr308.
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independent from the previously described. Per-residue RMSF
analysis of four time windows, each 50 ns long, is shown in
Supplementary Figure S4 as box-plot data for monomer 1 and
2 (blue and green colors, respectively) and for 0-copy and 2-
copy (panel A and B, respectively). An asymmetric behavior is
confirmed in the 0-copy system, particularly in the 296–302,
314–317, and 325–337 residue ranges. In 2-copy system, on the
contrary, limited asymmetric RMSFs are observed and only in the
315–322 residue range.

DISCUSSION

The MSTN gene, transcripts and protein, has been extensively
studied in many species. In livestock, in particular, this has been
one of the first genes recognized having an economic importance
and has attracted a considerable attention from the scientific
community.

To our knowledge, this is the first attempt to model the
active dimer form of MSTN. In particular, we describe the
behavior of parts of the molecule when composed by the wild-
type or one of the existing mutations, or the combination of
both. Understanding the MD features of normal, mutant and
heterodimer MSTN provides a scientific basis for understanding
the molecular reasons at the basis of the double muscling
phenotype and the phenotypic effect of the mutation.

Cys313 is located in the pre-helix loop, a region known
to be important for type I receptor specificity (Nickel et al.,
2005; Cash et al., 2009, 2012; Kotzsch et al., 2009). Our in
silico results indicate that the effect of the Piedmontese C313Y
mutation on the 3D structure of the active MSTN dimer is
quite subtle, probably due to the 309–372 disulfide bond that
maintains the structure of the dimer even in the absence of the
313–374 disulfide bond. The greatest differences between native
and mutant systems are in the dynamics of the single monomers
and in the communications between monomers. The region
332–337 shows a significant increase in fluctuations (Figure 2),
particularly for the 2-copy system but it is observed also in 1-
copy. In line, Arg333, located in this region, forms very stable
hydrogen bonds with the opposite monomer in the 0-copy dimer
(Table 2), in particular with Tyr308. In copy-1 the Arg333-
Tyr308 hydrogen bond is maintained only between Arg333 in the
native monomer 2, and Tyr308 in the mutant monomer 1; while
both inter-monomer interactions are lost in the 2-copy system.

The presence of these two symmetric bonds between Arg333
and Tyr308 can explain the greater anti-correlation motion
observed between the two monomers in the native 0-copy dimer
(Figure 3). The complex network of anti-correlated motions
shown by the wild-type system, in fact, is lost in both 1-copy and
2-copy mutant systems, where only the finger region (346–371)
of monomer 1 shows an anti-correlated motion with the same
region in monomer 2.

The RMSF asymmetry; the presence of strong anti-correlation
motion between monomers; and the h-bond network in the
wild type enzyme, therefore, are indicative of a functional
cooperative mechanism in the wild type protein that is lost
upon C313Y mutation. Actually functional communications

between monomers, linked to an asymmetric behavior, have
been already observed in Superoxide Dismutase (Falconi et al.,
1996; Chillemi et al., 1997), together with their perturbations
upon mutations (Falconi et al., 1999). A functional break of
the tetramer symmetry has been also recently observed in the
p53-DNA complex (D’Abramo et al., 2015).

In Piedmontese, MSTN mutation (a missense mutation in
exon 3) has been found partially recessive with heterozygotes
showing a muscle mass intermediate but closer to that of wild-
types (McPherron and Lee, 1997; Georges, 2010). At least for the
Piedmontese mutation, we can hypothesize that of the possible
dimers that form the active MSTN in the heterozygotes only one
out of four are strongly affected. In fact, calling N the normal
monomer and M the mutant one, the possible combinations
yielding the dimer in the heterozygote are NN, NM, MN,
and MM. Only the last one will show the strongly deviated
behavior. Therefore, most of the circulating MSTNdimers behave
“normally.” It could be reasonable to extend this hypothesis to all
other mutations, i.e., that only one out of four possible dimers
is affected in the heterozygotes, thus explaining the phenotypic
observations (Wiener et al., 2002), however, a specific dynamic
simulation for each mutation will be necessary to substantiate the
hypothesis.

Homozygote double muscling mutant cattle are more
susceptible to genetic disorders such as arthrogryposis (Anderson
et al., 2008; Fiems, 2012), while several studies support the notion
that a single copy of the mutant allele has relatively large effects
on carcass characteristics, without a negative effect on calving,
compared with no copies of the allele (Arthur, 1995; Casas et al.,
1998).

Our study aimed at naturally occurring mutations but
recent technological advancements in genome engineering,
such as the cloning of cattle by somatic cell nuclear transfer or
chromatin transfer, offers some extraordinary possibilities
to the beef industry (Wang, 2015). Therefore, we can
foresee that in the near future an animal will be edited to
have the very best variants its species can offer, by natural
variation or induced one where permitted (http://www.
fda.gov/AnimalVeterinary/DevelopmentApprovalProcess/
GeneticEngineering/GeneticallyEngineeredAnimals/
ucm466214.htm).

In this framework, our study is a first step toward a full
understanding of the “double muscle” phenotype within the
molecular level, that in a close future can allow the beef industry
to fully take advantage of the positive characteristics of this
phenotype, without its negative side effects
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