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Multiple sclerosis (MS) is an inflammatory disease of central nervous system (CNS). The mmune system plays an 
important role in its pathogenesis. Current treatments are unable to cure patients and prevent the progression of MS 
lesions. Stem cell-based cell therapy has opened a new window for MS treatment. Stem cells regulate immune responses 
and improve axonal remyelination. Stem cells can be obtained from different origins such as embryonic, neural, bone 
marrow, and adipose tissues. But yet there is a challenge for the selection of the best cell source for stem cell therapy. 
Mesenchymal stem cells (MSCs) are a type of stem cell obtained from different origins and have significant im-
munomodulatory effects on the immune system. The increasing evidence have suggested that umbilical cord and adipose 
tissue can be a suitable source for isolation of MSCs. Moreover, human amniotic epithelial cells (hAECs) as novel 
stem cell origins by having immunoregulatory effects, regenerative effects, and less capacity of antigenicity can be 
a candidate for MS treatment. This review discussed the mechanistic effects of MSCs with a focus on human amniotic 
epithelial cells, which can be used to treatment and improvement of outcome in MS disease.
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Introduction 

  Neurodegenerative disorders are defined as chronic and 

progressive processes which result in the deposition of ab-
normal forms of specific proteins in the nervous system 
and destruction of neurons in motor, sensory, or cognitive 
systems (1). These disorders mainly occur in females and 
subjects with age range of 20 to 30 years (2). Besides, it 
is estimated that more than 2.5 million subjects have mul-
tiple sclerosis (MS) around the world which need to effec-
tive treatments to recover disability and improve the cen-
tral nervous system (CNS) functions (2). The major ob-
stacle of curative treatment of MS is an unsuccessful re-
generation of neurons (3). The most common treatments 
for MS exert therapeutic impacts through inhibiting im-
mune reactions (2, 4). However, the most of these ther-
apeutic approaches are unable to stop the degeneration of 
nerve tissue in aggressive MS (5). Among these methods, 
stem cell based-cell therapies have a promising outlook for 
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the remedy of neurological disorders by differentiation in-
to astrocytes and oligodendrocytes effectively in vivo and 
in vitro as well as the secretions of neurotrophic agents 
which have immunoregulatory effects and regenerative 
roles for remyelination and thereby can decrease neural 
damages (6). There are some challenges for using stem 
cells as a curative approach in clinical trials because they 
can quickly proliferate and subsequently have a capacity 
for tumorigenicity (7). However, increasing evidence have 
shown that stem cell therapy can have positive effects on 
animal models with neurological diseases (7, 8). Clinical 
applications of adult stem cells, particularly mesenchymal 
stem cells (MSCs) and human amniotic epithelial cells 
(hAEC), have been recommended for the treatment of 
neurological disorders such as MS (9-11). These cells can 
easily be isolated, expanded, and manipulated ex vivo 
(12). They can effortlessly differentiate into mesodermal 
lineages (13). Other advantages of therapeutic applications 
of MSCs and hAECs include their capability to transport 
from blood to damaged sites, their relative safety, and low 
immunogenicity in comparison with other stem cell sour-
ces (13, 14). Hereby, the present review aimed to describe 
and discuss evidence regarding MSC-based therapies with 
concentrating on hAECs and their mechanisms for treat-
ing MS.

MS and Its Pathogenesis

  Multiple sclerosis (MS) is a chronic and progressive 
neuro-inflammatory disease of the CNS, leading to axonal 
lack and myelin disruption. Among this, immune cells 
play a critical role in the pathogenesis of MS (15, 16). The 
immune system modulates neural evolution via regulating 
oligodendrogenesis, neurogenesis, and synaptic organization. 
In addition to environmental factors, genetic factors such 
as immune system regulating genes including major histo-
compatibility complex (MHC), T-cell receptor (TCR), im-
munoglobulin (Ig), and cytokines can increase the risk of 
MS (2, 17). Formations of sclerotic plaques and lesions in 
the CNS and the cerebrospinal cord are the features of 
MS. Common hypothesis indicates that when autoimmune 
cascade initiates, blood-brain barrier (BBB) disrupts and 
autoreactive T cells migrate to the CNS and then destroy 
myelin sheath and create lesions and plaques (2, 4). 
Disappearing of myelin sheath, which has a considerable 
role in survival and integration of axon, is a major reason 
for progression of MS although axon destruction occurs 
in primary phases of MS and remains permanent (3). T 
helper 1 (Th1) and T helper 17 (Th17) cells are the major 
effector cells that cause demyelination and destroy the 

CNS (15, 16). However, T cells alone cannot form lesions 
and plaques and other immune cells play important roles 
in the pathogenesis of MS. Th1 and Th17 produce in-
erleukine-1 (IL-1), IL-17, tumor necrosis factor- alpha 
(TNF-α), interferon-gamma (IFN-γ), and other pro-in-
flammatory cytokines (18). The consequence of macro-
phage activated by Th1 cytokines is the destruction of the 
myelin and exposure of more CNS antigens. In vivo stud-
ies have shown that Th1 cytokines such as IFN-γ, lym-
photoxin (LT)-α and IL-2 have the important roles in the 
pathogenesis of MS. Furthermore, TNF-α is associated 
with progression of the disease. CD8＋ T cells are also ob-
served in MS lesions, especially around the blood vessel. 
Clonal expansion of CD8＋ T cell is more than CD4＋ 

T cell and CD8＋ T cell number is largely correlated to 
axons injury (1). Although it is shown that autoreactive 
T cells are the main effector cells responsible for the 
pathogenesis of disease, previous studies have reported 
that autoreactive B cells also participate in neural dam-
ages and their myelin sheaths and axons, through auto-
antibody productions, antigen presentations, and cytokine 
secretions (19). Clinical and experimental studies have 
shown that autoantibodies can be major components of 
the immune system that can be detected in MS plaques. 
In this notion, there are some studies showing the associa-
tions between immunoglobulin G (IgG) and MS signs. 
Moreover, it is indicated that IgG, especially IgG against 
myelin basic proteins (MBP) and proteolipid proteins 
(PLP), can be considered as the hallmarks of MS. However, 
these antibodies have the unknown roles in its patho-
genesis (Fig. 1) (20). 

Mesenchymal Stem Cells (MSCs) 

  MSC can be isolated from all connective tissues includ-
ing bone marrow, umbilical cord, adipose tissue, dental 
tissues, brain, and fetal lung (21-23). Several studies have 
shown that MSCs can differentiate into monocytes and 
neurons in vitro and in vivo (24). MSCs can migrate to 
areas of injured tissue via expressions of receptors for che-
mokines such as CCR1, CXCR4, CXCR5, and CXCR6, 
and some growth factors (6). 
  MSCs may support axon and increase neural stability 
through anti-oxidant and anti-apoptotic impacts and/or 
trophic factor secretions (25). MSCs can recruit oligoden-
drocyte precursors to the CNS and induce differentiation 
of these cells into neuronal cells (26, 27). In addition, 
MSC inhibits neuron apoptosis, improves neural cell dif-
ferentiation, and promotes angiogenesis and CNS repair 
in MS patients (20).
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Fig. 1. The roles of immune responses 
in the pathogenesis of MS.

  MSC regulates immune responses via suppressing the 
functions of B, T cells, and other immune cells (28). 
Studies have shown that intravascular injection of MSC 
induces T cell tolerance against myelin glycoproteins and 
improves CNS tissue repair (29). Intravenous injection of 
syngeneic MSC to animals with experimental autoimmune 
encephalomyelitis (EAE), as a model of MS, induces toler-
ance in MOG-specific T cells, which results in the reduc-
tion in immune cell infiltrations to the CNS and myelin 
destruction and improves the clinical course (30, 31). 
MSCs inhibit immune responses through the secretions of 
anti-inflammatory cytokines such as TGF-β, indole-
amine-pyrrole 2, 3-dioxygenase (IDO), and prostaglandinE-2 
(PGE-2) (32). 
  In vivo studies have indicated that MSCs are able to in-
hibit the activation and proliferation of Th1 cells and CD8＋ 

T cell-mediated cytotoxicity functions through cell-cell in-
teractions, which consequently lead to an impairment in 
the activation and proliferation of B cells and production 
of antibody (33). Moreover, MSC can enhance the activa-
tion of suppressor of cytokine signaling 3 (SOCS3) and 
control Th17 differentiation via IFN-γ pathway (34). 
IDO production is another mechanism used by MSC for 
inhibiting immune responses (34). IDO depletes trypto-
phan from the environment of lymphocytes which has cru-
cial role in lymphocyte activations (35). MSC induces pe-
ripheral dendritic cells (DCs) to secret IL-10 and thereby 
promotes the development of regulatory T cells (Treg) 
(35). 
  Recent studies suggest that MSCs improve peripheral 
tolerance through preventing the differentiation and func-
tion of DCs leading to reduction in antigen presentation 
and subsequently inhibition of clonal expansion of autor-

eactive T cells (36). MSCs secrete hepatocyte growth factor 
(HGF) which increases tolerogenic DCs (37). It is re-
ported that injection of MSC with HGF to EAE mice re-
duced CNS inflammation and immune cell infiltrations 
(37). Thus, it is likely that HGF derived from MSC is a 
good candidate for the treatment of MS. In several studies, 
genetically modified MSCs have been used to over express 
anti-inflammatory cytokines such as IL-10, and IL-4 (38). 
These studies have shown that MSCs suppress immune re-
sponses, reduce BBB injury, and improve remyelination of 
neurons in EAE mice (Fig. 2) (39). 

Human Bone Marrow-Derived MSCs (hBM-MSCs)

  The hBM-MSC, as a nonhematopoietic BM cell, in-
cludes approximately 0.0001∼0.01% of all BM-nucleated 
cells (39). MSCs obtained from bone marrow have multi-
ple properties including: I) differentiation into meso-
dermal lineage cells, II) stromal marker expressions, III) 
colony formations that contribute to haemopoiesis (40). 
Regarding therapeutic aspects of hBM-MSCs in neuro-
logical disorders, it is stated that these cells can promote 
functional recovery in relapsing-remitting and chronic 
types of MS mouse model probably through reducing de-
myelination regions and inflammatory infiltrates, enhanc-
ing brain-derived neurotrophic factor (BDNF) expression, 
and inducing oligodendrogenesis (41). Some studies have 
shown that BM-MSCs possess immunomodulatory effects 
in EAE mice (36). They can exert immunoregulatory im-
pacts through releasing various bioactive agents which 
suppress the proliferation of B and T cells and the matu-
ration of antigen-presenting cells (APCs) (42). These cells 
play neuroprotective roles via inducing local progenitor 
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Fig. 2. Immunoregulatory impacts 
and therapeutic effects of MSCs.

cells and suppressing scar creation, gliosis, and neuron 
apoptosis (43). In addition to protective impacts, they are 
able to differentiate into the neurons and enhance the re-
placement of the cells (43). Nevertheless, the isolation of 
BM-MSCs is painful, invasive, and low efficiency (44). In 
EAE, BM-MSCs are efficient only when they are adminis-
trated before disease initiation, and have few curative ef-
fects in stabilized stage of disease (13). Thus, other sources 
of MSCs can be useful for MS treatment. 

Human Umbilical Cord (hUC)-MSCs

  Among several sources of MSCs, the utilization of hu-
man umbilical cord (hUC)-MSC has significant benefits 
such as less ethical issues, less invasive methods for its 
isolation, great proliferation potential, little immunoge-
nicity capacity, and differentiation capacity into various 
lineages (45). Multiple studies have suggested hUC-MSC 
administration in autoimmune conditions like encephalo-
myelitis, type 1 diabetes, and rheumatoid arthritis due to 
its regulatory impacts on immune reactions (46-48). 
HUC-MSCs have significant effects on tissue recovery and 
immunoregulation (49). In comparison with BM-MSC, 
hUC-MSCs significantly have the decreased expression of 
HLA-I, increased expansion capacity, and more rapid 
growth in vitro (50). HUC-MSCs can also increase Treg 
number in vitro and in vivo (51). Liu et al. (48) showed 
that hUC-MSCs can improve behavioral activities and di-
minish the histopathological impairments of encephalo-
myelitis mouse models. They also declared that this mes-
enchymal source can dramatically elevate IL-4 and IL-10 
and reduce IL-1 and IL-6 levels. In addition, hUC-MSCs 
can release several nerve growth factors, for example, 
BDNF, glial cell-derived neurotrophic factor (GDNF). 
Furthermore, hUC-MSCs can differentiate into oligoden-

drocyte precursor cells and enhance axonal growth (52). 
In line with the immunomodulatory effects of these cells, 
it is demonstrated that hUC-MSCs cultured with periph-
eral blood mononuclear cells (PBMCs) from healthy in-
dividuals can promote Treg frequency and anti-in-
flammatory cytokine secretions (Fig. 3) (51, 53). 

Human Adipose-Derived MSCs (AD-MSCs) 

  AD-MSC is a subset of MSCs isolated by collagenase 
digests of adipose tissue. Adipose tissue is available, abun-
dant, easily accessible for use, and contain high levels of 
MSCs (about 100∼1000 MSCs per gram of fat). Therefore, 
this tissue is considered as a valuable source of the cell 
for cellular therapy. AD-MSCs have the neurogenic, car-
diogenic, myogenic, chondrogenic, osteogenic, and adipo-
genic capacity in vitro, which can be obtained and used 
to stem cell therapy by less invasive methods (6, 54). 
AD-MSCs can express α4 integrin, an adhesive molecule, 
and thereby have the ability to migrate in different organs 
(55). Previous studies have demonstrated that autologous 
and allogeneic AD-MSCs can be useful in the treatment 
of various diseases such as MS, diabetes, Parkinson’s dis-
ease, autoimmune encephalomyelitis (56-59). In line with 
this notion, Li et al. revealed that intravenously injection 
of AD-MSC to EAE mice contributed to the reduction in 
infiltrations of inflammatory cells in the CNS and sig-
nificantly inhibited demyelination and axonal loss (8, 59). 
These cells release various growth factors including an-
ti-apoptotic, angiogenic and neurotrophic mediators which 
have significant roles in many cellular mechanisms such 
as cell differentiation, proliferation, and maturation (60). 
In contrast with BM-MSCs, AD-MSCs express integrin α
4β1. Thus, it is thought that AD-MSC has more capa-
bilities for stem cell-based cell therapy, due perhaps to its 
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Fig. 3. Immunomodulatory effects and 
therapeutic features of hUC-MSCs.

Fig. 4. Immunoregulatory impacts 
and therapeutic features of AD-MSCs 
in degenerative diseases.

potential to pass the BBB and exert its effects such as an-
ti-inflammatory, immunoregulatory, and neurodegenerative 
(Fig. 4) (5). Recently, several studies have been performed 
in this field (61, 62). Based on their results, the re-
searchers are hopeful to find a standard method for treat-
ment of MS by these cells (62). However, it seems that 
many concerns regarding the use of MSC such as tumori-
genesis and immune-rejection after clinical application 
must be addressed in future works. 

Human Amniotic Epithelial Cells (hAECs) 

  hAEC is a potential source of stem cell which can be 
easily isolated from the amniotic membrane (AM), the in-
ner layer of the fetal membranes (18, 63-65). These cells 

can express some markers of pluripotent stem cells, such 
as Rex-1, FGF-T, SSEA-4, Sox-2, Nanog, and Oct4, which 
some of them play critical roles in self-renewal and pluri-
potency properties in induced pluripotent stem (iPS) cells 
and embryonic stem cells (ESCs) (66). hAEC displays 
multilineage differentiation potential and has the ability 
to differentiation into different cells such as the neural 
cells, pancreatic cells, hepatocytes, adipocytes, cardiomyo-
cytes, and myocytes, which originate from the endoderm, 
mesoderm, and ectoderm (12). Extensive data from the lit-
erature have indicated that hAECs have immunoregu-
latory effects on adaptive and innate immune systems (14, 
63, 67). They have inhibitory impacts on the migrations 
of neutrophil and macrophage, proliferation of B cell, acti-
vations of natural killer (NK) and CD4＋ T cells, and se-
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Fig. 5. Immunomodulatory effects 
and stem cell characteristics of 
hAECs. 

cretions of pro-inflammatory cytokines of CD4＋ T cells 
(12, 18, 68, 69). The immunoregulatory features of hAEC 
are mainly mediated by secretions of immunoinhibitory 
agents, including interleukin-4 (IL-4), PG-E2, and trans-
forming growth factor-beta (TGF-β) (70-73). Moreover, 
immunomodulatory impacts of hAECs may be mediated 
by the increase of Tregs and Th2 cells, IL-2, IL-5, and 
IL-10 levels, inhibition of pathogenic T cell reactions, and 
preservation of the peripheral naive CD4＋ T cell source 
(74, 75). Thus, hAECs may be acted as a useful cell source 
for MS treatment (70, 74). To support this notion, these 
cells have a significant impact on shift in the immune sys-
tem away from Th1 immunity towards Th2 responses (74). 
It is reported that hAECs-treated EAE mice experienced 
significant reductions in demyelination and infiltration of 
CD3＋ T cell and F4/80＋ monocyte/macrophage into the 
CNS (74). Some reports have indicated that hAECs inhibit 
the differentiation of Th17 cells through reducing the ex-
pressions of TGF-β and IL-6, which have indispensible 
roles in Th17 cell differentiation (67). Other studies have 
indicated that hAECs are able to produce alpha-fetopro-
tein (AFP), which is involved in the reduction of lympho-
cyte function and neuroinflammation in MS animal model 
(76, 77). Moreover, they can reside in inflammation loca-
tions, such as the brain, and subsequently decrease grey 
and white matter damages (78). hAEC can release neuro-
trophic agents such as nerve growth factor (NGF), neuro-
trophin-3 (NT-3) and brain-derived neurotrophic factor 
(BDNF) (Fig. 5) (79, 80). These properties along with low 
antigenicity provide further confirmations to support ther-
apeutic features of hAECs in managing and controlling in-

flammatory neurological disorders such as MS (70). hAECs 
have a restricted proliferative potential due to lacking telo-
merase (66, 70, 74, 81), which may reduce potential tu-
morigenicity of stem cell-based therapies. Nevertheless, it 
is thought that additional studies and more information 
are required to clarify the possible ability of hAECs in 
treating diseases with immune pathophysiology.

Comparison of hAECs with MSCs from Different 
Sources

  There are some similarities and differences between 
hAECs and MSCs derived from different sources includ-
ing morphologic and tumorigenic properties, angiogenesis 
capacities, immunomodulatory features, and ethical issues 
related to their isolations and applications (44, 82). In 
terms of morphology, hAECs indicate a cobblestone-like 
morphology, and cultured hAMSCs have a spindle fibro-
blast-like morphology (83). The morphologic feature of 
BM-MSCs can be ranged from fibroblast-like spindle- 
shaped cells to large flat cells in culture (84). MSCs from 
other sources, such as hUC-MSCs and AD-MSCs, show 
spindle shapes in the culture (85, 86). The collection of 
amniotic cells can easily be performed by prenatal testing. 
Moreover, the amniotic membrane can be collected using 
standard isolation techniques after cesarean section which 
are noninvasive without detrimental effects on human em-
bryos and ethical issues (82). However, some ethical prob-
lems are proposed to clinical applications of MSCs and 
the isolation of some MSC sources (84, 87). As mentioned 
previous, the isolation of hBM-MSCs is invasive, painful, 
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and low efficiency (44). HAECs don’t have tumorigenic 
capacity, and there is no document about the tumor-
igenicity of amnion membrane or membrane-originated 
cells when they are used to clinical applications (14). 
However, it is reported that MSCs may elevate tumor 
growth in some cancer mouse models (88). HAECs, BM- 
MSCs, and AD-MSCs can promote angiogenesis through 
releasing angiogenic factors such as VEGF, HGF, EGF 
and some mechanisms associated to protease and cytokine 
productions (83, 89). Based on evidence, hAECs have bet-
ter immunoregulatory effects but lesser osteogenic impacts 
than MSCs derived from BM and human amniotic fluid 
(hAF) (90). These cells, similar to MSCs, express some 
MSC markers such as CD44, CD90, and CD105. However, 
hAECs possess higher levels of SSEA4 and SSEA3 ex-
pressions than hBM-MSCs and hAFMSC, indicating more 
multipotent potential of hAECs (14, 91). Furthermore, 
hAECs and hAFMSC express higher PD-L1 and PD-L2 
levels than hBM-MSCs, thereby these cells may have more 
effective effects in peripheral tolerance in different cells 
of the immune system (90, 92). 

Mesenchymal Stem Cell-Based Cell Therapy and 
Clinical Trials

  Recently, several clinical trials were preformed using 
MSCs as a treatment for MS. In a phase II clinical trial, 
nine relapsing-remitting multiple sclerosis (RRMS) pa-
tients were treated with MSCs for six months resulting in 
the reduction of lesions in magnetic resonance imaging 
(MRI) (43). In 2010, Yamout et al. (43) injected autolo-
gous BM-MSCs to nine secondary progressive multiple 
sclerosis (SPMS) and one RRMS patients. After three 
months to one year, they observed improved clinical fea-
tures in MS patients. In this phase IIa clinical trial, 10 
SPMS patients received intravascular MSCs for six 
months and the researchers observed remyelination and 
neuroprotection effect of MSCs (43). Moreover, in another 
study conducted by Mohyeddin Bonab et al. (93) in 2007, 
MSC was intrathecally injected to 10 MS patients and in-
vestigated disease procession. The disease development 
was gradually decreased in half of patients upon MSC 
application. In a study on 22 patients with primary pro-
gressive multiple sclerosis (PPMS), it was reported that in-
travenously and intrathecally injections of BM-MSCs had 
helpful effects in MS treatment (32). In a triple-blind and 
placebo-controlled investigation on 30 patients with 
SPMS, it was shown that AD-MSCs infusion is a feasible 
and safe procedure in SPMS patients (94). In another 
study by Staff et al. (95) the safety of intrathecal admin-

istration of AD-MSCs in amyotrophic lateral sclerosis 
(ALS) cases was reported. Li et al. (96) assessed the ther-
apeutic influences of another MSC source. They demon-
strated that hUC-MSCs transplantation decreased MS 
symptoms and relapse occurrence compared to control 
subjects. Furthermore, they revealed a shift from Th1 to 
Th2 immunity in the hUC-MSCs-administrated group. In 
addition, in another study, Riordan et al. (97) indicated 
the safety of hUC-MSCs transplantation and useful im-
pacts of these cells on life quality and brain lesion in MS 
cases. 

Conclusions

  Stem cell-based cell therapy is getting to be a treatment 
for MS and other neurological diseases. However, there is 
an inconsistency in the results of previous studies. This 
discrepancy proposes that more studies are needed to 
demonstrate the exact role of stem cells in MS treatment. 
Among several types of stem cells, MSCs are more likely 
to find a place in future treatments for MS because these 
cells have different mechanisms to regulate immune re-
sponses and repair CNS damages. Furthermore, MSCs 
have a supportive role on axon and the neural stability 
and have anti-oxidant, anti-apoptotic and trophic factors 
secretion properties. A growing body of evidence recom-
mends that umbilical cord and adipose tissue can be more 
effective for stem cell therapy on the basis of MSCs. 
Moreover, hAECs are considered as a novel stem cell 
source that can have a potential for differentiation into de-
rivates of three germinal layers such as neural cells and 
possess immunoregulatory effects. Therefore, they can also 
have the ability to MS treatment. However, more ex-
perimental investigations should be performed to explain 
their effectiveness and mechanisms in the treatment of 
this disease.
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