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Abstract: Octacalcium phosphate (OCP, Ca8H2(PO4)6·5H2O) is known to be a possible precursor
of biological hydroxyapatite formation of organic bone tissue. OCP has higher biocompatibility
and osseointegration rate compared to other calcium phosphates. In this work, the synthesis of
low-temperature calcium phosphate compounds and substituted forms of those at physiological tem-
peratures is shown. Strontium is used to improve bioactive properties of the material. Strontium was
inserted into the OCP structure by ionic substitution in solutions. The processes of phase formation
of low-temperature OCP with theoretical substitution of strontium for calcium up to 50 at.% in condi-
tions close to physiological, i.e., temperature 35–37 ◦C and normal pressure, were described. The
effect of strontium substitution range on changes in the crystal lattice of materials, the microstructural
features, surface morphology and biological properties in vitro has been established. The results of
the study indicate the effectiveness of using strontium in OCP for improving biocompatibility of
OCP based composite materials intended for bone repair.

Keywords: biocompatible materials; calcium phosphate compounds; hydroxyapatite; octacalcium
phosphate; bone tissue regeneration; biomineralization

1. Introduction

The bones regeneration processes studies, rather than mechanical replacement of
bone tissue, lead to the creation of various combinations of materials based on calcium
phosphate ceramics and its composites for bone augmentation procedures [1–3]. A large
number of works are devoted to bioresorbable materials for maximum imitation of the
structure and properties of native bone tissue [4]. This led to the development of ma-
trices and scaffolds with specified physicochemical properties based on biocompatible
calcium phosphates—hydroxyapatite and tricalcium phosphate [5–7]. The presence of
calcium and phosphorus ions in the composition of these materials imparts osteoconduc-
tive properties to the implant. The presence of calcium and its release from the material
during the healing process can mediate the expression of osteopontin, which binds to
bone hydroxyapatite, participates in its formation, and has an integrin-binding domain,
which promotes cell proliferation on the implant surface [8]. It is well-known that calcium
phosphate materials obtained by high-temperature routes are biocompatible, non-toxic,
but devoid of the possibility of biointegration, have a low rate of resorption and can cause
fibrous encapsulation of the entire material at the site of implantation [9–12]. Therefore,
a promising approach for dental or orthopedic reconstructive surgery is using the low-
temperature calcium phosphate ceramics, which are the most appropriate as possible to
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the components of the native bones, in particular apatite-like hydroxyapatite (HAp) and its
possible precursors—dicalcium phosphate dihydrate (DCPD) and octacalcium phosphate
(OCP) [13]. It was previously described that these materials, synthesized under conditions
as close as to natural biominerelization processes, can have a direct inducing effect [14].
First, such materials include OCP, which, unlike other analogs, has a high resorption rate
and pronounced osteoinductive potencies. The maim interest in materials for bone tissue
regeneration based on OCP is also associated with its structural characteristics, which allow
the introduction of cations and anions, as well as biological agents for targeted function-
alization [15–17]. There is no unambiguous opinion about the role of ionic substitutions
in the physiology of bone tissue, but it has been revealed that it is possible to change and
improve the properties of materials due to structural substitutions with cations and anions.
At the same time, depending on the nature and concentration of the embed ion, both im-
provement and deterioration of the functional properties of the implant is possible. Thus,
it is possible to obtain materials based on calcium phosphates with both high bioactivity
and antibacterial properties [18,19]. Since the low-temperature OCP considered in this
work has a suitable bioresorption rate, the currently unsolved problem is to increase the
biological properties of the obtained material. Its osteoinductive properties are important,
which are proposed to be improved by substitution of calcium for strontium. The process of
reparative osteoregeneration begins with the intensification of the proliferative activity of
osteoblasts [20,21]. Strontium-containing materials optimize osseointegration on the initial
stages, shifting the balance between osteoplastic synthesis and osteoclastic resorption.
Strontium ions in calcium phosphate contribute to the improvement of osteoblast function
and subsequent bone formation [22].

That is the reason why, the main goal of this work was to develop an approach
for creating a low-temperature OCP, a possible precursor of biological hydroxyapatite,
with strontium ions included into the structure. In addition to assessing the effect of the
concentration of calcium substitution to strontium on phase and structural changes in the
material, an important objective was to assess the effect on biological characteristics.

2. Results

XRD patterns of obtained OCP and OCP-Sr are shown in Figure 1. It was found that the
samples are solid solutions based on octacalcium phosphate pentahydrate (Ca8H2(PO4)6·5H2O)
and correspond to card № 26-1056 of the XRD base ICDD (Powder Diffraction File, Alpha-
betical Index Inorganic Compounds, Pensylvania: JCPDS, 1997). With an increase in the
percentage of strontium replacing calcium, the main diffraction peaks (about 4.9◦ and 26.4◦)
shift to the left relative to the initial OCP. In this case, the shear angle also enlarges with an
increase in the strontium concentration in OCP. Diffraction peaks for all examined samples
are widened and overlapping peaks are observed at far corners, which are accompanied
by an increase in the volume of unit cells. The values of the parameters of triclinic unit
cells (Table 1) were set using the CelRef program for eight reflections ((020), (110), (-101),
(-211), (002), (260), (-1-42), and (070)). The findings indicate that the parameters of the
crystal lattice gradually increase with an increase in the strontium concentration. A higher
degree of crystallinity is observed in samples OCP-Sr_5, OCP-Sr_10, and OCP-Sr_20. These
data are well consistent with the results of E. Boanini, M. Gazzano, and A. Bigi (2010) [23],
where the values of 1226 Å3 and 1231 Å3 are given for similar samples with Sr content of
10 and 15 at.%, respectively. The crystallinity of the samples decreases with an increase
in strontium concentration and leads to the formation of less stable materials with lower
crystallinity. The inclusion of strontium with a larger ionic radius (0.12 nm) than calcium
(0.10 nm) leads to broadening of the crystal lattice parameters and causes relaxation of the
lattice of surrounding atoms and can stabilize the metastable structure of OCP crystals
and promote the formation of apatite in native bone tissue during regeneration [24]. The
diffraction peaks of HA and DCPD were not detected, therefore, the obtained samples are
single-phase and correspond to OCP.
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Figure 1. Powder X-ray diffraction patterns of the powder samples OCP and OCP-Sr.

Table 1. Elementary cells parameters values. Standard deviations in parentheses.

Sample Card № 26-1056 OCP OCP–Sr_1 OCP–Sr_5 OCP–Sr_10

a, Å 9.52(9) 9.44(1) 9.62(2) 9.62(3) 9.62(7)

b, Å 18.99(4) 18.99(2) 19.01(1) 19.01(7) 19.02(4)

c, Å 6.85(5) 6.84(6) 6.89(4) 6.92(3) 6.90(3)

α, ◦ 92.33(0) 92.52(1) 93.11(5) 93.17(4) 92.19(2)

β, ◦ 90.13(0) 90.15(1) 89.20(7) 89.19(6) 90.18(3)

γ, ◦ 79.93(0) 80.01(4) 80.09(3) 80.08(2) 79.78(9)

V, Å3 1220.5(7) 1220.5(6) 1240.2(6) 1240.2(2) 1238.2(2)

The data obtained by the method of IR spectroscopy confirm the data of the X-ray
phase analysis. FTIR spectrum presented in Figure 2. The sharp shapes of bands indicate
high crystallinity. The presence of the intense bands at 1123 and 1027 cm−1 corresponding to
the ν3 mode of HPO4

2− and PO4
3− [P−O stretching in phosphate (PO4

3−) and hydrogen
phosphate (HPO4

2−)], and a HPO4
2− band at 906 cm−1 (P−O stretching in HPO4

2−)
are typical of an OCP structure. The 602 cm−1 and 560 cm−1 sharp P−O bands (P−O
deformation in PO4

3−), which is the ν4 mode of PO4
3−. The bands at 865 cm−1 and

960 cm−1 belong to HPO4
2− stretch groups (P−OH). These main vibration peaks of PO4

3−

and HPO4
2− groups are typical of the OCP structure.
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Figure 2. IR-spectra of samples OCP and Sr-OCP.

The structure and surface morphology of the OCP and OCP-Sr samples were observed
using SEM, the results are shown in Figure 3. The intrinsic OCP lamellar crystal shape is
observed in all samples. The crystals are enlarged with an increase in samples’ strontium
concentration, and the shape approaches the plate. The micrographs revealed the most
crystallized structure of the samples (Figure 3c,d). With an increase in the strontium content,
the morphology becomes uneven; in the case of OCP-Sr_50, the crystals have a wide
lamellar shape, rough edges, and an advanced surface. At the minimum strontium content
(1 at.%, Figure 3b), the shape of the crystals is close in its macrostructure to the DCPD, from
which the material was synthesized. Analysis of the microstructure of samples OCP-Sr_10
and OCP-Sr_20 showed two types of particle morphology, in addition to lamellar particles,
some of the particles have a complex shape, which indicates inhomogeneity. The OCP-
Sr_10 samples show structures consisting of small crystals of complex shape. The data of
diffraction methods, including EDS analysis and XRD, did not confirm the presence of other
phases in the obtained samples. According to the results of diffraction research methods, it
was proved that the inclusion of strontium in the OCP structure during low-temperature
synthesis occurs in a wide range of substitution of Sr for Ca and changes the integrity of
OCP crystals.

The chemical composition of materials was determined using EDA and X-ray flu-
orescence analysis (Table 2). The results obtained using two different methods are well
concorded and confirm the earlier conclusions. OCP fits in the structure of the material in
a wide range of concentrations. The strontium concentrations obtained during the experi-
ment are comparable with the theoretical ones, except for the substitution of OCP–Sr_50.
An overestimated strontium content can presumably destroy the OCP structure, as shown
by previous methods. The molar ratio Ca + Sr\P in the OCP–Sr_5 and OCP–Sr_10 samples
is close enough to the theoretical value of 1.33. Thus, strontium can improve the stability of
OCP within certain concentrations, above which it has a negative effect on the crystallinity
of the structure.
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Table 2. Chemical components of samples OCP and OCP-Sr, at.%.

Sample
EDS XRF

P Ca Sr Ca/P Ca + Sr/P P Ca Sr Ca/P Ca + Sr/P

OCP-Sr_1 41.89 56.85 1.26 1.36 1.39 34.08 65.33 0.60 1.92 1.93

OCP-Sr_5 41.02 55.69 3.28 1.36 1.44 33.90 63.44 2.67 1.87 1.95

OCP-Sr_10 41.50 50.33 8.17 1.21 1.41 35.75 58.86 5.38 1.65 1.80

OCP-Sr_20 41.69 46.15 12.17 1.11 1.40 36.89 55.64 7.46 1.51 1.71

OCP-Sr_50 45.01 38.23 16.76 0.85 1.22 35.25 52.33 12.42 1.48 1.84

The data of the analysis of the OCP-Sr samples obtained by the TEM method are
presented in Figure 4. The instrument constant for all SAEDs is 25.1 mm A. The red
circles indicate the diffraction area. Two structural types of synthesized samples are
considered—compact, and with needle-shape crystals with directional growth on the
surface. Particles of clear OCP look like homogeneous single crystals (Figure 4A) and
20–30% particles, as in Figure 4B. Most of the OCP-Sr_10 particles look like homogeneous
single crystals Figure 4C. About 5–10% of particles in the powder have a complex structure
(Figure 4D). The contrast within particles indicates possible heterogeneity in samples. The
character of the selected areas electron diffraction patterns indicates a microcrystalline
structure. Bent extinction contours point to a stressed state.

As a result, the synthesized material for the study was a powder of OCP and OCP-Sr
with a highly developed surface due to the radial arrangement of thin crystals.

The effect of strontium-substituted OCP variants on the viability of C3H/10T1/2
cells was investigated. Cell viability after incubation with OCP with 1% calcium sub-
stitution for strontium (OCP-Sr_1) was not shown difference from cells incubated with
the original OCP (without substitution of calcium for strontium). Cell viability after in-
cubation with OCP with 5% and 10% calcium substitution for strontium (OCP-Sr_5 and
OCP-Sr_10, respectively) was insignificantly higher than the cell viability after incubation
with native OCP. On the other hand, cell viability after incubation with OCP with 20%
and 50% calcium substitution for strontium (OCP-Sr_20 and OCP-Sr_50, respectively) was
significantly higher than cell viability after incubation with OCP (Figure 5). Substitution of
calcium for strontium in OCP not less than for 20% theoretical can significantly reduce the
cytotoxicity of OCP. In further experiments to investigate the effect of OCP and OCP-Sr
on C3H/10T1/2 cells, the concentration with minimal effect on cell viability (1 mg/mL)
was used for OCP-Sr_20 and OCP-Sr_50. At a given concentration, there is a maximum
discrepancy in the effect on cell viability for OCP-Sr and OCP.
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substitution for calcium (OCP) and Sr-substituted OCP (OCP-Sr) with varying degrees of substitution.

It is clear that changes in the mitochondrial membrane potential (∆Ψm) and the
content of acidic compartments, such as lysosomes, caused by various inducement are one
of the key events of cell damage is shown [25,26].

Thereby, the mitochondrial membrane potential and the content of acidic compart-
ments in cells after 96 h of co-incubation with OCP and OCP-Sr were investigated. Lyso-
Tracker Green was used to estimate the content of acidic compartments, mainly lyso-
somes [27], and to assess the mitochondrial membrane potential (∆Ψm) DIOC3(6) [28],
followed by flow cytometry. When studying the effect of OCP and OCP-Sr on the mitochon-
drial membrane potential in C3H/10T1/2 cells, it was shown that the incubation of cells
with both OCP and all various OCP-Sr, regardless of the degree of substitution of calcium
for strontium, reduced ∆Ψm in cells, after 96 h of co-incubation, the difference from the
untreated control is significant, p < 0.05 (Figure 6a). Further, the study of the content of
acidic compartments after co-incubation of cells with OCP and OCP-Sr for 96 h showed that
incubation with OCP increased the content of acidic compartments in C3H/10T1/2 cells,
the difference from the untreated control was significant, p < 0.05 (Figure 6b). On the other
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hand, incubation of cells with all OCP-Sr for 96 h did not lead to an increase in the content
of acidic compartments in the cells (Figure 6b).
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Additionally, to verify flow cytometry data, the content of acidic compartments and
mitochondrial membrane potential in C3H/10T1/2 cells were examined using confocal
microscopy after 96 h of co-incubation with OCP and OCP-Sr. For this, cells were stained
with LysoTracker Green and MitoTracker Red CMXRos [29]. H33342 was used to visualize
the cell nucleus. Confocal microscopy data were similar to flow cytometry data and showed
an increase in the content of acidic compartments in C3H/10T1/2 cells after 96 h of co-
incubation with OCP, but not with OCP-Sr. Also, for OCP and for all OCP-Sr variants ∆Ψm
decreased (Figure 7).

It is well known that reactive oxygen species (ROS) play a key role both in the regulation
of normal cell physiology and in various cellular pathologies, including cell damage [30]. In this
regard, the effect of OCP and OCP-Sr on ROS production in C3H/10T1/2 cells was investigated.
Co-incubation of cells with OCP, with OCP-Sr_1 and with OCP-Sr_10 for 96 h did not lead
to a change in ROS production. However, after incubation of cells for 96 h with OCP with
a maximum strontium substitution of theoretical 50 at.% (OCP-Sr_50), a decrease in ROS
production was shown, the difference from the control was significant, p < 0.05 (Figure 8). It
is due to the fact that Sr2+ has an antioxidant effect on mesenchymal cells and, probably, this
concentration of Sr in the OCP composition may be sufficient to reduce the production of ROS.

The results of in vitro studies show that substitution of calcium for strontium, from
20% substitution and above, in the composition of OCP can significantly reduce the cyto-
toxicity of OCP. However, regardless of the substitution degree, OCP-Sr, as well as OCP,
reduce the mitochondrial membrane potential, but this effect does not correlate with the
effect of OCP and OCP-Sr on cell viability. In addition, OCP-Sr does not increase the
content of acidic compartments, unlike OCP, however, this effect also does not correlate
with the effect of OCP and OCP-Sr on cell viability. The effect of OCP and OCP-Sr on ROS
production in cells shows that most of the studied OCP-Sr variants, as well as OCP did not
change constitutive ROS production; however, OCP-Sr with a 50% substitution degree of
calcium for strontium significantly reduced ROS production in cells C3H/10T1/2.
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3. Discussion

The development of osteoplastic materials based on synthetic calcium–phosphate
compounds, equal in efficiency to autografts of bone tissue, is one of the most demanded
tasks of modern tissue engineering. However, direct or indirect cytotoxicity, limited bio-
compatibility, and inability for full biointegration in the recipient’s body are the main
limiting factors for the widespread use of calcium phosphate ceramics in current clinical
practice [31,32]. In this regard, the transition to the synthesis of calcium phosphate com-
pounds under physiological conditions and the development of biomimetic materials using
bioactive synthetic analogs of the natural bone tissue biomineralization process—primarily
OCP—open up new prospects for the development and application of osteoplastic materials
with high regenerative potential [33].

In this study, strontium ions were doped into the OCP structure by chemical recrystal-
lization of DCPD powder in solution under physiological conditions. The molar ratio of
strontium in the samples is close to the theoretical in all samples, except for OCP-Sr_ 50.
The substitution of strontium in this case was experimentally up to 25–27 at.%, which is
higher than in existing studies. Strontium substitution leads to the expansion of the crystal
lattice of OCP and at 5–10 at.% possibly stabilizes the crystal lattice, which requires a more
detailed study of the processes occurring in this range.

The results of in vitro biocompatibility studies show that substitution of strontium
in samples with OCP-Sr_20 and higher significantly increases cells viability, compared
to undoped OCP. The results of in vitro biocompatibility studies show that substitution
of strontium in samples with OCP-Sr_20 and higher significantly increases cells viability,
compared to undoped OCP. Similar results were obtained in the work of Shi et al., 2017,
where it was shown that an increase in strontium incorporation into OCP obtained by the
high-temperature method can significantly increase the viability and proliferative activity
of mesenchymal stem cells, compared to undoped OCP [34]. This effect may be associated
with the absence of the OCP-Sr impact on the content of acidic compartments, as well as
with the lack or even an inhibitory effect on the ROS production. The antioxidant properties
of strontium in the composition of calcium phosphate compounds have been well studied.
In the study by Zhou et al., 2019, it was shown that the use of Sr substituted OCP can reduce
the production of ROS in mesenchymal stem cells [35]. The mechanisms of the antioxidant
action of strontium-substituted calcium phosphate compounds may be associated with
an increase in the activity of antioxidant enzymes, such as superoxide dismutase (SOD),
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catalase (CAT), and glutathione peroxidase [36]. It has also been shown that Sr2 + ions are
able to inhibit lipid peroxidation and, thus, reduce cellular damage caused by oxidative
stress [37]. ROS play an important role in the differentiation of bone cells, primarily
osteoclasts, responsible for bone resorption [38]. Strontium inhibits osteoclast formation
and promotes osteoblast differentiation [39]. Thus, it can be assumed that the antioxidant
properties of Sr2+ may be related to its osteogenic properties.

The effect of strontium-containing calcium phosphate compounds on the content of
acidic compartments, primarily lysosomes, in cells requires further research. However,
it is known that the cytotoxic effect of calcium phosphates can be associated with the
rapid dissolution of these compounds in lysosomes with their subsequent rupture and
cell necrosis [40]. It is also known that endosomes damage in cells after absorption of
calcium phosphates can be retired by calcium chelators [41]. Probably, strontium containing
calcium phosphate compounds can degrade more slowly in phagolysosomes of cells than
calcium phosphate compounds without strontium and, therefore, do not induce damage
and biogenesis of lysosomal acidic compartments in cells. However, the exact mechanisms
of the effect of calcium phosphate compounds containing strontium on the Red/Ox status
of cells and lysosomal physiology remain unclear.

As a conclusion, the inclusion of strontium substituted OCP (OCP-Sr_20 and higher)
in composite osteoplastic materials could be significantly increases the efficiency of bone
augmentation procedures in dental and orthopedic surgery, as well as reconstructive
procedures for correction of post-traumatic defects. It is well known from the literature
and clinical practice that strontium preparations successfully suppress bone resorption
in the treatment of osteoarthritis and osteoporosis. [42,43], and strontium-substituted
calcium phosphate compounds to modify bone balance towards the osteogenic pathway,
can enhance the proliferation of preosteoblasts, reduce the production of pro-inflammatory
cytokines and matrix metalloproteinases, and suppress the production of chemokines-
attractants of immune cells [44–47], initiating the rejection of the implanted material.

Based on the in vitro data obtained, OCP-Sr (20 and higher) has a higher biocompat-
ibility and can inhibit the biogenesis of lysosomes, which is of great clinical importance,
since it can help prevent the side effect of resorption of contact healthy bone tissue during
implantation of calcium phosphate materials. A potential increase in the biointegration of
OCP-Sr materials can be realized both by local suppression of ROS production by stron-
tium, and by a decrease in the total number of lysosomes and a potential suppression of
the production of matrix metalloproteinases in immune cells, which will be clarified at
further stages of our research.

4. Materials and Methods
4.1. Synthesis Procedure

OCP and strontium-doped OCP (OCP-Sr) samples were prepared by low-temperature
chemical crystallization of DCPD in an acetate aqueous solution. Powder DCPD with a
particle size of 50 µm–100 µm was synthesized by precipitation method. The solutions
of (NH4)2HPO4 0.5 M and Ca(NO3)2 0.5 M (Sigma-Aldrich, St. Louis, MO, USA) were
mixed together in a glass cup and left for 2 h stirring, after air-drying for 4 days. OCP was
synthesized by low-temperature chemical transformation method in 1.75 M sodium acetate
solution from DCPD powder by following reaction:

8CaHPO4·2H2O = Ca8(HPO4)2(PO4)4·5H2O + 2HPO2−
4 + 4H+ + 11H2O

DCPD powder mass to solution volume ratio was 1g to 100 mL. The process was
conducted on a magnetic stirrer at 250 rpm and heating at 35 ◦C for 24 h. After that,
filtration and five-fold washing with distilled water were accomplished. OCP-Sr powder
was synthesized by the same method but in presence of Sr2+ ions. Strontium nitrate was
used to obtain OCP-Sr. The required amount of strontium cations was calculated based on
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the theoretical substitution of calcium cations in the range from 1 to 50 at.% according to
the reaction:

(8− x)CaHPO4·2H2O + xSR = Ca8−xSrx(HPO4)2(PO4)4·5H2O+

(2− x)HPO2−
4 + 4H+ + (11− 2x)H2O

(6)

For x≤ 2 strontium substitution is equal to 25 at.% of the theoretical amount. All chem-
icals were analytical reagents (purity > 99%) Scharlau (Spain). The marking of the samples
corresponds to the concentration of strontium introduced into the solution during the
preparation of OCP powder, according to the calculated data based on the given reactions.
In the study, the OCP-Sr sample corresponds to the material, without the inclusion of stron-
tium in the structure, OCP-Sr_5—the inclusion of strontium 5 at.%, OCP-Sr_10—inclusion
of strontium 10 at.%, OCP-Sr_20 and OCP-Sr_50—20 and 50 at.%, respectively.

4.2. Characterization

Phase components of powder samples were identified by X-ray diffraction on an
Ultima IV diffractometer from Rigaku (Tokyo, Japan) (CuKα radiation, nickel filter, tube
voltage 40 kV, tube current 30 mA, high-speed detector D/teX, angular range 4.0◦–40.0◦,
detector movement speed 0.5◦/min, step 0.02◦). The lattice cell parameters were calculated
by the least squares method using the PDXL software package from Rigaku (Tokyo, Japan)
using the PDF2 diffractometric data base. The values of the parameters of triclinic unit cells
were set using the CelRef program for eight reflections ((020), (110), (-101), (-211), (002),
(260), (-1-42) и(070)). The IR-spectra were recorded by Nikolet Avatar 330 spectrophotome-
ter (USA) in the 4000–400 cm−1 wavelength region. The KBr pellet technique was used
with 1 mg of powder in 50 mg of spectroscopic-grade KBr.

Surface morphology was examined by SEM Tescan VEGA II (Brno, Czech), equipped
with energy dispersive spectroscopy systems (EDS; INCA Energy Oxford Instruments,
Abingdon, UK), and samples previously were covered with gold by Q150R Quorum
Technologies (Lewes, UK). The substructure of the samples was determined by high
resolution transmission electron microscopy (TEM) (Philips EM-430 ST device).

Qualitative and quantitative analysis of the samples elemental composition was
carried out on a sequential type X-ray fluorescence wave-dispersive spectrometer BRUKER
S8 Tiger (series 2) in helium using a standard-free technique using the QUANT-EXPRESS
software (Berlin, Germany).

4.3. Cell Culture

Murine embryonic mesenchymal cell line C3H/10T1/2 was obtained from ATCC
(Wesel, Germany). Cells were grown in Basal Medium Eagle (Sigma-Aldrich, Milwaukee,
WI, USA) supplemented with heat-inactivated fetal bovine serum (Gibco, Waltham, MA,
USA) to a final concentration of 10% and 2 mM L-glutamine (Sigma-Aldrich, St. Louis,
MO, USA), 40 µg/mL gentamicin sulfate (Sigma-Aldrich, St. Louis, MO, USA), under
conditions of 5% CO2 content in the air and at 37 ◦C. Cells of 7–10 passages were used
in the experiments. The cells were planted in 96-well plates (SPL life science, Pocheon,
Korea) at a concentration of 1.5 × 104 cells/cm2, cultured for 24 h and then added to OCP
and OCP-Sr at concentrations of 10.00, 3.33, 1.11, 0.37, 0.12, 0.04, and 0.01 mg/mL and
were co-cultured for another 96 h. OCP and OCP-Sr samples were pre-sterilized with 75%
ethanol according to the indicated method [48].

4.4. Cell Viability Assay

Cell viability after incubation with OCP and OCP-Sr was evaluated by AlamarBlue
(Invitrogen, Carlsbad, CA, USA). 100 µg/mL of AlamarBlue was added to the cells after
96 h of incubation. The cells were then incubated for 4 h at 37 ◦C and 5% CO2 content
in the air, then the fluorescence intensity was measured at an excitation wavelength of
560 nm and an emission wavelength of 595 nm using an Infinity F 200 plate reader (Tecan,
Männedorf, Switzerland). Cell viability was assessed by the mean fluorescence intensity
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(MFI) of the resulting resofurin product. The viability of control cells not incubated with
OCP and Sr-OCP was taken as 100%. Cell viability after incubation with OCP or Sr-OCP
was calculated as a percentage relative to control by the formula: Cell viability% = (MFI
cells after incubation with OCP and Sr-OCP/MFI control cells) × 100%. Evaluation of the
effect of OCP and OCP-Sr on cells was conducted using a trypan blue exclusion assay [49].

4.5. LysoTracker Staining

To assess the acidic compartments in the cells after 96 h of co-incubation with OCP
and OCP-Sr, the cells were washed three times with phosphate-buffered saline (PBS)
(Sigma-Aldrich, St. Louis, MO, USA), then detached from the plastic surface using 0.05%
trypsin-EDTA solution (Gibco, Waltham, MA, USA) and stained with 50 nM LysoTracker
Green DND-26 (Thermo Fisher Scientific, Waltham, MA, USA) for 30 min in a CO2 incubator.
Control cells were incubated with 50 µM chloroquine (Sigma-Aldrich, St. Louis, MO, USA)
for 4 h. The measurement was conducted using a BD Accuri C6 flow cytometer (BD
Sciences, Franklin Lakes, NJ, USA). A total of 3 × 104 cells were analyzed for each sample.

4.6. Measurement of Mitochondrial Membrane Potential

The cells were washed three times with PBS after 96 h of co-incubation with OCP
and OCP-Sr, then detached from the surface of the culture plastic using 0.05% trypsin-
EDTA solution and stained with 10 nM 3,3′-dihexyloxacarbocyanine iodide (DiOC6 (3))
(Sigma-Aldrich, St. Louis, MO, USA) for 30 min in a CO2 incubator to measure mito-
chondrial membrane potential (∆Ψm). As a control, cells were incubated with 250 nM
valinomycin (Sigma-Aldrich, St. Louis, MO, USA) for 30 min. The measurement was
conducted by BD Accuri C6 flow cytometer. 3 × 104 cells were analyzed for each sample.

4.7. ROS Production Assay

To evaluate the production of reactive oxygen species (ROS) in cells, after 96 h of
co-incubation with OCP and OCP-Sr, the cells were washed three times with PBS so-
lution, then detached from the surface of the culture plastic using 0.05% trypsin-EDTA
solution and stained with 20 µM 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA),
(Sigma-Aldrich, St. Louis, MO, USA) for 15 min in a CO2 incubator [50]. As a control, cells
were incubated with 1 mM hydrogen peroxide (Sigma-Aldrich, St. Louis, MO, USA) for
20 min. Fluorescence measurements were analyzed using a BD Accuri C6 flow cytometer.
3 × 104 cells were analyzed for each sample.

4.8. Confocal Microscopy

Micrographs were obtained by planting cells on cover glasses in an amount of
0.5 × 104 cells/cm2, cultured for 24 h, then OCP and OCP-Sr were added to cells and cul-
tured for another 96 h. After 96 h of cultivation with OCP and OCP-Sr, cells were washed
three times with PBS solution and stained with 1 µg/ml Hoechst 33342 (Sigma-Aldrich,
MO, USA), 75 nM Lysotracker Green, and 200 nM MitoTracker Red CMXRos (Thermo
Fisher Scientific, Waltham, MA, USA) for 20 min at 37 ◦C. After staining, cells were washed
with Hanks’ Balanced Salt Solution (HBSS) (Gibco, Waltham, MA, USA). Micrographs were
obtained using a TCS SP5 confocal microscope (Leica, Wetzlar, Germany).

4.9. Statistical Analysis

Results are presented as mean ± standard deviation (M ± SD). Each of the in vitro
experiments was carried out at least five times (n ≥ 5). The statistical significance of the
difference was determined using one-way ANOVA followed by multiple Holm–Sidak
comparisons, p < 0.05. The design of experiment and related statistics (ANOVA) were
carried out using SigmaPlot™ 14.0 (Systat Software Inc., San Jose, CA, USA). Plots were
created using SigmaPlot™ 14.0.
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5. Conclusions

Strontium substituted OCP can be obtained in a wide range of substitutions up to
25–27 at.% low-temperature method. The results of in vitro biocompatibility studies show
that substitution of strontium in samples with OCP-Sr_20 and higher significantly increases
cells viability, compared to undoped OCP. This effect may be associated with the absence
of the OCP-Sr impact on the content of acidic compartments, as well as with the lack or
even an inhibitory effect on the ROS production. The results of the study indicate the
effectiveness of using strontium in OCP for improving biocompatibility of OCP-based
composite materials intended for bone repair.
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