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It has been well established that the dysfunctional placenta plays an important role in the
pathogenesis of preeclampsia (PE), a hypertensive disorder in pregnancy. However, it is notwell
understood how individual cell types in the placenta are involved in placenta dysfunction
because of limited single-cell studies of placentawith PE. Given that a high-resolution single-cell
atlas in the placenta is now available, deconvolution of publicly available bulk PE transcriptome
data may provide us with the opportunity to investigate the contribution of individual placental
cell types to PE. Recent benchmark studies on deconvolution have provided suggestions on
the strategy of marker gene selection and the choice of methodologies. In this study, we
experimented with these suggestions by using real bulk data with known cell-type proportions
and established a deconvolution pipeline using CIBERSORT. Applying the deconvolution
pipeline to a large cohort of PE placental microarray data, we found that the proportions of
trophoblast cells in the placenta were significantly different between PE and normal controls.
We then predicted cell-type-level expression profiles for each sample using CIBERSORTx and
found that the activities of several canonical PE-related pathways were significantly altered in
specific subtypes of trophoblasts in PE. Finally, we constructed an integrated expression profile
for each PE sample by combining the predicted cell-type-level expression profiles of several
clinically relevant placental cell types and identified four clusters likely representing four PE
subtypes with clinically distinct features. As such, our study showed that deconvolution of a
large cohort of placental microarray provided new insights about the molecular mechanism of
PE that would not be obtained by analyzing bulk expression profiles.
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1 INTRODUCTION

Preeclampsia (PE) is a hypertensive disorder of pregnancy and is the main reason for maternal and
fetal morbidity and mortality (Bokslag et al., 2016). Abnormal development and dysfunction of the
placenta are thought to be the main cause of PE though detailed pathophysiology is still not fully
understood (Horii et al., 2021). As the placenta is a heterogeneous tissue consisting of diverse types of
cells, single-cell studies of PE’s placentas are expected to lead to a better understanding of the
molecular mechanisms underlining PE pathogenesis. However, most PE transcriptome studies
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published so far were done at the bulk level (Leavey et al., 2016;
Robineau-Charette et al., 2020; Yadama et al., 2020; Xu et al.,
2021). A recently published single-cell study on the placenta of PE
included only three samples each in the PE and the control groups
(Zhang et al., 2021), providing a limited number of samples to
investigate the association of individual cell types in the placenta
with PE. Cell-type deconvolution is a technology that can infer
cell-type proportions from bulk transcription profiles when cell-
type-specific expression profiles of marker genes are available (Jin
and Liu, 2021). Given that the high-resolution single-cell atlas of
the placenta is now available (Suryawanshi et al., 2018; Vento-
Tormo et al., 2018), reanalyzing existing bulk PE transcriptome
data by deconvolution may therefore provide us with the
opportunity to investigate the contribution of individual
placental cell types in the placenta to PE.

Numerous deconvolution methods have been developed
(Newman et al., 2015; Hao et al., 2019; Newman et al., 2019;
Tsoucas et al., 2019;Wang et al., 2019; Dong et al., 2021), and they
can be generally divided into two broad categories (Cobos et al.,
2020): the bulk and the single-cell reference-based methods,
respectively, with the former requiring a predefined cell-type-
specific signature gene matrix and the latter not. CIBERSORT
(Newman et al., 2015) and CIBERSORTx (Newman et al., 2019)
are the representative methods of these two categories,
respectively. The use of deconvolution methods has greatly
accelerated the study of diseases. For example, prognostic
biomarkers of renal cell carcinoma were identified by
estimating the proportions of tumor-infiltrating immune cells
by cell-type deconvolution using CIBERSORT (Zhang et al.,
2019). Recent benchmark studies evaluating the performance
of current deconvolution methods (Cobos et al., 2020; Jin and
Liu, 2021; Nadel et al., 2021) have provided suggestions on the
strategy of marker gene selection and the choice of deconvolution
methodologies. For our study, i.e., conducting deconvolution on
bulk PE transcriptome data, however, on the one hand, the
detailed thresholds for marker selection need to be specified.
On the other hand, we still need to decide on one of several
recommended methods to perform deconvolution.

In this study, we followed the strategy suggested by Francisco
et al. (Cobos et al., 2020) to determine the thresholds for marker
gene selection. Then, by using different sources (RNA-seq and
microarray) of real bulk data with known cell-type proportions,
we evaluated several deconvolution methods recommended by
Francisco et al. using two measures—the Pearson correlation
coefficient between the predicted and true cell-type proportions
(PCCP) and the Pearson correlation coefficient between the
predicted and true bulk transcripts (PCCT). As PCCT can be
directly calculated from a deconvolution, it has been suggested to
be potentially useful for improving the performance of
deconvolution (Newman et al., 2015; Dong et al., 2021). We,
therefore, investigated the relationships between the two PCCs to
explore the possibility of using PCCT to select a deconvolution
method. Finally, we applied the deconvolution pipeline derived
from the above-described experiments to a large cohort of PE
microarray data that have detailed clinical phenotypes (Leavey
et al., 2016). We then conducted an in-depth analysis on the
deconvolution results and particularly explored the cell-type-level

expression profiles predicted based on the estimated placental
cell-type proportions. Our results led to four PE subtypes with
clinically distinct features that would not be observed by
analyzing bulk gene expression profiles.

2 RESULTS

2.1 The Development of a Practical Pipeline
for the Deconvolution of Placenta
Microarray Data
The benchmark study by Francisco et al. (Cobos et al., 2020)
provided suggestions on marker gene selection and the choices of
methodologies. For marker gene selection, it is recommended to
use a stringent selection strategy by using the following three
measures—logFC, logCPM, and SecondFC, representing the cell-
type-specificity across all cell types, the averaged expression level
across all cell types, and the cell-type to cell-type difference of a
marker gene, respectively (see Section 3 for details about the
definition of these three measures). For the choice of
methodologies, it recommended several bulk reference-based
methods, including CIBERSORT (Newman et al., 2015),
robust linear regression (RLR) (Venables and Ripley, 2002),
FARDEEP (Hao et al., 2019), OLS (Chambers et al., 1990),
and nonnegative least squares (NNLS) (Katharine et al., 2012),
and several single-cell reference-based methods, including DWLS
(Tsoucas et al., 2019), MuSiC (Wang et al., 2019), and SCDC
(Dong et al., 2021). We added CIBERSORTx (Newman et al.,
2019), which is based on CIBERSORT’s improved method of
using single-cell data as input. There are also nonreference-based
deconvolution methods available, such as ssFrobenius (Gaujoux
and Seoighe, 2012). However, Avila Cobos et al. (2018) had
shown that reference-based methods would work better than
nonreference-based methods when the reference expression
profiles are available. Because the single-cell reference of the
placental atlas is available in this study, we did not consider the
nonreference-based deconvolution methods in this study.
Although the above suggestions were useful, in our case, we
still need to determine the thresholds for the three marker gene
selection measures and also have to choose a method from the
recommended ones.

To determine the thresholds for marker gene selection, we
selected the peripheral blood mononuclear cells (PBMCs) bulk
data produced by Finotello et al. (2019) in which cell-type
proportions were determined by flow cytometry for
deconvolution. We then obtained the reference expression
profiles of the immune cell types from the RNA-seq data
generated by Hoek et al. (2015) to generate the signature gene
matrix. We fixed the thresholds of both logFC and log CPM to be
one and experimented with different thresholds of SecondFC to
construct the signature gene matrices. We used the Pearson
correlation coefficient between the predicted and true cell-type
proportions (PCCP) for evaluating the performance of
deconvolution. We found that with the increase of SecondFC,
the average correlation between cell types in the signature gene
matrix decreases, but PCCP increases; when the similarity

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 9170862

Yao et al. PE Deconvolution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


FIGURE 1 | Development of a practical pipeline for the deconvolution of placenta microarray data. (A) Average PCC on PBMC signature matrix changing with SecondFC
cutoff. (B)PCCpof differentmethods changingwith SecondFCcutoff. (C)The changes of PCCTandPCCp,where the predicted expression profiles of the former and the latterwere
computed by using the input signature genematrix varied. PCCT1 and PCCT2 are the PCC between the predicted and the real bulk expression profiles on inputted signature gene
matrix and the signature genematrix with all marker genes, respectively. (D) The changes of PCCT andPCCpby using different deconvolutionmethods, where PCCT refers to
PCCT2 in (C). (E) Three benchmark tests to evaluate the performance of different deconvolution methods. In Tests 1 and 2, the reference expression profiles were from the 10X
scRNA-seq PBMC data generated by Ding et al. (2020), and the bulk data were Finotello’s PBMC RNA-seq data and Newman’s PBMCmicroarray data. In Test 3, the bulk data
were the same as in Test 2, while the reference expression profiles were the Drop-seq and inDrops scRNA-seq PBMCdata generated by Ding et al. (2020) (F) The average rank of
different deconvolutionmethods across the three tests in (E). (G) The comparison of the performance of single-cell and bulk reference-basedmethods across the three tests in (E).
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decreases to an inflection point, PCCP would reach a high level
(Figures 1A,B). Accordingly, the threshold of SecondFC could be
determined by investigating the relationship between SecondFC
and the average correlation between cell types in the signature
gene matrix.

Next, we aimed to determine which deconvolution method
should be used in practice. Given the estimated cell-type
proportions by a deconvolution method, the predicted
expression profiles of bulk transcripts can be computed by
T � C · P, where T represents the predicted bulk expression
profile, C is the signature gene matrix, and P is the estimated
cell-type proportions. The PCC between the predicted and true
expression of bulk transcripts (PCCT) can then be calculated. It is
assumed that the closer the estimated cell-type proportions to
true cell-type proportions, that is, a higher PCCP, the closer the
predicted expression of bulk transcripts to true expression, that is,
a higher PCCT. It has thus been proposed that maximizing PCCT

may have the effect of maximizing PCCP (Newman et al., 2015;
Dong et al., 2021). If this were true, then PCCT may also be used
for selecting the deconvolution method, that is, a method with a
greater PCCT ought to have a greater PCCP. To test this
possibility, here we investigated the relationships between
PCCp and PCCT.

From the marker genes selected by following the above-
described parameters, we selected a top fraction of genes
according to their logFC to generate a signature gene matrix
and conduct deconvolution. A pair of PCCp and PCCT could be
calculated for each selected fraction of marker genes, and a series
of paired PCCp and PCCT could be calculated by increasing the
fraction of marker genes. Note that there are two ways of
predicting T: one in which C is the signature gene matrix
corresponding to a selected fraction of marker genes and
varies when the fraction changes, and another in which C is
the signature gene matrix corresponding to the whole set of
marker genes and does not change with different selected
fractions. The PCCT corresponding to these two situations was
named PCCT1 and PCCT2, respectively. In general, PCCp

increased with the inclusion of more marker genes, and the
increase was relatively sharp before the inclusion of the top
25% of marker genes. Interestingly, before the inclusion of the
top 25% of marker genes, PCCT1 and PCCP were negatively
correlated, whereas PCCT2 and PCCP were positively correlated
(Figure 1C). Although for a given method, a higher PCCT2

usually indicates a higher PCCP, this prediction cannot be
generalized when the comparison is across different methods
(Figure 1D). Accordingly, we concluded that it is not possible to
select a deconvolution method by comparing their PCCT.

In our situation of deconvolution, the reference expression
profiles were obtained from a single-cell study of the placenta
(Vento-Tormo et al., 2018) while the bulk data were from a large
cohort of microarray study on PE (Leavey et al., 2016). In order to
select a deconvolution method from the recommended ones, we,
therefore, prepared three benchmark tests whose degree of
deconvolution difficulty was considered to be similar to ours
and reasoned that a method performing stably across these three
datasets would also likely performwell in our situation. In the first
benchmark dataset (Test 1), the bulk data were PBMC RNA-seq

data produced by Finotello et al. (2019), and the reference
expression profiles were from the single-cell PBMC RNA-seq
data generated by Ding et al. (2020) using 10X sequencing
platform. In the second benchmark dataset (Test 2), the
reference expression profiles were the same as in Test 1, while
the bulk data were PBMCmicroarray data (Newman et al., 2015).
In the third benchmark dataset (Test 3), the bulk data were the
same as in Test 2, while the reference expression profiles were
from the single-cell PBMC RNA-seq data generated by Ding et al.
(2020) using Drop-seq and inDrops sequencing platform. In each
of the three benchmarks, the signature gene matrices were
produced from a top fraction of marker genes selected
according to the previously described procedures. In general,
most bulk reference-based methods perform better when more
marker genes are used, and CIBERSORT and RLR achieved better
performance than the other three methods did across the three
tests (Figure 1E). To further quantify how stable a method’s
performance is with the inclusion of more marker genes, we
ranked the performance of the five methods at a given fraction
(from top 25% to top 100%) of marker genes and then calculated
the averaged rank of each method. We found that CIBERSORT
had the most stable overall performance across the three tests
(Figure 1F). We also evaluated the performance of four single-
cell reference-based methods (DWLS, MuSiC, SCDC, and
CIBERSORTx) in these three tests and found that DWLS
performed the best among the four methods though its overall
performance was worse than CIBERSORT’s (Figure 1G).

Based on the above analyses, we, therefore, developed a
practical pipeline for the deconvolution of PE microarray data.
We would follow the procedures described previously to select
marker genes and construct a signature gene matrix. Then, we
would use CIBERSORT, the method with the most stable and
good performance across the three benchmark tests, to perform
deconvolution.

2.2 Deconvolution of Preeclampsia
Placenta Microarray Data Revealed
Significantly Altered Proportions of
Trophoblasts in Preeclampsia
The cohort of PE placental microarray data was constructed by
Leavey et al. (2016) and included a total number of 330 samples
(157 PE and 173 control), of which 157 had detailed clinical
information. The clinical information is mainly about the fetal
and maternal state, like newborn weight z-score, maximum
systolic bp, mode proteinuria, etc. The reference expression
profiles were obtained from the single-cell placental RNA-seq
data produced by Vento-Tormo et al. (2018). Following
Francisco’s suggestion to include all cell types that possibly
exist in the bulk mixture, we selected the expression profiles of
all major cell types (subpopulations were pooled) in the placenta
and the blood of the Vento-Tormo dataset (see Section 3 for
details) and constructed a signature matrix consisting of
endothelial cells (Endo), epithelial cells (Epi), fibroblasts (FB),
three types of trophoblasts cells—villous cytotrophoblasts (VCT),
syncytiotrophoblasts (SCT), and extravillous trophoblasts (EVT),
and eight types of immune cells—Hofbauer (HB), natural killer
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(NK), T cells, plasma, granulocytes, monocyte (MO),
macrophage (Mac), and dendritic cells (DC). Here, we set
SecondFC to 1.5 (Figure 2A) by following the above-described
procedures to select the marker genes for deconvolution and
applied CIBERSORT to perform the deconvolution. The
deconvolution results showed that Endo, the major component
cells of placental blood vessels, were the largest population of cells
in the placenta samples of this cohort, while FB, which is located
within the villus core matrix with HB, and SCT were the second
and the third largest population of cells, respectively (Figure 2B).
However, if VCT and EVT were considered together with SCT,
then trophoblasts were the largest population of cells in the
placenta. Among the eight types of immune cells, however,
only granulocytes and T cells accounted for a noticeable
proportion in the placental samples (Figure 2B).

PE can be generally classified as early-onset PE (EOPE) and
late-onset PE (LOPE) depending on the gestational age (GA)
(34 weeks) of disease onset (Von Dadelszen et al., 2003).
Following this definition, we then classified the PE samples

in this cohort as EOPE or LOPE and also classified the normal
samples as early control (EC) or late control (LC), respectively.
As trophoblasts are the major population of cells in the
placenta and are also responsible for the normal function of
the placenta, we compared the proportion of trophoblasts
between PE and normal controls and observed significant
differences (Figure 2C). LOPE has a significantly higher
proportion of trophoblasts than its group of normal
controls (Figure 2C). As for the subpopulations of
trophoblasts, compared to normal controls, VCT’s
proportion was significantly lower in EOPE and lower but
not significant in LOPE; EVT’s proportion was significantly
higher in both EOPE and LOPE; SCT’s proportion was not
significantly altered in PE (Figure 2C). It has been shown that
the impaired invasive ability of EVT is a major reason for
dysfunctional placenta in PE (Crosley et al., 2013). Here, the
significantly increased proportion of EVT in PE may be
because of a compensatory enhancement of EVT production
occurring in response to dysfunctional EVT.

FIGURE 2 | Estimated cell-type proportions of placental samples included in the cohort of placental microarray data. (A) Average PCC on placenta signature matrix
changing with SecondFC cutoff. (B) Boxplots of the estimated proportions of different placental cell types in the cohort of placenta microarray data. (C) Comparison of
the estimated proportions of trophoblasts between PE and normal samples. CT: cytotrophoblast, EC: early-stage control, EOPE: early-onset preeclampsia, LC: late-
stage control, LOPE: late-onset preeclampsia.
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FIGURE 3 | Comparison of the activity of canonical PE-related pathways in between PE and normal samples. (A) Assessment of the biological relevance of the
predicted cell-type-level expression profiles. We first averaged the expression profile of imputed transcriptome in each cell type. Then, the Wilcox test was used to
evaluate if the expression on the averaged profile of the cell-type marker genes is specifically high in the corresponding cell type. The negative log P value of the Wilcox
test was scaled by rows. (B) The expression level of classic trophoblasts marker genes in the predicted cell-type-level expression profiles of three trophoblast
subtypes. (C–E) Activity of the canonical PE-related pathway in different groups of samples. The activity was measured by AUCell.
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2.3 The Predicted Cell-Type-Level
Expression Profiles Revealed Patterns of
Cell-Type-Specific Gene Expression
Alterations in Preeclampsia
Given the estimated cell-type proportions, CIBERSORTx
provides a way to infer cell-type-level expression profiles
(Steen et al., 2020). Here, we applied the high-resolution
mode of CIBERSORTx with the default parameters to
predict the expression profiles of placental cell types for
each sample. To validate that the predicted cell-type-level
expression profiles are biologically meaningful, we tested
whether the corresponding cell-type-specific marker genes
identified from the reference expression profiles were at
significantly higher expression levels than background genes
did. The biological relevance of the predicted expression
profiles of trophoblasts (VCT, EVT, and SCT), Endo, Epi,
FB, and HB was well validated (Figure 3A). However, the
predicted expression profiles of granulocytes, T cells, NK, and
plasma were found to be more similar to SCT’s than to
themselves (Figure 3A), indicating that the predicted
expression profiles of these cells are likely not very useful
for further analysis. We further examined the expression levels
of the canonical marker genes of the three trophoblast
subtypes in these profiles. As the trophoblast stem cell,
VCT highly expresses TOP2A and MIK67, both of which
are related to cell proliferation, and the keratin gene KRT7
is highly expressed in EVT too. The other marker genes of EVT
are HLA-G, which is involved in the immune tolerance process
(Ferreira et al., 2017), and PRG2 and DIO2, both of which are
related to the invasion ability of EVT (Windsperger et al., 2017;
Adu-Gyamfi et al., 2021). SCT highly expresses CGA and GH1,
which are related to hormone synthesis (Freemark, 2010), and
GDF15, a classic SCT marker gene, was reported to be
associated with PE (Sugulle et al., 2009). Here, these
selected marker genes were all highly expressed in their
respective predicted cell-type-specific expression profiles
(Figure 3B). As such, the aforementioned results indicated
that the predicted expression profiles of major placental cell
types, including Endo, FB, HB, and trophoblasts were worthy
of further exploration.

We then focused on the predicted expression profiles of
trophoblasts and inspected the activity of several canonical
PE-related pathways in between PE and normal controls. As a
comparison, we also inspected the activity of these pathways by
using the bulk expression profiles. Here, the activity of a pathway
was measured by AUCell (Aibar et al., 2017). AUCell sorts all
genes in the sample according to their expression and calculates
the pathway activity of each sample according to the ranks of the
pathway genes. The canonical PE-related pathways inspected
here include the epithelial-mesenchymal transition (EMT)
hallmark pathway, the hypoxic pathway, and the GO pathway
of “Hormone activity.”

During the development of trophoblasts (from VCT to EVT
and from noninvasive EVT to invasive EVT), the cell
undergoes phenotypic changes termed the EMT process in

order to gain the invasive ability (Vićovac and Aplin, 1996). It
has been well established that the EMT process of trophoblasts
was inhibited in PE (Sun et al., 2011). Using the bulk data,
however, we did not observe any significant difference in
EMT’s activity between PE and normal samples
(Figure 3C). In contrast, in both EVT and VCT, the
activity of the EMT pathway was significantly reduced in
both EOPE and LOPE though the reduction was not
significant in LOPE’s EVT (Figure 3C), indicating that the
invasive ability of EVT and the differentiation of VCT to EVT
are likely both inhibited in PE. Not that no EMT-related genes
were predicted in SCT.

Placenta hypoxia is one of the most significant clinical
manifestations of PE (Soleymanlou et al., 2005). This was
clearly shown by using the bulk data: the activity of the
hypoxia pathway was significantly upregulated in PE samples
(Figure 3D). The predicted cell-type-level expression profiles
provided more detailed information about hypoxia at the cellular
level. In both EOPE and LOPE, the activity of the hypoxia
pathway was significantly upregulated in VCT, but not in EVT
(Figure 3D), reflecting the different pressure of oxygen limitation
to different types of trophoblast cells. The significant
upregulation of the hypoxia pathway in VCT is probably
because VCT is located deeply in the trophoblast layer and is
more likely affected by oxygen limitation. Note that there were
only a few genes predicted to be associated with the hypoxia
pathway in SCT.

It has been reported that the placenta of PE is likely
hormonally compensated in response to development
deficiency (Tamimi et al., 2003). Here, we observed a
significantly higher “Hormone activity” in PE by using the
bulk data and further found that the activity was significantly
upregulated in SCT, but not in EVT and VCT, by using the
predicted cell-type-level expression profiles (Figure 3E). Thus,
the above results showed that the predicted cell-type-level
expression profiles revealed patterns of cell-type-specific gene
expression alterations in PE.

As the predicted cell-type-level expression profiles were
biologically relevant and provided more details about the
altered PE canonical pathways, we explored whether they
could better distinguish PE from normal controls than the
bulk expression profiles did. For each of the six above-
mentioned cell types, we used 80% samples to train an
SVM model to distinguish PE from normal samples by
using the predicted cell-type-level expression profiles and
then tested it using the 20% remaining samples (see Section 3
for details about the procedures). As a comparison, we also
used the bulk expression profiles to develop an SVM model.
Overall, it was easier to distinguish EOPE from LOPE; for
most cell-type-level SVMs, their performance was
comparable to that of bulk-level SVM in EOPE but was
superior to LOPE (Figure 4A,B). However, even the best
SVM in either EOPE or LOPE only achieved an AUCROC less
than 0.9, indicating that PE is a heterogeneous and complex
disease that may involve multiple subtypes and cannot be
easily described by using one model.
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2.4 Unsupervised Clustering of Predicted
Cell-Type-Level Expression Profiles
Revealed Clinically Distinct Preeclampsia
Subgroups
Although EOPE is generally considered more severe than LOPE,
the real situation is usually more complex and severe and
nonsevere PE types are actually difficult to distinguish by their
subjective clinical indicators (Roberts et al., 2021). The cohort of
PE microarray data provided 13 clinical features for a total
number of 157 PE samples (EOPE: 80 and LOPE: 77). These
features can be divided into two general categories: fetal state-
related and maternal state-related. The fetal state-related features
include GA, newborn weight z-score, placental weight z-score,
umbilical cord diameter, mean umbilical PI, Apgar score (1 min),
Apgar score (5 min), and IUGR diagnosis, while the maternal
state-related features include maximum systolic bp, maximum
diastolic bp, mode proteinuria, mean uterine pi, and maternal
BMI. To explore whether PE samples could be classified into
subtypes, here for each of the six placental cell types, we
conducted unsupervised clustering of PE samples using their
predicted expression profiles. Then, we investigated whether the
clustering was significantly associated with each of the 13 clinical
features.

As a comparison, we first conducted unsupervised clustering
of PE samples based on their bulk expression profiles by using
negative matrix factorization (NMF) (see Section 3 for details).
We obtained three clusters. The clustering results were found to
be significantly associated with not only the definition of EOPE
and LOPE but also four fetal state-related features: GA, newborn
weight, placental weight, and umbilical cord diameter
(Figure 5A). Because EOPE and LOPE are defined based on
their GA while newborn weight, placental weight, and umbilical
cord diameter are also strongly dependent on GA, it is not

unexpected that those features were all significantly associated
with the clustering results. However, we did not observe any
significant maternal state-related clinical features associated with
the clustering results.

We next conducted unsupervised clustering of PE samples
using the predicted cell-type-level expression profiles of each
of the six cell types and investigated their association with
clinical features. We found that the clustering results of all six
cell types except for SCT were all significantly associated with
some clinical features (Figure 5). The reason why SCT was not
linked to any clinical features was probably that some
transcriptional signatures of SCT were misassigned to other
cell types, such as NK, granulocytes, and plasma. The clinical
features linked to Endo, FB, and VCT were all fetal state-
related: Endo was linked to GA, newborn weight z-score,
placental weight z-score, and umbilical cord diameter; FB
was linked to GA; VCT was linked to mean umbilical PI
and umbilical cord diameter (Figures 5B–D). Interestingly,
the clinical features linked to HB were both fetal state and
maternal state-related: newborn weight z-score, placental
weight z-score, mode proteinuria, and IUGR diagnosis,
while the clinical features linked to EVT were only
maternal-related: maximum systolic bp, and maximum
diastolic bp (Figures 5E,F). HB is an immune cell that
promotes trophoblast differentiation and angiogenesis by
producing various growth factors and cytokines (Wang and
Zhao, 2010). EVT is the primary cell type in the placenta that
invades the decidual of the mother during the pregnancy. The
reasons why these 2 cell types were linked to maternal state-
related features were probably because they had more
interaction with maternal cells. In contrast, Endo, FB, and
VCT may be more related to the growth of the placenta, that is,
more fetus oriented. The predicted cell-type-level expression
profiles thus provided more links to clinical features that

FIGURE 4 | (A,B) ROC of SVM models for distinguishing EOPE (A) and LOPE (B) from their respective groups of normal samples. SVM models were trained by
using either the bulk or the predicted cell-type-level expression profiles.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 9170868

Yao et al. PE Deconvolution

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


would not be observed by using the bulk expression profiles,
especially the maternal state-related features.

Given that the predicted cell-type-level expression profiles of
the above five cell types were strongly linked to clinical features,

we constructed an integrated expression profile for each sample
by combining the predicted expression profiles of the highly
variable genes of each cell type and then conducted unsupervised
clustering (see Section 3 for details about constructing the

FIGURE 5 | Unsupervised clustering of PE samples using the bulk or predicted cell-type-level expression profiles. The expression profiles used in (A–F) were the
bulk, the predicted cell-type-level expression profiles of Endo, FB, VCT, HB and EVT, respectively. In each of (A–F), the clinical phenotypes significantly associated with
the clustering were shown.
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FIGURE 6 | Unsupervised clustering results of integrated five cell types of transcriptional profiles of PE by NMF and significance testing of clinical features. (A)
Unsupervised clustering result of integrated cell types transcription profiles using NMF, the consensus matrix of NMF output display that four stable clusters can be
obtained. (B) The four clusters showed significant differences in gestational age (GA), and the fraction of EOPE and LOPE. (C) The four clusters showed significant
differences in newborn weight z-score, placental weight z-score, and umbilical cord diameter which reflect the state of fetal development. (D) The four clusters
showed significant differences in mean umbilical PI and the fraction of IUGR in the cluster. A higher mean umbilical PI indicates a greater likelihood of IUGR. (E) Four
clusters showed significant differences in maximum systolic bp. (F) Differences in the proportion of three kinds of trophoblast cells (EVT, VCT, and SCT) in four clusters
of PE.
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integrated expression profiles). We obtained four clusters by
using NMF (Figure 6A) and found that they were significantly
associated with seven clinical features of which six were fetal
state-related (GA, newborn weight z-score, placental weight
z-score, umbilical cord diameter, mean umbilical PI, and
IUGR diagnosis) and one was maternal state-related
(maximum systolic bp) (Figures 6B–E). We compared each of
these significant features between the four PE clusters and found
that they had distinct clinical features. In general, Clusters 1 and
2 have longer GA, while Clusters 3 and 4 have shorter GA, with
Clusters 2 and 4 having the longest and the shortest GA,
respectively (Figure 6B). Clusters 2 and 4 are also significantly
enriched with LOPE and EOPE samples, respectively, while the
other two clusters do not have a preference for either EOPE or
LOPE (Figure 6B). Probably because Clusters 2 and 4 have the
longest and shortest GA, they also correspond to the best and the
poorest fetal state, respectively (Figure 6C). Although Cluster 1’s
GA is close to Cluster 2’s, its fetal state was significantly worse
than that of Cluster 2.

For example, Cluster 1 has a significantly higher proportion of
intrauterine growth retardation (IUGR), which consists of the higher
“mean umbilical PI”—a potential IUGR predictor (Khanduri et al.,
2017), compared to Cluster 2 (Figure 6D). And its other fetal-related
features are also significantly worse than Cluster 2’s (Figure 6C).
Cluster 3’s GA is close to Cluster 4’s, but it is significantly maternal
state-related: it has the highest maximum systolic bp, that is, the most
severe state of blood pressure (Figure 6E). We also found that the
proportions of EVT andVCTwere significantly different in these four
clusters. For example, the proportion of EVTwas the lowest in Cluster
2 which corresponds to the best fetal state, while the proportion of
VCT was the highest (Figure 6F). Note that when comparing PE
samples with normal controls, we observed a significantly increased
proportion of EVT and decreased proportion of VCT in PE samples.
Therefore, the relative increase or decrease of the proportion of EVT
may indicate the severity of PE.

In conclusion, by using the integrated expression profiles, we
obtained four clinically distinct PE subtypes that are significantly
associated with not only fetal state-related but also maternal state-
related clinical features that would not be observed by using the

bulk expression profiles (Figure 7), highlighting the important
value of deconvolution.

3 MATERIALS AND METHODS

3.1 Datasets Used in This Study
A number of PBMC datasets were used for developing the
deconvolution pipeline. The bulk PBMC datasets included
Finotello’s PBMC RNA-seq dataset (Finotello et al., 2019)
(GSE107572) and Newman’s PBMC microarray dataset
(Newman et al., 2015) (GSE65136), and both datasets had
known flow-sorting cell-type proportions. The datasets for the
reference expression profiles included Hoek’s PBMC data (Hoek
et al., 2015) with cell-type purified RNA-seq data (GSE64655) and
Ding’s PBMC dataset (Ding et al., 2020) (https://singlecell.
broadinstitute.org/single_cell/study/SCP424) that includes
single-cell data produced by 10X, Drop-seq, and inDrops
sequencing platforms. The cohort of placenta microarray
dataset was built by Leavey et al. (2016) (GSE75010),
integrating from 8 placenta microarray studies. It contains
157 samples that had detailed clinical information, including
fetal state-related and maternal state-related indicators, and the
single-cell placenta reference was generated by Vento-Tormo
et al. (2018) (https://www.ebi.ac.uk/arrayexpress/experiments,
E-MTAB-6678, E-MTAB-6701). Datasets from GEO were
downloaded with accessions above through the website
(https://www.ncbi.nlm.nih.gov/geo).

3.2 Procedures for Constructing the
Signature Gene Matrix and Description of
the Deconvolution Methods Used in the
Evaluation
We followed Francisco’s recommended strategy on marker gene
selection. Given a single-cell reference gene expression matrix, we
applied the following parameters to select the marker gene set:
logFC ≥ 1 and logCPM ≥ 1. For SecondFC, we determined the
relationship between SecondFC and the average correlation

FIGURE 7 | Information overview of four clusters of PE. The sample fractions of the four clusters, respectively, accounted for 36%, 22%, 18%, and 24%.
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between cell types in the signature genematrix, setting it to no less
than 6. Here, logFC means log fold change between the highest
expressed cell type and the average expression of other cell types,
logCPM means the log average normalized expression level
among all cell types, and SecondFC means the average
expression fold change of a given marker gene between the
highest expressed cell type and the second-highest expressed
cell type. When evaluating different deconvolution methods,
we ranked the marker genes by logFC and selected a given
fraction of top-ranked genes, for example, top 5%, 10%, . . .
100%, and averaged the expression counts of all cells in each
cell type to construct the signature gene matrix for the selected
marker genes.

We evaluated nine deconvolution methods in this study,
among which five bulk reference-based methods and three
single-cell reference-based methods were recommended by
Francisco et al. (Cobos et al., 2020). The five bulk reference-
based methods are nonnegative least squares (NNLS) (https://
CRAN.R-project.org/package=nnls), ordinary least squares
(OLS) (https://www.R-project.org/), robust linear regression
(RLR) (https://www.stats.ox.ac.uk/pub/MASS4/), FARDEEP
(https://github.com/YuningHao/FARDEEP), and CIBERSORT
(https://cibersort.stanford.edu/), while the three single-cell
reference-based methods are DWLS (https://github.com/
dtsoucas/DWLS), MuSiC (https://github.com/xuranw/MuSiC),
and SCDC (https://github.com/meichendong/SCDC). In
addition, we added CIBERSORTx (https://cibersortx.stanford.
edu/), which is based on CIBERSORT’s improved method of
using single-cell data as input.

3.3 The Processing of the Single-Cell
Placental Atlas
The single-cell reference expression matrix used for the
deconvolution of placental microarray data was constructed
from the single-cell placental atlas produced by Vento-Tormo
et al. (2018). In order to reduce the problem of collinearity, that is,
challenging to the deconvolution algorithm, we merged the
subgroups of each of the following cell types in the Vento-
Tormo dataset: “DC1” and “DC2” were merged into DC
(dendritic) cells, “dNK p,” “dNK1,” “dNK2,” “dNK3,” “NK
CD16-,” and “NK CD16+” were merged into NK (natural
killer), “dM1,” “dM2,” and “dM3” were combined to Mac
(macrophage), “Endo (f),” “Endo (m),” and “Endo L” were
merged into Endo (endothelial), “Epi1” and “Epi2” were
merged into Epi (epithelial), and “fFB1” and “fFB2” were
merged into FB (fibroblast). Finally, the single-cell reference
expression matrix consisting of a total number of 14 placental
cell types was constructed, including eight types of immune cells
Hofbauer (HB), NK, T cells, plasma, granulocytes, monocyte
(MO), Mac, and DC), three subtypes of trophoblasts (VCT, EVT,
and SCT), Epi, Endo, and FB cells. The signature gene matrix was
then constructed by applying these cutoffs (logFC ≥ 1, logCPM ≥
1, and SecondFC ≥ 1.5) and by requiring that each marker gene
was expressed in at least 30% of cells of the corresponding
cell type.

3.4 The Development of SVM Models to
Distinguish PE From Normal Controls
We randomly selected 80% of the samples (training set) to train
an SVM model and tested the model using the 20% remaining
samples. When training the SVM model, we first identified the
differentially expressed genes (DEGs) between PE and normal
controls by controlling log CPM >4 using the package of “edgeR”
in R. The log-normalized expression profiles of DEGs were then
used as the input to train SVM model. For the SVM model, we
used svm.SVC classifiers from the scikit-learn library in Python.
For the kernel, we chose “linear”. For other parameters like degree
and gamma, we used the default parameters in the function
svm.SVC. For the hyperparameter, C was grid searching between
0 and 2, with 0.2 intervals, and fivefold cross-validation was
performed on the training set to find the most appropriate
hyperparameter C. The hyperparameter C was determined and
then retrained for the whole training set and tested on the test set.

3.5 Procedures of Unsupervised Clustering
of Bulk or Predicted Cell-Type-Level
Expression Profiles
We first log-normalized raw expression counts and selected
highly variable genes by using the “mean.var.plot” method in
the Seurat package, with the parameter “mean.cutoff” > 0.5. The
“dispersion.cutoff” parameter was tried between 1 and 2.5, with
0.1 intervals, to ensure the stability of unsupervised clustering
results. Next, we used the “ScaleData”method to scale the data to
maximize the variation between samples. Finally, we used the
negative matrix factorization (NMF) to do unsupervised
clustering. The input of NMF was the scaled data, and the
output of the NMF was the specified k clusters, where k is
given artificially. To determine the optimal number of clusters,
we iteratively tested k from 2 to 10. In each iteration, we
calculated the cophenetic coefficient (CC) of the clusters,
which represents the stability of clustering. Ideally, CC
remains stable initially when k increases from 2 and then
drops quickly when k continues to increase, and the k before
the quick drop of CC would be selected. In practice, we would try
different values for “dispersion.cutoff” when selecting highly
variable genes and selected the one where we could identify
the best k.

3.6 Statistical Tests to Inspect the
Association of Clinical Features with the
Clustering of Preeclampsia Samples
Most of the clinical features are in numerical values. To test the
significance of the association of a clinical feature with the
clustering of PE samples, when the data type of the clinical
feature is numerical, we used analysis of variance (ANOVA)
to inspect whether there is any difference in the mean of the
clinical features in between clusters, and used t-test to check the
difference between pairs of clusters, where p values were corrected
by FDR; when the data type is categorical, we used the Chi-
Square test.
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4 DISCUSSION

In this study, we aimed to reanalyze a large cohort of PE placental
microarray data through deconvolution. For this purpose, we first
attempted to develop a practical pipeline by experimenting with
the strategies for marker gene selection and several deconvolution
methods recommended by Francisco’s benchmark study (Cobos
et al., 2020). While the selection of marker genes was relatively
straightforward, we found that it was not possible to determine
which deconvolution method to use by using the metric of PCCT,
the PCC between the predicted expression and true expression of
bulk transcripts that can be calculated given estimated cell-type
proportions. To have an approximate solution to this problem, we
designed several benchmark tests that likely have a similar degree
of challenges to the deconvolution of PE placental microarray
data and found CIBERSORT performed the best across these
tests. CIBERSORT was therefore chosen as the deconvolution
method of our study. The successful validation of the biological
relevance of the predicted cell-type-level expression profiles of the
major placental cell types using their marker genes also confirmed
that the deconvolution results by CIBERSORT can be trusted.
Based on our experience, the CIBERSORT-based practical
pipeline may also well be suited for the deconvolution of other
microarray datasets.

In this study, the deconvolution of PE placental microarray
data has resulted in several important findings of PE. First, the
proportions of EVT and VCT in the placenta are significantly
altered in PE, but in different directions, with EVT increasing and
VCT decreasing. It has been shown that the differentiation of
VCT to EVT and the transition of EVT to gain invasive ability are
both inhibited by PE (Sun et al., 2011). Consistently, the activity
of the EMT pathway, which plays an important role in these two
important development processes (Vićovac and Aplin, 1996), was
found to be significantly downregulated in both VCT and EVT in
this study. Therefore, the significant increase in EVT and the
significant decrease of VCT likely reflect a compensatory
enhancement of EVT differentiation and transition in response
to the impaired invasive abilities of EVTs. Second, the canonical
PE-related pathways showed cell-type-specific alterations in PE.
For example, hypoxia was mainly found in VCT, while enhanced
hormonal production was found in SCT. Third, placental cell
types could be linked to not only fetal state but also maternal
state-related clinical features by clustering of predicted cell-type-
level expression profiles. In contrast, the clustering of bulk
expression profiles could be only linked to fetal state-related
clinical features. Although the placenta is a fetus tissue, PE is a
disease with significant maternal symptoms, such as high blood

pressure. It is therefore of great value that placental cell types,
specifically EVT, could be linked to maternal state-related features
in our study. Fourth, four clinically distinct clusters of PE samples
were identified in this study and likely represent distinct PE subtypes.
Clusters 2 and 4 have the longest and the shortest GA and also
correspond to the best and the poorest fetal state, respectively.
Although Cluster 1 has a similar GA to Cluster 2, it has a
significantly much worse fetal state. As for Cluster 3, though it
has a similar GA to Cluster 4, it has the most severe maternal state,
with the highest blood pressure among the four clusters.

The discovery of clinically distinct clusters by this study is of
great value to the field of PE. For example, a new diagnostic model
can be developed based on the classification of these clinically
distinct clusters, such that PE patients can be assigned into
different groups and different treatment plans can be applied.
New therapeutic drugs targeting the most severe PE may also be
developed by selecting drug target genes from the marker genes
from the PE cluster with the most severe outcomes. Moreover,
there is a rich trove of bulk RNA-seq or microarray data in the
public domain, with many having disease-related clinical
information. The fact that the deconvolution of PE placental
microarray data led to several new findings on the disease
strongly suggests that similar deconvolution studies should be
conducted to reanalyze disease-related bulk data to generate new
insights into the molecular mechanisms of diseases.
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