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Abstract 

This article describes Flame, an open source software for building predictive models and supporting their use in 
production environments. Flame is a web application with a web‑based graphic interface, which can be used as a 
desktop application or installed in a server receiving requests from multiple users. Models can be built starting from 
any collection of biologically annotated chemical structures since the software supports structural normalization, 
molecular descriptor calculation, and machine learning model generation using predefined workflows. The model 
building workflow can be customized from the graphic interface, selecting the type of normalization, molecular 
descriptors, and machine learning algorithm to be used from a panel of state‑of‑the‑art methods implemented 
natively. Moreover, Flame implements a mechanism allowing to extend its source code, adding unlimited model 
customization. Models generated with Flame can be easily exported, facilitating collaborative model development. 
All models are stored in a model repository supporting model versioning. Models are identified by unique model IDs 
and include detailed documentation formatted using widely accepted standards. The current version is the result of 
nearly 3 years of development in collaboration with users from the pharmaceutical industry within the IMI eTRANSAFE 
project, which aims, among other objectives, to develop high‑quality predictive models based on shared legacy data 
for assessing the safety of drug candidates.
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Introduction
In the last years, biomedical data is becoming widely 
available, thanks to the creation of repositories like 
PubChem [1] and ChEMBL [2], databases resulting from 
public–private partnerships like eTOX [3, 4], as well as 
data policies like FAIR [5], which facilitate the access of 
existing data to the scientific community.

An interesting way of exploiting this vast amount 
of data is the development of mathematical models 

connecting the chemical structure of the substances with 
their biological properties. Such models are not new. 
Quantitative Structure–Activity Relationships (QSAR) 
were first described in the 60 s [6, 7]. QSAR models use 
regression methods to identify the structural properties 
linked to quantitative biological properties or to predict 
these properties for new substances. For biological prop-
erties characterized using qualitative descriptions (e.g., 
positive or negative) conceptually similar approaches 
can be applied using classifiers. The first QSAR models 
were developed using small series of congeneric com-
pounds, often synthesized and tested ad-hoc for the 
study. Nowadays, large series of structurally diverse com-
pounds can be easily obtained from public repositories. 
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Pharmaceutical companies can also extract these series 
from their own internal repositories and use them iso-
lated or combined with compounds from external 
sources. This fact, combined with recent developments in 
machine learning (ML) and deep learning (DL) method-
ologies [8] as well as with the implementation of many of 
these methods in open source libraries [9], create an ideal 
scenario for the development of predictive models with 
biomedical application.

Indeed, the use of ML and DL is becoming very pop-
ular in biomedical research. A few remarkable models 
developed recently have been listed in Table 1 as exam-
ples of applications of this methodology, illustrating their 
usefulness.

More and more, the models obtained by the applica-
tion of ML are seen as valuable business assets. Accurate 
and appropriately shared models can bring a number of 
benefits if we are able to make effective use of existing 
expertise [17]. However, the true capability of a model for 
solving real-world problems critically depends on aspects 
related to model implementation, as the following.

Reproducibility
Models must produce the same results when used at dif-
ferent sites or times. This simple, basic requirement is 
difficult to meet if (i) the training data is not available 
and distinctively identified or (ii) the algorithms used are 
not documented with enough detail, or if it is not pos-
sible to use exactly the same software (same version and 
same platform). The fast evolution of computational 
tools (both hardware and software) makes it difficult to 
preserve a model for some time. This topic has been dis-
cussed by various authors, proposing diverse solutions 
for mitigating this problem like the use of appropriate 
standards for QSAR data interchanges [18] or a workflow 
for implementing published QSAR models and recom-
mendations to modelers [19].

Accessibility
Models are digital assets to which the FAIR accessibil-
ity principle can also be applied [5, 20]. Ideally, access 
to existing models should be facilitated, particularly for 
models developed in academic environments. In practice, 
there are barriers related to the intellectual property of 

the tools required to generate the predictions. This can 
apply to commercial applications used to generate 3D 
structures or molecular descriptors or even the modeling 
software itself. For this reason, the use of open source 
alternatives should be prioritized.

Not all accessibility barriers are related to intellectual 
property issues, and models should be implemented in 
a way that allows their use in different operative systems 
(e.g., Windows, Linux, iOS) and platforms (e.g., imple-
mented as a desktop application or as REST [21] web 
services in centralized servers). This is particularly true 
in corporative environments, where company restrictive 
policies about OS or platforms could hinder access to 
useful models. Also, and not less important, is to facili-
tate the model use for non-experts by providing a friendly 
end-user interface.

Model management
A good model is a valuable asset for an organization, and 
as such, it should be managed using appropriate govern-
ance principles [17]. One of the first steps is to identify 
and store the model appropriately. This facilitates com-
mon tasks like knowing which model was used to gener-
ate some prediction or retrieving a certain model cited in 
a report. This task is hampered by the fact that models 
are not static entities. Models evolve as the software they 
use is updated or as the training series is enriched with 
new compounds for covering a broader chemical space. 
Consequently, models often have many versions that 
must be properly identified and stored as well, record-
ing all the changes in the training series and the modeling 
software.

A separate task is to document the models. Models can 
be documented with different levels of detail for differ-
ent purposes [22]. As a minimum, every model must be 
accompanied by documents allowing to reproduce the 
algorithm completely and to understand and interpret 
the prediction results. The documentation can be used 
for other purposes, like demonstrating to regulatory 
bodies the quality of the prediction for replacing experi-
mental tests [23]. Therefore, we recommend a layered 
documentation structure, including basic mandatory 
information and more detailed optional layers.

Table 1 Examples of ML/DL applications in biomedical research

ML application Brief explanation References

Drug discovery Identification of new bioactive compounds [8–10]

Toxicity prediction Identify hazardous substances [11–13]

Precision medicine Personalize medical treatment to patient idiosyncrasy [14]

Imaging diagnostics Identification of abnormalities from imaging [15, 16]
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Reporting
For the model developer, the meaning of a model predic-
tion result is obvious; the model estimates the biologi-
cal annotations present in the training series. However, 
users not involved in the process of model building lack 
this context. This often creates confusion and difficul-
ties for users to interpret the model’s prediction, particu-
larly when the model produces a numerical outcome. For 
this reason, as a minimum, model results must explicitly 
include the units in which they are expressed, a brief, 
concise explanation of how these results must be inter-
preted, and the level of confidence within which the pre-
diction values must be clearly declared [22].

Every prediction has a certain uncertainty associated 
as a consequence of the errors present in the training 
series annotations, as well as the limitations of the model 
predictivity. For this reason, prediction results must be 
accompanied by a quantitative estimation of the individ-
ual prediction error. This estimation cannot be generic, 
based solely on the error observed for the compounds 
in the training series. It must also consider how far the 
query compound is away from the model applicability 
domain.

In the last decades, several solutions have been pro-
posed for supporting the access to existing QSAR models 
or the development of new ones, overcoming the issues 
described above. One of the first was a Polynomial Neu-
ral Network published on-line in 1999 [24]. In a recent 

review [25], these efforts were classified under four cat-
egories; research group-centric model collections, model 
collections from (Q)SAR oriented projects, (Q)SAR mod-
els in integrated modeling environments, and (Q)SAR 
model repositories. In the present article, we introduce 
Flame, a new modeling framework for facilitating the 
development, hosting, and use of predictive models in 
production environments. When comparing with exist-
ing resources, Flame belongs to the category of integrated 
modeling environments mentioned above. In the “Imple-
mentation” and “Results” sections, apart from describing 
its features, we compare Flame with other similar tools, 
highlighting the differential characteristics which make it 
highly valuable for certain QSAR modeling applications.

Flame was developed in the context of project 
eTRANSAFE (IMI2 Joint Undertaking under Grant 
Agreement No. 777365), producing integrative data 
infrastructures and innovative computational methods 
to improve the feasibility and reliability of translational 
safety assessment during the drug development process. 
For this reason, Flame was originally designed to host 
predictive models for drug safety endpoints, even if it can 
be used with other applications in biomedical research.

Implementation
The Flame architecture is illustrated in Fig.  1. It con-
sists of a Python library (the Flame backend), which can 
be used from a terminal with a command-line interface, 

Fig. 1 Flame architecture
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called from a Jupyter notebook [26], or scripts written 
shell languages (bash, bat, etc.). It also implements a 
web server (written in Django [27]) offering the library 
features as REST services [21] and a complete web 
interface (written in Angular [28]) providing a rich 
graphic user interface (GUI).

The GUI can be executed locally as a desktop applica-
tion, starting the web server in the same computer run-
ning the Flame backend. It is also possible to run the 
Flame backend in a server and access the REST services 
from a remote client, thus allowing to run Flame as a 
departmental or global prediction service in corporate 
environments. This architecture differentiates Flame 
from other integrated modeling environments operat-
ing exclusively as web-services (e.g., CHEMBENCH 
[29], OCHEM [30]). The possibility of executing the 
software locally, either as a desktop app or in a local 
server, is a must when the data used for model training 
or prediction is confidential, and the company policies 
disallow to send it over the Internet.

The Flame backend and the optional flame web server 
make use of Conda [31] to define the libraries required, 
facilitate their automatic installation in a private environ-
ment. Conda also allows defining the acceptable library 
versions to avoid incompatibilities. Flame can be installed 
and used in Linux, Windows, and iOS operative systems.

The code was written using Object Oriented Program-
ming (OOP) as a Python library. The main classes (see 
Table 2 and Fig. 2) can be classified as low-level or high-
level. Low-level classes carry out simple tasks while the 
high-level classes execute model building and model pre-
diction workflows using the low-level classes. For exam-
ple, the default model building workflow implemented in 
high-level class build (Fig. 2) starts from a training series 
of annotated chemical structures. It uses class idata 
to import their chemical structures, normalize them, 
extract the biological annotations and generate molecu-
lar descriptors which are stored in a numerical matrix. 
The molecular descriptors and the annotations are sent 

to the class learn, which normalizes the numerical values 
and builds models using machine learning (ML) tools like 
Random Forest (RF). This model is stored in a machine-
readable format (as a pickle serialized version of the 
scikit-learn estimator object [9, 32]) suitable to predict 
the biological properties of novel compounds. Finally, 
the class odata is used to format the results and produce 
suitable output. The default prediction workflow (Fig. 2) 
uses exactly the same low-level idata class to import and 
pre-process the structures. This workflow design has 
the advantage of guaranteeing that the predictions use 
exactly the same code used for model building, for equiv-
alent tasks, thus producing consistent results. Then, the 
low-level class apply retrieves the estimator saved previ-
ously during the model building process for computing 

Table 2 Main Python classes used in Flame

Type Class Functionality Input Output

High‑level Build Generates a model Training series Model

Predict Uses an existing model to generate a prediction for a query compound Query compound Prediction

Manage Handles (create, delete, export and import) models in the repository – –

Low‑level Idata Processes chemical structures to obtain molecular descriptors as an X 
matrix and annotations as a Y matrix (when provided)

Chemical structures X (Y) numerical matrices

Learn Generates a model from the X and Y numerical matrices X and Y numerical matrices Model

Apply Uses an existing model to generate a prediction from an X matrix X numerical matrix Prediction

odata Formats results as human‑readable output or computational formats 
suitable for the GUI

Results Formatted results

Fig. 2 Overview of the main workflows implemented natively in 
Flame; predict and build. Boxes represent Python classes carrying out 
specific workflow tasks. As can be seen, some objects (idata, odata) 
are reused in both workflows, guaranteeing that the same code is 
used in model building and prediction
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the prediction results, which are formatted by the odata 
class to generates suitable output.

Most of the building and prediction workflow 
steps are configurable. For example, we can select the 
structure normalization algorithms or the molecu-
lar descriptors calculation method. Also, the methods 
themselves can be configured by adjusting their inter-
nal parameters. In Flame, the methods used to build a 
model and their configurable parameters are defined 
in a single parameter file (parameters.yml), which can 
be seen as the model blueprint. This file is stored in a 
folder, together with the original training series and 
the estimator generated by build. This folder contains a 
complete and comprehensive definition of how a model 
has been built. The model repository is a user-defined 
path in the computer filesystem where all these folders 
are stored. Flame can work simultaneously with diverse 
model repositories located in local or remote filesys-
tems, a convenient feature to maintain separate model 
collections per project or user.

Flame models are used to predict the biological prop-
erties of new compounds using the predict workflow 
(see Fig. 2). Since models are folders, they can be saved, 
compressed, backed-up, or transmitted between Flame 
instances installed in different computers. In any of these 
cases, Flame guarantees that the predictions are repro-
ducible. In this sense, Flame models can be seen as self-
contained prediction engines. Flame provides commands 
to export and import models as a single binary file, con-
sisting in the compressed version of the model folder. 
On import, the version of the libraries used to generate 
the model is checked to guarantee full compatibility and 
reproducibility.

The use of the parameter file described above offers 
limited customization since the user can select only 
among the algorithms and methods implemented 
natively in Flame. To overcome this limitation, the model 
workflows do not call the low-level classes directly but 
use a derived class stored locally within the model folder 
(see Fig.  3). These derived or child classes inherit all of 
the parent class properties, and in simple models this 
mechanism is the exact equivalent to calling the Flame 
classes directly. However, the child class methods can be 
overridden, allowing unlimited model customization. For 
example, advanced users can insert code calling external 
tools to generate molecular descriptors, include extra 
steps in the model building or prediction workflow or 
adapt the output to generate customized reports. Since 
these changes are written in the child class instance, 
stored locally within the model folder, they do not affect 
other models. Moreover, these changes are preserved 
when the model is saved or exported. This possibility 
to embed custom code in the building and prediction 

workflows differentiates Flame from other integrated 
environments, either on-line or downloadable. To the 
best of our knowledge, it is only present in eTOXlab [33], 
a modeling framework developed in our group some 
time ago.

Results
Model building features
Flame can build predictive models starting from a sin-
gle file in SDFile format containing the structures and 
the biological properties of a training series. The default 
model building workflow takes care of reading the struc-
tures, normalizing them, extracting the annotations, gen-
erating molecular descriptors, scaling their values and 
building a machine-learning model that is saved in a for-
mat suitable for predicting new compounds’ properties.

Flame provides defaults for methods and parameters, 
but the user can customize them, either editing the 
parameter file parameters.yml when using Flame in com-
mand line mode or using the model building dialogue 
(Fig. 4) when using the Flame GUI.

Table 3 describes the methods implemented natively in 
Flame. All of them make use of open source libraries. The 
choice of models can be easily extended to include com-
mercial products or external tools, using the code over-
riding technique described in “Implementation” section.

Typically, models are built starting from a collection of 
annotated chemical structures, but Flame can also use 
as input a tab-separated (TSV) table with pre-calculated 
molecular descriptors and annotations. Another option, 
rarely found in other modeling frameworks (but present 

Fig. 3 OOP method overriding. Models incorporate children 
instances of the main low‑level classes (see Table 2). By default, the 
children are empty, and the parent class code is run, but advanced 
users can edit the code and override the parent class methods to 
customize the workflow
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in OCHEM [30]), is the possibility to use as input the 
prediction results of other models present in the reposi-
tory. This option, called in Flame “model ensemble”, is 
interesting for integrating the results of multiple mod-
els. For qualitative models, multiple results can be sum-
marized using majority voting. The prediction results of 
an ensemble of quantitative models can be summarized 
using their means or medians. Regressors and classifiers 
can also be trained with the model ensemble, using it as 
a sort of “molecular descriptors”, to generate a smarter 
result combination and obtain better predictions. When 
the ensemble models estimate the individual prediction 

error, this information is considered by Flame, using 
appropriate probabilistic methods, to generate an estima-
tion of the final prediction error. The description of these 
algorithms is beyond the present work scope and will be 
published in a separate article.

The last step of model building workflows is estimating 
the model quality using cross-validation. Flame presents 
information about the model goodness of fit, predictive 
quality, and some statistical information of the train-
ing series (e.g., value distribution). Since Flame can use 
diverse ML methods, we tried to generate comparable 
model quality indexes to facilitate the selection of the 

Fig. 4 Dialogue used to define the model building workflow methods and parameters (simplified)
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best methods and parameters. The values shown are 
summarized in Table  4 for qualitative and quantitative 
endpoints.

The Flame GUI provides additional information ori-
ented to diagnose the quality of the model and the train-
ing series, as shown in Fig.  5. For qualitative endpoints 
(left side of Fig.  5), the confusion matrix is shown as 
a 2 × 2 matrix. A radar plot is also used to represent, 
in the radius of its four sections, the relative size of the 
true positive, true negative, false positive, and false nega-
tive results. This information is shown separately for 
the model fitting and prediction, the latter being calcu-
lated using cross-validation methods selected by the 
user (default to five k-fold). Besides, Flame displays a 

scatterplot of the training series using the two first Prin-
cipal Components (PCs) obtained by running a Principal 
Component Analysis (PCA) with the calculated molecu-
lar descriptors. Objects (compounds) are colored red or 
blue according to their biological annotations (positive or 
negative, respectively). The positive and negative ratio of 
substances in the training series is depicted using a pie 
chart.

For quantitative endpoints (right side of Fig.  5), apart 
from the parameters mentioned in Table 4, the interface 
shows scatterplots of fitted/predicted values versus the 
experimental annotations. For conformal models, the 
confidence interval for the defined confidence level is 
also shown. Flame displays a scatterplot of the training 
series in a separate tab, like the one shown for qualita-
tive endpoints. However, in this case, the substances are 
colored using the continuous scale included in the plot. 
The distribution of the annotation values is shown using 
a violin-type plot, which offers valuable information to 
diagnose a skewed value distribution or the presence of 
outliers. All the graphics representing the training series 
are interactive, and hovering the mouse cursor over the 
dots allows to display the 2D structure of the compounds 
they represent.

The model quality reports described above are per-
sistent. All this information is stored within the model 
folder and can be retrieved and shown in subsequent 
work sessions.

Model predictions
Models stored in the repository can be used to predict the 
biological properties of a compound entering an SDFile 

Table 3 Overview of the main modeling methods and tools 
implemented natively in Flame

Modeling task Method Source

Structure normalization Standardiser [34]

ChEMBL pipeline [35, 36]

Molecular descriptors calculation RDKit properties [37]

RDKit md [37]

RDKit Morgan fingerprints [37]

Scaling Raw –

Autoscaling [9]

Machine learning RF [9, 38]

SVM [9, 39]

PLS [9, 40]

XGBOOST [41]

Conformal regression [42, 43]

Table 4 Model quality parameters shown in the Flame GUI

Endpoint type Parameter Definition

Qualitative Sensitivity (fitting and prediction) TP
TP+FN

Specificity (fitting and prediction) TN
TN+FP

MCC (fitting and prediction) (TP∗TN)−(FP∗FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Quantitative SDEC (fitting)
√

∑

(Yexp−Ypred)
2

n

SDEP (prediction)
√

∑

(Yexp−Ypred)
2

n

r2 (fitting) ∑

(Yexp−Ypred)
2

∑

√
(Ymean−Ypred)

q2 (prediction) ∑

(Yexp−Ypred)
2

∑

√
(Ymean−Ypred)

Conformal models Conformal coverage Samples inside confidence boundaries
Total number of samples

Conformal accuracy Samples predicted correctly
Total number of samples

Mean interval (only quantitative)
∑

|Ymax−Ymin|
n
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with its structure or sketching it in the included molecu-
lar editor. The prediction workflow will then apply to this 
structure the same pretreatment, molecular descriptors 
calculation, and x-matrix scaling used for the training 
series, using exactly the same source code, thus guaran-
teeing the maximum consistency. The molecular descrip-
tors obtained are projected using the stored estimator to 
obtain the prediction results. Prediction results can be 
qualitative or quantitative, depending on the nature of 
the training series annotations. Models built using con-
formal regression [43] generate additional information 
about the prediction uncertainty. For quantitative end-
points, they provide a confidence interval, while for qual-
itative (binary) endpoints, the prediction result can be 
“uncertain”, meaning that the model cannot ascertain if 
the result is positive or negative. In either case, the model 
reports the prediction uncertainty at a probability (the CI 
confidence level or the probability that the result is cor-
rect, respectively) defined by the user.

Models are watermarked using a unique ID (a random 
string of ten ASCII uppercase chars) generated during 
the model building process. This ID is useful to guaran-
tee the model identity, even when different models are 

assigned the same name or exported to different Flame 
instances. Furthermore, when a model is used for pre-
diction, its unique model ID is stored together with the 
prediction results. Predictions stored in the prediction 
repository keep record of the model version used to gen-
erate it, guaranteeing complete traceability.

As stated in the introduction, prediction results are 
often difficult to understand and interpret by users not 
involved in the model building. For this reason, the Flame 
GUI presents the prediction results in various formats, 
decorated with extra information aiming to facilitate the 
result interpretation and its use for decision making.

As shown in Fig. 6, results are displayed in three alter-
native views. First, they are presented as a list, including 
for every predicted compound its name, 2D structure, 
prediction result, and uncertainty information when 
available. This list is paged, searchable, and can be 
ordered by column values. It can also be exported to 
Excel or PDF formats, printed, or copied to the clipboard. 
Clicking in any of the list items displays a more detailed 
report for a single compound. Reports show the  com-
pound name, structure, and prediction result as well 
as complementary information about how to interpret 

Fig. 5 Model output for qualitative (left) and quantitative (right) endpoints
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the result (extracted from the model documentation). 
Besides, a list of the closest compounds in the training 
series, labeled with their biological annotations, is also 
shown. For obtaining this list, the similarity is computed 
using the same molecular descriptors used for building 
the model.

When an ensemble of models is used for prediction, 
the prediction report shows the individual result of the 
low-level models and the combined result (Fig.  7). For 

conformal binary classifiers (left of Fig.  7), the graphic 
shows the low-level model prediction results, indicating 
if the query compound belongs to class 0 (negative), class 
1 (positive), both of them (inconclusive type I) or neither 
(inconclusive type II). For conformal quantitative models 
(right of Fig. 7), the predictions are shown with the cor-
responding confidence intervals.

Finally, the prediction results are also projected on 
the training series PCA scores scatterplot, generated as 

Fig. 6 Representation of the model prediction results in the Flame GUI

Fig. 7 Visualization of prediction results obtained with ensemble models for qualitative (left) and quantitative (right) endpoints



Page 10 of 15Pastor et al. J Cheminform           (2021) 13:31 

explained in the previous section (Fig. 5). The aim of this 
representation is to show whether the predicted com-
pound belongs to a region of the chemical space well 
represented by the training series or if it belongs to a 
less populated region. In this representation, the train-
ing series compounds can be displayed as grey dots 
or colored by the biological annotation. The predicted 
compound can be displayed as green circles with the 
compound names, as red dots, or as dots colored by the 
compound distance to model (DModX, see [44]). A high 
DModX value indicates that the predicted compound has 
original features not present in the training series, which 
can be detrimental to the prediction quality.

Finally, it should be mentioned that the predictions are 
stored in a persistent prediction repository, and there-
fore, it is possible to revisit previous predictions until 
they are actively removed by the user.

Model management
Once a model is built, it is stored in a separate folder of 
the model repository. This folder can contain multiple 
versions of the model. As a minimum, there is a dev ver-
sion that is used for model development and is overwrit-
ten every time the model is re-built. Precisely for this 
reason, the dev version cannot be used for prediction. 
Model versions that the model developer considers worth 
storing should be published to generate version 1, 2, etc.

The main GUI window shows a list (Fig. 8) where mod-
els can be browsed and selected. Every model is identified 
with a name and version and labeled by Maturity, Type, 
Subtype, Endpoint, and Species. The labels are defined by 
the end-user and can be used to filter the models shown, 
making it easier to find models for a particular endpoint, 
species, or organ.

The command mode interface and the GUI provide 
model management commands for creating new models, 
publishing a model version, deleting a whole model tree 
with all the versions or any single model version.

Models can be exported using a command that pro-
duces a compressed version of the whole model folder. 
This file can be easily stored, backed-up, or sent in elec-
tronic formats (e.g., as an e-mail attachment). Once 
imported in any Flame instance, the model is copied 
to the model repository and becomes fully functional. 
During the importing step, the versions of the software 
libraries used for generating the models are checked, 
and in case of version mismatches, a warning message is 
shown.

Model documentation
Flame models are documented using a template based on 
the QMRF [45], taking advantage of our previous expe-
rience in model documentation [22]. When the model is 
built, Flame automatically completes in this template the 
fields describing the modeling methodology and quality. 
This half-completed document should be edited by the 

Fig. 8 The models present in the model repository are shown in the GUI as a model list. Items can be sorted, browsed, and searched by text terms. 
Models include user‑defined labels which can be used to filter the list content
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modeler, using the GUI or editing a documentation file in 
yaml format using a text editor and importing it into the 
model. In either case, the model documentation is stored 
in the model folder and is included when the model is 
exported or published.

The model documentation has been split into three 
sections: General Model information, Algorithms, and 
Other information. The first and third sections should 
be completed by the modeler, while Flame automatically 
completes most of the second section. The Additional 
file  1 contains an example of a human-readable file in 
yaml format, suitable for being imported into a Flame 
model, with all the items included in these three sections. 
The Additional file  2 contains a PDF file showing how 
the model documentation is presented to the user in the 
Flame GUI.

Performance
In a typical modeling workflow, the same code (structure 
normalization, molecular descriptors calculation) is run 
for every compound in the input series, both for training 
series and prediction series. Therefore, the computation 
can be speed-up by splitting the series into n sub-series 
and assigning them to different computation threads, 
which are run in different CPUs. Flame can run in par-
allel the workflow tasks related to the calculation of the 
molecular descriptors, obtaining nearly linear speed-up. 
Another time-consuming step is model building and vali-
dation. By default, Flame applies the parallel processing 
implemented in the ML libraries (e.g., scikit-learn imple-
ments parallel processing in cross-validation and grid-
search, while XGBoost uses it in the model building and 
validation). The use of GPUs is under development. A 
special Flame version supporting GPUs is planned to be 
released in the future, facilitating the efficient use of deep 
learning within the framework.

Additionally, during model development, it is common 
to rebuild the model repeatedly using diverse machine 
learning settings to optimize them. To speed up this pro-
cess, Flame stores intermediate results of the calculation 
(e.g., the molecular descriptors matrix), thus saving the 
work of re-computing them in every cycle.

Flame has been used to develop models using series 
of very different size and characteristics. To give an idea 
of Flame performance and limitations we have included 
Table 5 with some benchmarking results.

Error handling
Any modeling software aiming to solve real-life problems 
should know how to deal with errors present in the input 
files. These errors can stop the modeling workflow for 
many reasons: input molecules can have a wrong struc-
ture, contain metals, counterions or water molecules. The 

model building can also fail when the annotations are 
not correct. For this reason, a lot of effort was devoted 
to implementing appropriate error handling methods in 
Flame, able to identify and remove automatically mole-
cules that cannot be processed and producing informa-
tive error reporting both in the GUI and the console. As 
an example of Flame robustness, the D series in Table 5 
contains 480,000 structures extracted directly from 
ChEMBL, with no curation. Flame was able to process 
the series removing automatically 249 structures (0.05%), 
for which RDKit was not able to generate molecular 
descriptors. Modelers know that there are many poten-
tial sources of error, and Flame does not claim to be able 
to handle all error types. However, years of development 
and use by different modeling teams established Flame as 
a rather robust software.

Comparison with other integrated modeling environments
As mentioned in the introduction, many tools for sup-
porting the development of QSAR models are available. 
A comparison of Flame with a representative sample of 
related software would be helpful to highlight its advan-
tages. This comparison is focused on software that can 
be installed locally, discarding purely on-line tools like 
CHEMBENCH [29] or OCHEM [30]. In many cases, 
these are excellent options, but in  situations where 
the models should be trained with confidential data or 
used to predict confidential data, they are not usable. 
Indeed, Flame was developed specifically for support-
ing modeling activities in the project eTRANSAFE, aim-
ing to develop predictive models for the pharmaceutical 
industry using their confidential data. Another selection 
criterion is software accessibility. For example, OpenMol-
GRID [46] was one of the first integrated modeling envi-
ronments, but it is not accessible anymore. Also related 
to the accessibility, commercial software, and software 

Table 5 Computation time for series of diverse size

Computation tasks involving structure normalization, computation of RDKit 
descriptors, generation of a XGBoost model, and validation using fivefold 
validation (for series A and B) and twofold validation (for series C and D).
a Compounds removed from the computation because RDKit was unable to 
compute molecular descriptors
b Wall clock times, in a desktop PC with Windows 10 professional 64 bits, 32b Gb 
RAM and an AMD Ryzen 5 3600(6 cores) CPU

Series Original series 
size

Compounds 
 removeda

Final series size Time (s)b

A 2685 11 2674 20 s

B 5832 0 5832 32 s

C 126,368 114 126,254 600 s (10 min)

D 480,000 249 479,751 2160 s (36 min)
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requiring registration or special agreements (e.g., QSA-
RIN-chems [47] and ChemProp [48]) is excluded from 
the comparison, focusing our attention on open source 
freely accessible tools. After applying these criteria, we 
have selected the tools listed in Table 6 as a representa-
tive sample of the state-of-the-art, which does not intend 
to be exhaustive.

The first tool listed, eTOXlab [33] was developed in 
our group, and part of its conceptual design was reused 
in Flame. It is an integrated modeling framework devel-
oped in Python and distributed as a source code or 
pre-installed in a virtual machine. It can develop new 
models starting from an annotated SDFile, store models 
in a repository, and use them for prediction. As in Flame, 
models can include children of the source coded classes 
for model customization. However, eTOXlab offers lim-
ited features, and, for example, it cannot be used as a web 
service, has a more limited panel of methods, and its GUI 
is primitive. VEGA-QSAR [49] and EPI-suite [50] are 
prediction-oriented tools containing a collection of very 
useful models, but they lack the Flame ability to develop 
new models. The Kausar Automated framework for 
QSAR model building [51] is a fully featured collection 
of KNIME workflows for model development and predic-
tion. However, it is oriented mainly to model developers 
and lacks an interface that makes it suitable for end-
users. Moreover, KNIME is not open source, hampering 
its installation in non-academic environments.

The two remaining tools in the table are special cases. 
ToxTree [52] is a tool for the estimation of Toxic Hazard 
using only the decision tree approach. The OECD QSAR 
ToolBox [53], in spite of its name, is not specifically 
aimed to develop or apply QSAR models. Its scope is 
broader, oriented to obtain chemical hazard assessments 
by retrieving experimental data from internal databases, 
simulating metabolism, and profiling the chemical prop-
erties of chemicals. This information is then used for 
read-across, finding structurally and mechanistically 
defined analogs and chemical categories.

Discussion
The development of Flame was justified by the need for 
an integrated modeling framework in the eTRANSAFE 
project, meeting its specific needs as well as providing 
pragmatic solutions to the general requirements of any 
predictive model listed in the introduction. How Flame 
addresses these requirements?

Reproducibility
Models generated and stored in Flame are fully reproduc-
ible across Flame instances and can be easily exported 
and imported, always obtaining the same results. The 
use of controlled Conda environments and the tagging 
of the library versions used during the model generation 
provides reasonable control of the software libraries and 
versions used. However, Flame cannot avoid the obsoles-
cence of the software and hardware. For medium to long-
term model storage, saving images of the whole system 
using docker or virtual machines is recommended.

Accessibility
Flame is open source and uses only open source soft-
ware. It is available in the most popular operative systems 
(Linux, Windows, and iOS). It can be used as a desktop 
application with a rich GUI, from the command line, 
integrated into scripts, in Jupyter notebooks, or as a web 
service. The GUI was designed for non-expert users, but 
experienced modelers can customize the models without 
limitations. Additionally, Windows and Linux installers 
are distributed on the GitHub page to facilitate its instal-
lation by non-expert users. These installers are self-con-
tained, including all the libraries needed to install and 
run Flame without an Internet connection. This is an 
essential feature for its installation in corporate environ-
ments where security is critical and Internet connection 
is either blocked or filtered.

Table 6 Locally installable software usable as an integrated modeling environment

Name Version License Platform Language Model 
prediction

Model building

eTOXlab [33] 0.9.6 GNU GPL‑3 Any Python/VM Yes Yes

VEGA‑QSAR [49] 1.1.5.47 GNU GPL‑3 Any Java Yes No

EPI‑suite [50] 4.11 Copyright EPA, free of use Windows Yes No

Kausar Automated‑framework [51] na na Any KNIME Yes Yes

ToxTree [52] 3.1.0 GNU GPL‑2 Any Java Yes No

OECD QSAR ToolBox [53] 4.4.1 requires registration Windows Yes No
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Governance
Flame incorporates advanced model management 
tools, supporting the whole model development cycle. 
Models can be developed, improved, and stored in a 
persistent model repository, where they can be labeled 
using up to four types of keywords. Models are also 
thoroughly documented using widely accepted stand-
ards and given a unique ID. The documentation is 
organized in sections using a structure close to the lay-
ered approach proposed in the introduction.

Reporting
Flame predictions are presented to the users in a vari-
ety of formats, some of them specifically designed to 
facilitate the interpretation by non-expert users, provid-
ing contextual information about the biological annota-
tions and the result interpretation. Whenever the model 
allows, the prediction result is presented with informa-
tion about its uncertainty, using rigorous formalisms 
(e.g., conformal regression) expressed in formats familiar 
to experimentalists (confidence intervals).

Conclusions
We presented Flame, an open source modeling frame-
work that can be used for the easy development of 
QSAR-like models. The incorporated model building 
workflow only requires the input of a single annotated 
SDFile to generate a model, using default options. This 
workflow can be easily customized to use any of the 
natively supported methods and a wide variety of method 
parameters. Moreover, it incorporates mechanisms to 
implement unlimited customization by using model-
linked source code overriding.

Many predictive modeling applications depend criti-
cally on addressing implementation issues that hinder 
the use of models in production environments. Our 
modeling framework provides reasonable solutions for 
most of these issues and facilitates a seamless transition 
from model development to model production with little 
effort. Models can be easily maintained, stored, exported, 
and imported, facilitating the collaboration between aca-
demic and private institutions.

Flame uses innovative methods to combine models by 
building models based on the results of other models. 
This adds unique flexibility for combining multiple mod-
els addressing the same endpoint or combining models 
representing multiple mechanisms contributing to the 
same endpoint in the toxicological field. Some interesting 
applications of this model combination tool have been 
obtained and will be published in due time.

Flame incorporates a rich web-based GUI, facilitating 
the model building, administration, and use in prediction. 

Prediction results are presented to the user in various 
formats, including information like the substances in the 
training series closer to the predicted compound or pro-
jections of the query compounds on the training series 
chemical space.

Flame has been developed within eTRANSAFE, a large 
European project involving numerous farmaceutical 
companies, some of which are testing Flame internally. 
The feedback obtained in this interaction has been a pre-
cious resource for designing a tool that can help drug 
developers and drug safety experts in their daily work.

The comparison with similar tools, installable locally, 
was favorable to Flame and highlighted some of its 
advantages. If the comparison is extended to include 
on-line services like CHEMBENCH and OCHEM, these 
platforms outperform Flame in some aspects, even if 
they lack the advanced model customization offered by 
locally installable tools.

For all these reasons, Flame can be considered a very 
useful tool with unique features. As yet, it does not incor-
porate all the modeling tools available, but we plan to 
keep enriching their features, incorporating other molec-
ular descriptor generators and machine learning toolkits. 
In this respect, we plan to expand the Flame user’s com-
munity beyond the eTRANSAFE consortium and inter-
est developers that can contribute their code in future 
versions.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321‑ 021‑ 00509‑z.

Additional file 1. Model documentation exported in human‑readable 
yaml format that can be edited and imported. 

Additional file 2.  Large figure showing the aspect of the model docu‑
mentation GUI in Flame. 
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