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Abstract
Research has shown that cognitive and physical functioning of older adults can be
reflected in indicators such as walking speed. While changes in cognition, mobility,
or health cause changes in gait speed, often gradual variations in walking speed go
undetected until severe problems arise. Discrete clinical assessments during clinical
consultations often fail to detect changes in day-to-day walking speeds and do not
reflect walking speeds in everyday environments, where most of the mobility issues
happen. In this paper, we compare four walking speed measurement technologies
to a GAITRite mat (gold standard): (1) an ultra wideband radar (covering the band
from 3.3 GHz to 10 GHz), (2) a narrow band 24-GHz radar (with a bandwidth of
250 MHz), (3) a perception Neuron Motion Tracking suit, and (4) a thermal camera.
Data were collected in parallel using all sensors at the same time for 10 healthy adults
for normal and slow walking paces. A comparison of the sensors indicates better per-
formance at lower gait speeds, with offsets (when compared to GAITRite) between
0.1 and 20% for the ultra wideband radar, 1.9 and 17% for the narrowband radar, 0.1
and 38% for the thermal camera, and 1.7 and 38% for the suit. This paper supports
the potential of unobtrusive radar-based sensors and thermal camera technologies
for ambient autonomous gait speed monitoring for contextual, privacy-preserving
monitoring of participants in the community.
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1 Introduction

Previous research has shown gait (walking) speed to be a valuable and reliable indi-
cator for the assessment of an individual’s health, particularly mobility and cognitive
status [13, 36]. People with age-related conditions, such as Alzheimer’s disease and
frailty, often present changes in gait speed that are challenging or impossible to mon-
itor during clinical visits [11]. Currently, a gait speed assessment is only advised for
those who have already been diagnosed with relevant issues and have been referred
to a physician or hospital [34]. Variations in gait speed as a result of cognitive or
other conditions may go undetected as the effect is gradual and often not notice-
able during clinic visits. Ubiquitous and unobtrusive technologies that detect changes
in gait speed of older adults in clinical (long-term care, hospitals) and non-clinical
environments (retirement homes, independent living, etc.) could support detection,
evaluation, and monitoring of parameters related to changes in mobility, cognition,
and frailty. As shown by previous studies (e.g., [18, 34]), the ability to recognize and
handle such conditions is critical for supporting health and quality of life for older
adults, especially for those who choose to live independently.

1.1 Wearable-Based Gait Monitoring

The most common technologies used to monitor gait speed are wearable based, such
as accelerators and gyroscopes [26], or operate in a controlled test environment, such
as the GAITRite mat [7]. The GAITRite mat is a pressure sensor–based mat that is
able to provide accurate real-time data regarding multiple aspects of an individual’s
walking characteristics, such as cadence, walking speed, right and left step and stride
lengths, and right and left step times [25]. GAITRite has been used extensively in
research for comparison against other methods that attempt to accurately measure
speed and other important gait metrics. Studies that examined gait metrics for older
adults and post-stroke patients had reliable results in detecting spatio-temporal gait
parameters under single- and dual-task conditions [6]. The GAITRite mat has also
been used for measurement of temporal and spatial gait parameters, in agreement
with a separate method of calculation involving footfall count and stopwatch timing
[43]. The GAITRite mat is compatible with other gait-monitoring technologies (e.g.,
Vicon [27]) and can be used in conjunction with other systems to act as the gold-
standard in validating new systems [25].

In previous research, one study used three-axis accelerometer-based sensors to
measure the kinematics of separate body segments with possible medical applications
when calculating gait parameters, although no estimates of gait speed were pro-
vided [22]. Bamberg et al. [3] investigated the efficacy of portable wearable sensors
installed in participants’ shoes to model gait outside of the confines of a lab envi-
ronment and reported an average error of 6.5 ± 11.7% for the stride length. Another
study overcame the challenge caused by joint angles and lack of flat surfaces on the
human body to investigate the placement of inertial measurement unit (IMU) sen-
sors on selected joint ends and muscle extensions and its effect in gait analysis [32].
While wearables are relatively cheap to manufacture and are portable, some disad-
vantages limit their uptake such as challenges in setup, compliance, and maintenance,
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particularly for older adults who have physical or cognitive limitations as they would
need to remember and commit to wearing and charging the devices regularly.

Other strategies to measure gait speed have used smartphones or tablets embedded
with Global Positioning System (GPS)[26, 33]. Although these devices are more
practical and popular, they lack accuracy when tracking subtle gait speed changes
and are only capable of monitoring when the person is carrying them. An in-home
method using Kinect depth cameras has been introduced for gait speed monitoring
[12, 35], but it is not suitable to cover large fields of view and the use of computer
vision usually creates privacy concerns for the end users.

Most of the technologies discussed in this section provide accurate methods for
gait speed monitoring but have limited applicability in the field for the monitoring
of gait speed in contextual settings as seniors’ residences and in independent living
settings. Privacy in video-based tracking systems and adherence in wearable-based
systems are the major limitations in the update of these technologies for in situ,
contextual studies.

1.2 Wireless Gait Monitoring

In an effort to solve privacy and practical issues, researchers have been working
on alternative wireless radar technologies to monitor walking speed. For example,
(quasi-)zero-effort ambient gait speed tracking systems with considerable low pri-
vacy constraints have been developed. Geisheimer et al. [14] focused in a descriptive
motion method and modeling with potential application in clinical gait analysis and
biometric identification, but authors did not report the accuracy of their technology.
Saho et al. [31] compared groups of younger and older adults with a principal compo-
nent analysis to identify correlation between speed and fall risk, but did not compare
the results to ground truth so were not able to report on accuracy or error.

Different types of low-frequency (5–8 GHz) radars for gait speed assessment have
been reported using a variety of continuous wave (CW) and pulse Doppler radars
[9, 40]. Ciddihy et al. measured gait velocity and compared them to the ones taken
by a clinician with a stopwatch. With some radar angle adjustments and a calibra-
tion factor, the average reported error was 10.5%. Wang et al. compared their speed
results to a Vicon system as ground truth, with the speed estimated by the radar to be
87% the speed estimated by the Vicon. In previous research, we investigated radar-
based walking speed measurement using a 24-GHz radar that achieved an accuracy of
90.5% versus ground truth data from a GAITRite mat at slower walking speeds [5].
With a greater focus on gait analysis, other researchers have proposed a system that
uses a frequency-modulated continuous wave (FMCW) radar to measure not only
walking speed but also stride length [16]. With an ultra wideband radar, researchers
were also able to mitigate wall interference when detecting motion and have explored
the classification of different objects and body parts [37]. This research can be used in
the future towards differentiating between different people in the same area and even
separate an individual’s legs as two entities in an effort to calculate stride length. With
this type of radar, the system may also be accurate at longer distances, as determined
by its tracking range [42].
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The radar system’s granularity for recognizing distinct gait speeds is a crucial
factor when considering clinical applications, as the system needs to accurately detect
subtle variations over time. In this regard, the radar’s frequency range is an important
feature. Our previous research investigated two types of radar: low frequency (5–
10 GHz) and higher frequency (24 GHz), where we measured the efficacy for slow,
normal, and fast gait speeds for healthy younger adults using a pre-built tracking
algorithm [4, 20]. While the radars were useful for distinguishing between different
gait speeds for the younger adults, all the walking speeds were faster than would be
seen in a frail older adult, with maximum average accuracy of approximately 86%
at fast speeds, 81% for the normal, and 74% for the low speeds. For these types of
sensors to be used to detect clinically significant changes in health, they must be able
to accurately detect walking speeds comparable with frail older adults.

Gait estimation has also been explored using infrared thermal cameras. In one
study, Lu et al. [21] proposed the use of thermal imaging techniques to estimate gait
using a link model based on human body joints and a support vector machine (SVM)
classifier to extract a feature vector of each joint. Kim et al. leveraged a model-
based object tracking algorithm with a robust silhouette extraction (accuracy superior
to 90% when compared with manually inputted ground truth) with potential appli-
cation for gait monitoring [19]. DeCann et al. designed a complex gait monitoring
system based on the detection of silhouette from thermal images and demonstrated a
significant improvement in estimation accuracy [10].

2 Objectives

The objective of this work is to perform a comparison of privacy-preserving tech-
nologies that could be used to detect normal and frail walking speeds. Four sensing
technologies were examined: (1) a 3–10 GHz ultra wideband radar–based sensor,
(2) a 24-GHz narrowband radar–based sensor, (3) infrared thermal camera, and (4)
motion detection suit. All sensor technologies were compared to a GAITRite mat as
the gold standard used to represent a ground truth system.

The sensors included in this study were selected based on (a) their ability to
present user privacy, (b) the non-obtrusive nature of these sensors, and (c) the ease
of use and setup in contextual studies in a naturalistic setting. Radar-based sensors
provide a complete privacy-preserving, non-obtrusive solution that can be potentially
mounted behind walls; infrared thermal cameras provide an alternative to vision-
based systems that can preserve user privacy; and the motion detection suit can
be used in naturalistic settings for a more in-depth analysis of gait while allowing
participants to move freely through their home environment.

This manuscript provides the health informatics community with insights about
(a) the accuracy of these systems, (b) limitations of these technologies for studies in
naturalistic settings, and (c) guidance on the use of these technologies for specific
types of studies.
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3 Methodology

The development of a platform able to identify when a person’s maximum gait speed
has fallen below a clinical threshold requires technologies that can monitor people
in their home. The radar-based deployments and the thermal camera tested in this
work provide a non-intrusive method for detecting older adults’ gait speed. However,
it must be established whether or not the detection level is granular enough for a
clinician to determine whether the person being monitored requires a more detailed
clinical assessment. In that sense, the technology must accurately detect walking
speed variations, especially when they fall below 0.65–0.7m/s, which has been deter-
mined to be the clinical threshold indicator of frailty [1, 24]. Furthermore, to the best
of our knowledge, no previous work has compared the use of radar-based gait esti-
mation methods along with thermal camera and a motion detection suit to detect such
low gait speed ranges.

We used commercially available sensors for this study, with customized analytics
to extract the gait speed indicators presented in this manuscript. While the sensory
technology is available in the market, the two radar-based solutions and the infrared
thermal camera solution were implemented with customized software developed by
our research team at the University of Waterloo. The selected technologies present
a novel privacy-preserving method for monitoring gait speeds in naturalistic settings
through a combination of sensors and customized analytics software developed for
our platform. This is also the first time that these sensors have been compared to each
other on a single study, providing insights on how they perform compared to other
privacy-preserving technologies.

3.1 Study Protocol

As our previous work determined no difference in simulated gait speed for older and
younger adults [5], gait was captured from ten healthy young adults, with an average
age of 21 (σ = 1.8); 50% males and 50% females; and with an average self-reported
weight of 65 Kg (σ = 11.1); and self-reported height of 1.68 m (σ = 0.1). Participants
consisted of a convenience sample of ten university students that self-identified as
healthy individuals with no gait impairments as our goal was to compare different
gait estimation technologies without normal gait patterns. The sample size used in
this study is comparable to previously conducted pilot studies [8]. Each participant
was asked to take part in two trials, one walking at a normal speed (∼1.0 m/s) and a
second one at a slower speed (∼0.6 m/s). Each trial included two intervals split by a
break (∼5 min). Each trial consisted of six walks (3 there-and-back round trips; see
Fig. 1).

Before the first walking interval, the participant was asked to put on the motion
tracking suit with the help of its operator and run through a series of calibration pos-
tures and movements. Once finished calibrating the suit, the participant went through
a trial walkthrough on the mat of the walking procedure with one of the operators.

During each walking interval, the participant started from a spot located 1 m
behind the two radars, walked 7 m continuously in a straight line in front of the radars
along the GAITRite. Both starting and turning points were marked on the floor with
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Fig. 1 Schema for one round trip with two walks. R1 and R2 are the 10-GHz and 24-GHz radars. T is the
thermal camera, and X1 and X2 are the starting and ending points respectively

a tape. The turning point was placed approximately 1 m after the end of the mat, such
that acceleration and deceleration effects are attenuated. The GAITRite system also
requires the participant to walk off the mat in order to split each walk and there is a 1-
m buffer area in front of the beginning of the mat to prevent the radar pulses blurring
out when the participants walk too close to the radars. Prior to completing the second
trial (slow walking pace), the researchers demonstrated the target walking speed and
asked rate with a metronome [41] playing at 60 bpm.

3.2 Equipment Setup

GAITRite The GAITRite mat was set up in the center of a spacious room to avoid
obstacles and possible noise from the surrounding environment as well as to provide
a clear field of vision for the sensors. The mat was placed on a flat surface to pro-
duce clear footprints in the data capture system to calculate gait metrics without any
warps. The computer system responsible for data capture and the power supply for
the sensors were plugged in the front of the mat, behind the 10-GHz and 24-GHz
radars, as shown in Fig. 2b. The 14’ model of the GAITRite mat is composed of over
16,000 touch sensors that are placed throughout its extension, which measures out at
uncut factory dimensions of 90 cm × 5.2 m (35” × 204”) with a 6 mm height for the
electronics box. The active portion of the mat where sensors record data measures
out at 61 cm × 4.27 m. The system uses a sampling rate of 60 Hz and higher with a
high spatial accuracy (± 1.27 cm). Measured based on a suspended walk format, the
mat detects each footfall and outputs a footprint as the first part of data collection.
After manual verification by the operator, it is confirmed that each of the 6 walks is
split properly and each footprint is recorded and validated. The GAITRite mat system
then adds each walk together for a total of 12 walks per participant. Its physical con-
tact with the participant’s foot and kinematic measurements based on these recorded
footprints and elapsed time make this system very accurate in calculating walking
speed and other gait metrics.

10-GHz Radar The 3–10-GHz ultra wideband radar–based system used in this study
is a commercial solution manufactured by Vayyar [38]. This device has a frequency
range of 3–10 GHz and employs an 18 antenna element linearly polarized broadband
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Fig. 2 Equipment setup

array. The system comes with open application programming interfaces (APIs) that
provide raw signal data which can be used for development purposes [39], and which
were used in the development of our customized analytics tools.

24-GHz Radar The second radar-based system employed a commercial radar sensor
(IMST SENTIRET M Radar Module) that operates in continuous wave (CW) mode
in the frequency range of 24 GHz [17]. Doppler effect provides information regard-
ing the velocity of a target in the received signal. In our scenario, when a person is
walking towards the radar, it will induce an increase in the frequency of the received
signal, and vice versa. Therefore, walking speeds can be estimated by extracting the
frequency shifts in the radar signal. In this study, we employ a short-time Fourier
transform (STFT) to calculate the spectrogram of the received radar signal and visual-
ize the frequency changes induced by the walking person. STFT is applied according
to the below formula:

S(t, f ) =
∣∣∣∣∣

∞∑
n=−∞

w(n)x(t − n)e−j2πf n

∣∣∣∣∣
2

(1)

After obtaining the spectrogram, we then extracted the points with the highest inten-
sity values and average the frequency shifts represented by these points. The averaged
frequency shift is then converted to be the walking speed. Both radars were attached
to a stand at a height of approximately 2 m off the ground. This gives the best result
for single body reflection for the radar pulses when a participant walks on the mat.

Thermal Camera The thermal camera setup used a Raspberry Pi [30] to extract
frames from the sensor, using the pylepton open source library [15]. The infrared ray
from the human body is transformed into an electric signal and the FLIR (forward-
looking infrared) thermal camera captures a sequence of thermal images as the target
is walking towards and away from the setup. By analyzing the thermal characteris-
tics of the images, the gait rate of the target can be approximated by reading the pixel
intensity values of the thermal frames. A custom-made enclosure was designed and
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3D-printed to house the FLIR camera and Raspberry Pi, as shown in Fig. 2a. The
enclosure was mounted on a standard tripod for the camera to reach a broader field
of view. As seen in Fig. 2b, this tripod had a height of 1.5 m and was placed 1–2 m
away from the end of the GAITRite mat, extending out along the end of the mat. This
setup allowed for a full upper body capture of the subject throughout the test, while
also capturing enough data from the subject when they stood the furthest away. This
arrangement captured the thermal and geometrical characteristics of the people while
they were walking between the near end and the far end of the camera. The camera
recorded about 13 frames per second and a total of 1000 frames for each participant
in each test, adding up to 20k frames for the entire experiment. The thermal camera
essentially captures the temperature magnitude and the size of the target contained
in number of pixels occupied by the target, both of which are related to the distance
between the camera and the target. By extracting these features for each image frame,
we can infer the location and the path of the target. The sum of the bright intensity
of all pixels in one frame characterizes the overall magnitude of the temperature of
the target. The features of all frames are then plotted as a time series, which helps to
identify frames with key locations during the movements that reveal the path patterns
of the target. Since we know the time each frame is recorded, the speed of the target
can be estimated by relating the distance traveled during the key locations to the time
interval of the associated frames.

Motion Tracking Suit This study investigated the performance of the Perception
Neuron Accelerometer Suit (PNAS) [29] in estimating gait speed wirelessly using
accelerometers. The suit was used to collect gait-related data, which was then pro-
cessed post-capture to determine velocity relative to the portions of walking that
corresponded to the GAITRite mat. PNAS is able to capture full-body kinematics
using individual sensors called “neurons” that attach on to different parts of the suit
and contain an in-built inertial measurement unit (IMU) with a gyroscope, accelerom-
eter, and magnetometer. The suit can connect wirelessly to the Axis Neuron software
[28] to provide real-time data on user motion. Data output includes a Biovision Hier-
archical data (BHD) file showing the motion capture animation of the user (Fig. 3a),
as well as quantitative data as joint acceleration and position of all sensors. The suit is
composed of straps for each limb segment, as well as the head and torso. The system
is set at a standard frame rate of 125 frames per second and provides various kine-
matic measures including acceleration and position. To extract the walking speed,
the 3D coordinates of the participant’s head were graphed, as shown in Fig. 3b, and
minimum/maximum inflection points in the graph of the X and Y coordinates were
used to determine overall displacement for each lap. This displacement was divided
by the time for each lap (dividing number of frames in a lap by the frame rate) to find
overall displacement.

4 Results

This manuscript focuses on reporting the comparative performance and the dis-
cussion of advantages and benefits for the health informatics community of four
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Fig. 3 Motion tracking suit

non-obtrusive, privacy-preserving wireless technologies for monitoring gait speed:
two radar-based sensors, one infrared thermal camera sensor, and one motion suit. In
the results section, we present the results of our pilot study.

GAITRite The data from the GAITRite mat was processed by identifying each step
in a time series and using each step as a metric for the next. In order to calculate the
distance between steps, it determines the distance traveled from the heel of the first
footstep to the toe of the last footstep. After the first footfall, the system triggers an
internal timer that stops after the last footstep is recorded or when the participant’s
foot leaves the mat. The system uses the distance-time ratio to calculate speed per
segment over the traveled area on the mat. The actual speed used for comparison
against other systems being tested in this study is calculated by averaging all six
walks together for each trial (normal or slow speed). If a walk is considered abnormal,
particularly when the footstep lands too lightly on the mat, an alternative method is
used. This light step leads to a soft footprint that is not recorded properly, skewing
the data, as it results in an abnormally low or high speed (halved or doubled from
the average), or produces an error when trying to compute the related walk. On such
rare occasions, the average of the speeds would omit this walk and use an average of
5 walks rather than 6. These issues were detected in participants 1, 2, and 3 for one
normal walking. The final average speed and corresponding standard deviation for
each participant when measured using the GAITRite mat are presented in Table 1.
The speed distributions are presented in Fig. 4 for slow pace and Fig. 5 for normal
pace.

Wideband Radar In order to collect the data, we ran a Python script from a laptop
(with Python version 3.4 and Walabot API installed) using the Anaconda Command
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Table 1 Average gait speed (m/s) for each participant for the five gait speed estimation technologies

Participant Pace GAITRite Radar 10 GHz Radar 24 GHz FLIR PNAS

1 Normal 1.06 1.02 0.84 0.81 0.62

Slow 0.42 0.46 0.47 0.42 0.43

2 Normal 1.09 1.08 0.87 0.81 0.78

Slow 0.70 0.69 0.68 0.63 0.59

3 Normal 1.03 1.00 0.93 0.75 0.52

Slow 0.62 0.58 0.66 0.55 0.52

4 Normal 1.09 1.05 0.91 0.93 0.90

Slow 0.66 0.62 0.67 0.59 0.60

5 Normal 1.29 1.07 1.11 1.14 1.02

Slow 0.66 0.63 0.73 0.70 0.60

6 Normal 1.36 1.11 1.20 1.08 1.09

Slow 0.64 0.56 0.66 0.55 0.60

7 Normal 0.94 0.81 0.90 0.81 0.69

Slow 0.56 0.50 0.63 0.49 0.30

8 Normal 1.20 1.03 1.08 0.98 0.60

Slow 0.53 0.49 0.58 0.49 0.52

9 Normal 1.25 1.07 1.22 1.09 0.93

Slow 0.43 0.46 0.56 0.45 0.40

10 Normal 1.17 1.02 1.02 1.02 0.92

Slow 0.51 0.47 0.57 0.46 0.49

x̄ Normal 1.15 1.03 1.01 0.94 0.81

Slow 0.57 0.55 0.62 0.53 0.51

σ Normal 0.13 0.08 0.14 0.14 0.19

Slow 0.10 0.08 0.08 0.09 0.10

Fig. 4 Slow speed comparison
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Fig. 5 Normal-speed comparison

Prompt [2]. The script initiated the radar, collecting background data for a few sec-
onds to be used in clutter noise removal before prompting the user to run a participant.
Post-processing was used to subtract the background data (which should not contain
any movement) from the actual data, filtering out the noise from the surroundings.
Then, the relevant part of the signal values fit into a graph plotting distance of the
target with the number of pulses sent, which progresses in value over time. Figure 6
illustrates the trajectory of the moving target, where the further away the target is
from the radar, the weaker the signal is for the reflected pulses. Speed was estimated
using distance and time elapsed for each lap. Post-processing and walking speed esti-
mation were performed using MATLAB scripts [23], which were custom built to
process data from the excel files and produce a graph of the results. The final aver-
age speed and corresponding standard deviation for each participant are presented in
Table 1. The speed distributions are presented in Fig. 4 for slow pace and Fig. 5 for
normal pace.

Fig. 6 Radar data collected from Walabot (10 GHz) after data processing
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The wideband of 6–8-GHz radar was used for tracking the walking human in two
different cases: slow and fast mode. The radar can transmit a temporally short pulse
and recode the echo pulse with one-dimensional range information. To keep track
of the trajectory of every walking response, the one-dimensional range profile was
stacked to visualize the whole procedure. The speed of walking was estimated using
two pieces of information: the stacked range profile where it is based on real-time
measurement and the required time (elapsed time) for light to travel each relative
distance. Each subject walked away from and towards the radar six times with three
turnarounds, and the six-speed information was calculated per every measurement.
The average speed of each mode of walking was obtained by taking the average of
all the measurements related to that mode.

Narrowband Radar The 24-GHz radar operates in a similar approach to the 10-GHz
radar, where the radar is used for range detection of a moving subject. Fast Fourier
Transforms on the range data enable velocity/speed determination. Given the differ-
ent frequencies of operation, along with different achievable bandwidths, each of the
radars would have different capabilities in detection and clutter removal. The 24 GHz
produced the spectrograms shown in Fig. 7, where the six markers represent the six
walking segments. As seen in Fig. 7, the speed expansion (the red area) in the normal
speed spectrogram is much larger than that of the slow speed spectrogram. The neg-
ative marks in the normal-speed (top) spectrogram indicate an acceleration period at
the start of the segment, followed by a plateau (constant speed), then a blank area as

Fig. 7 Spectrograms showing the difference in normal walking and slow walking speeds for 24-GHz radar.
The three upper marks show average positive speeds and three lower marks show average negative speeds,
with positive speed representing the person walking towards the radar and negative speed representing the
person moving away from the radar
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the participant left the radar’s field of view. As for the positive marks, we see a steady
plateau as the participant enters the radar’s field of view, followed by a decelera-
tion period. The spectrogram representing slow walking speeds shows smaller marks
with no apparent speed variations. With these marks, we then extracted the points
with highest intensity values and averaged the frequency shifts represented by these
points. The averaged frequency shift Δf , the base frequency f0, and the light speed
c are used to calculate the walking speed Δv with the Doppler shift formula (2). The
final average speed and corresponding standard deviation for each participant are pre-
sented in Table 1. The speed distributions are presented in Fig. 4 for slow pace and
Fig. 5 for normal pace.

Δv = c
Δf

f0
(2)

Thermal Camera As mentioned in Section 3, when a participant approaches the ther-
mal camera, the number of pixels occupied by the target increases in the acquired
images. Instead of capturing the thermal characteristics of the background, the newly
occupied pixels are now measuring the temperature of the participant. As such, the
sum of pixel intensity values reaches a maximum value when the target is closest to
the thermal camera. Figure 8 illustrates the sum of intensity values over all pixels
for each captured thermal frames of participant 7, when performing normal walking

Fig. 8 Sum of pixel intensity for captured thermal frames: participant 7, normal speed
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speed. We can observe three distinct local maxima (red circles at peaks) that corre-
spond to the three times when the participant was right in front of the thermal camera.
The three green circles (valleys) indicate when the participant is positioned at the
farthest distance from the thermal camera. The top three pictures of Fig. 9 show the
frames associated with the peaks mentioned above. All three thermal frames show-
case the instant in which the participant finished walking towards the sensor and
started walking away from the camera. The same observation can be made using the
three local minima presented in Fig. 8: the three extracted thermal frames (bottom
three pictures of Fig. 9) correspond to the local minima and indicate the moment
when the participant reached the furthest distance from the camera. The final aver-
age speed and corresponding standard deviation for each participant are presented in
Table 1. The speed distributions are presented in Fig. 4 for slow pace and Fig. 5 for
normal pace.

A further observation of Fig. 9 indicates that the local minima are not as easily
identifiable since the ambient thermal background together with the non-target object
can profoundly affect the overall pixel intensity values. Therefore, the local maxima
are leveraged as critical locations to help identify the distance of the target from the
setup. As the thermal camera is capturing frames at a constant frame-per-second rate,
the duration between each local maxima can be estimated using the number of frames
between each peak and the camera’s capture rate. Since the participant travels a fixed
distance between the key locations, the speed of the participant can be estimated with
a simple distance

time ratio.

Motion Tracking Suit The PNAS walking speed estimation used 3D graphed coor-
dinates along with minimum/maximum inflection points to determine overall dis-
placement for each walk. This displacement was divided by the time for each walk
(calculated diving number of frames in a walk by the frame rate) to generate six total
speed measurements. These were averaged to determine the speed of each participant

Fig. 9 Example thermal captures made using the thermal camera
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under both the fast and slow conditions, as shown in Table 1 along with standard devi-
ation. The speed distributions are presented in Fig. 4 for slow and Fig. 5 for normal
walks.

4.1 Summary of Results

On average, the technologies we tested deviated between 7.3 and 10.5% when com-
pared to the GAITRite for slow speed measurements. In regard to normal speeds, the
deviation ranged between 10.1 and 30%; the FLIR and PNAS had greater deviations
at normal speed. Table 2 summarizes the errors, also presenting the values in meters
per second for the sensor type.

4.2 Secondary Analysis

For the ∼7 m for each walk, only 5 m was traversed over the GAITRite mat. There-
fore, only the middle 5 m of walk were captured by the mat while the other systems
collected data for the entire walk, including acceleration and deceleration that were
not recorded by the mat. As the aim of this study is to compare the gait monitor-
ing capabilities of the proposed systems to the GAITRite mat as the gold standard;
a secondary analysis was conducted to control for the acceleration and deceleration
periods at the beginning and end of the round trip. In other words, to compare only
the portion of data from the sensors that aligned with data captured by the GAITRite
mat rather than the entire walk. To achieve this, we cropped the sensor data to isolate
the middle interval that aligned with the data collected from the GAITRite mat. The
final GAITRite-equivalent average speed and corresponding standard deviation for
each participant and each sensor are presented in Table 3. The speed distributions are
presented in Fig. 10 for slow pace and Fig. 11 for normal pace.

10-GHz Radar To simplify the velocity calculation for the GAITRIte portion of the
data, we have invoked the time-frequency (pulsed-based) dual nature of the radar sys-
tem. The technology used in this study is a pulsed radar where the system produces a
pulse repetitively within a specific time gap. This means that as the number of pulses
sent increases, the elapsed time also increases. We scaled the total time in each type

Table 2 Average errors and standard deviations when compared to GAITRite

Error Radar 10 GHz Radar 24 GHz FLIR PNAS

Unit Slow Normal Slow Normal Slow Normal Slow Normal

%
x̄ 7.33 10.11 10.33 12.29 9.48 18.04 10.54 30.08

σ 2.99 6.59 8.53 6.16 4.53 5.8 11.61 12.48

m/s
x̄ 0.04 0.12 0.05 0.14 0.05 0.21 0.07 0.34

σ 0.02 0.09 0.04 0.07 0.03 0.06 0.07 0.13
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Table 3 Average gait speed (m/s) for each participant for the five gait speed estimation technologies using
the secondary analysis that compared data for the GAITRite-equivalent portion of the data

Participant Pace GAITRite Radar 10 GHz Radar 24 GHz FLIR PNAS

1 Normal 1.06 1.23 0.99 1.08 0.82

Slow 0.42 0.42 0.47 0.41 0.44

2 Normal 1.09 1.40 1.11 1.11 1.02

Slow 0.70 0.81 0.68 0.71 0.68

3 Normal 1.03 1.16 1.10 1.04 0.64

Slow 0.62 0.62 0.66 0.60 0.59

4 Normal 1.09 1.13 1.13 1.18 1.13

Slow 0.66 0.68 0.67 0.66 0.71

5 Normal 1.29 1.24 1.23 1.78 1.21

Slow 0.66 0.79 0.73 0.72 0.63

6 Normal 1.36 1.08 1.27 1.61 1.41

Slow 0.64 0.64 0.66 0.60 0.62

7 Normal 0.94 0.81 1.10 0.99 0.92

Slow 0.56 0.63 0.63 0.51 0.57

8 Normal 1.20 1.09 1.24 1.30 0.79

Slow 0.53 0.54 0.58 0.54 0.62

9 Normal 1.25 1.09 1.30 1.61 1.16

Slow 0.43 0.47 0.56 0.42 0.43

10 Normal 1.17 1.16 1.20 1.45 1.19

Slow 0.51 0.53 0.57 0.48 0.57

x̄ Normal 1.15 1.14 1.17 1.31 1.03

Slow 0.57 0.61 0.62 0.56 0.59

σ Normal 0.13 0.15 0.10 0.28 0.23

Slow 0.10 0.13 0.08 0.11 0.09

Fig. 10 Slow speed: secondary analysis for GAITRite-equivalent portion of data
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Fig. 11 Normal speed: secondary analysis for GAITRite-equivalent portion of data

of walk to map against the total number of pulses originally used to convert the axis

units. This conversion enables a straight-forward speed calculation
(
distance
time

)
for each

segment of the Fig. 6 by taking only the middle section of each walk over the mat.
Participants traversed the mat at a constant speed (as verified by our research team),
with the deceleration and acceleration portions happening off the mat. Then, all six
segments were averaged together for each participant and particular interval (normal
or slow walk) and compared to the gold standard. For slow speed, the average error
of the 10-GHz radar dropped from 7.3 to 6.8% while for normal speeds the average
error increased from 10.11 to 12.05%.

24-GHz Radar The traditional deployment of the 24-GHz radar specifies a speed
resolution of 6.5 m/s [17]. However, we have shown that it is possible to use micro-
doppler radar signal processing to probe further in resolution [5]. However, this
approach comes with a limitation in the usable field of view, which was found to
be around 3.5 m range in our trials. As the radar was located 1 m away from the
GAITRite mat, the data captured when the participant was walking on the mat was
approximately 2.5 m. As the participants were walking at a relatively constant speed
on the mat, we selected data points marked by the black bars in Fig. 7 for a secondary
analysis, which isolates constant walking speed for the participant from accelerat-
ing/decelerating data. As seen in Table 4 and Fig. 11, this secondary analysis makes

Table 4 Average errors and standard deviations when compared to GAITRite portion of the data in the
secondary analysis

Error 10-GHz radar 24-GHz radar FLIR PNAS

Unit Slow Normal Slow Normal Slow Normal Slow Normal

% x̄ 6.83 12.05 10.33 5.80 3.52 13.51 5.09 12.51

σ 7.24 8.41 8.53 4.41 3.04 13.15 4.40 13.95

*m/s x̄ 0.04 0.14 0.05 0.06 0.02 0.17 0.03 0.14

σ 0.05 0.10 0.04 0.04 0.02 0.17 0.03 0.15
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the normal-speed estimation more accurate, dropping the average deviation from 12.3
to 5.8%. For slow speeds, Fig. 7 shows that there are no obvious “constant speed”
regions, making the acceleration/deceleration periods much shorter. This means it
is not possible to separate data points that represent the constant speed when the
participant is actually walking on the mat.

Thermal Camera As the first pre-processing step of the analysis, the captured seg-
ments in which the participant was walking off the mat when starting each walk and
when making a 180-degree turnaround are removed from the total duration of the
thermal data. The primary reason for this pre-processing step is that, since acceler-
ation and deceleration were involved in the action of a turnaround, using the entire
duration of the thermal data would not accurately reflect the gait rate. Therefore, it
is necessary to remove these segments to enable consistent gait speed estimation.
Furthermore, the exact time interval when each participant was on the mat was not
recorded during the experiment. To account for this, the gait rate estimation using
thermal data is based on the assumption that it took approximately 2 s after the par-
ticipant reaches the end of each walk to perform the turnaround and resume walking
on the mat. More specifically, the computational method for estimating gait speed
can be described as follows. First, the local maxima and minima with respect to the
sum of pixel intensities of the individual frames are identified, and the time duration
of the walk is calculated using their corresponding frame indices. Next, to approxi-
mate the interval when participant was walking on the mat, we subtract 4 s from the
total time. Finally, the speed is estimated by dividing the length of the mat using time.
This approach reduced the average deviation for slow speeds from 9.4 to 3.5%, and
from 18 to 13% for normal speeds.

Motion Tracking Suit In the secondary analysis for the PNAS, 250 frames (equiva-
lent to 2 s of data) were used to find the velocity of the participant for each walk. The
speed and error was calculated in the same way as for the primary analysis. Compar-
ing the calculated error shown in Tables 2 and 4, there is a significant drop in the
average deviation from 10.5 to 5% for slow speeds and from 30 to 12.5% for normal
speeds. This is likely because while the participant walked out of the field of view
for some portion of the other sensors, the PNAS captured the entirety of all walks,
including turnaround motions, which introduced greater sources of perceived error.

5 Discussion

When comparing Figs. 4, 10, 5, and 11, as well as Tables 2 and 3, it appears there
is difference in the accuracy of the speed calculations. These differences are likely
occurring because the GAITRite is recording steady-state walking speed from the
middle of the walk. As the other sensors recorded most or all of the participants’
walk, including acceleration, deceleration, and turnaround, it is expected that the
sensors would demonstrate a lower performance compared to GAITRite when con-
sidering the whole walk. After the secondary analysis that focused just on data that
aligned with the GAITRite-equivalent portion of participants’ walk, we noted an
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average error lower than 10.3% for all technologies when estimating slow speeds.
For the normal pace, the maximum average error reached 13.5%. Specifically for
the 24-GHz radar, the experiment was limited by the short detection range of the
radar and the adopted micro-doppler scheme. Future versions of the technology could
address this issue and potentially show better accuracy with the same experiment set
up. These results also emphasize (a) the importance of having a minimal distance
between the individual and the sensors to prevent blurring and (b) that the accuracy
of these systems is higher for steady speed measurement than for the acceleration
and deceleration cycles. Therefore, it is important for innovators using this technol-
ogy to consider these limitations when using these technologies. Radar-based sensors
would work well for the measurement of walking speed along a hallway, but would
have limited accuracy to monitor the variations in speed immediately after a person
leaves the bed.

Through the analysis of thermal camera data, we found that the magnitude of
the intensity values and the number of bright pixels representing the target vary sig-
nificantly with distance changes between the target and the camera. By extracting
features for each frame to reflect the intensity and size characteristics, we identi-
fied some critical locations during the movement based on the time series pattern
of the extracted features over all frames. With that, we infer the speed of the move-
ment based on the distance and the time interval between key locations. However, we
perceived that, on average, the speed estimation from thermal frames slightly under-
estimates for 7 out of the 10 slow-pace experiments when compared to the GAITRite
results. It is important to realize that the theoretical limitation of the thermal camera
speed measurement is determined by its own frame rate. That is, given a 15-frame-
per-second capture rate and a walking speed of 1 m/s, the measurement provided by
the thermal camera can be most precise to 0.07 m/s. With additional information,
deep learning–driven approaches could be leveraged to autonomously extract distinct
features from the thermal frames, constructing a more accurate frame displacement
model.

While using the PNAS, the data accuracy varies considerably in comparison with
the ground truth GAITRite mat when considering the entire 7-m path for each walk.
Part of the inaccuracy could be a result of calibration difficulties due to switched
leg sensors for some participants. This setup anomaly may indicate incorrect data,
resulting in skewed speeds for these trials. Besides that, where speed was calcu-
lated accurately, the PNAS tended to result in a lower speed than that yielded by
the GAITRite Mat. As the PNAS was the only sensor that was never “out of range,”
greater discrepancies could be a result from deceleration, acceleration, and turn-
around periods off the mat. This speculation is supported by the drop in error when
we ran the secondary analysis considering only the GAITRite-equivalent of each
walk.

Considering the secondary analysis with better results regarding the deviations
from the GAITRite and comparing to previous research cited in the introduction of
this paper, we see a potential opportunity to apply wireless gait monitoring technolo-
gies to gait speed in home settings for monitoring steady speeds. Our study reached
average errors between 6.8 and 10.3%, particularly for slow speed estimation. The
referenced studies reported accuracy between 80 and 90%, when compared to other
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gold standard methods. This is comparable or better than values reported by other
research groups for other monitoring technologies.

When doing an experiment to compare different systems, one of the biggest chal-
lenges is synchronization. While the sensor systems have timestamping abilities, all
the five systems (including GAITRite) operate independently. A secondary analysis
that selects valid data periods based on global synchronization is therefore diffi-
cult to implement. Additionally, the four systems tested in this study have their own
strengths and shortcomings in detecting gait speed, which impact the optimal time-
frame for gait detection. This resulted in differences in the suitable valid data period
corresponding to optimal performance of different systems. Thus, while the detection
accuracy of each system was not calculated based on exactly the same data, the valid-
ity of system performance is comparable for optimal data capture for each system
type. As the intention is to assess these systems for real-world application, the gait
speed detection algorithm should be optimized based on the features and capabilities
of each different device.

In addition, taking into account the various processes which are required to start
the data capture for each independent system, it becomes difficult to gauge valid peri-
ods for analysis when each system’s strength lies in its own method and timeframe
for data collection. Since each method relies upon different inputs and methods for
initialization, it becomes harder to control the synchronization, where it would be
helpful instead to focus on studying the impact of being able to correlate results taken
in relatively the same timeframe. To encompass each individual system’s differences,
buffer time was placed at the beginning to aid in the synchronization of each test run.
However, based on the goals of the study, having each system accurately capture data
and then using the results to compare against other systems within the same time-
frame are likewise suitable ways to determine the validity of the different devices in
the best approach to confronting synchronization.

Overall, the radar-based sensors showed potential for further analysis in real-world
monitoring applications due to their ease of setup and privacy-assuring approach
for data collection. Radars have shown the most promise in the design of a solu-
tion that enables contextual, in situ monitoring of gait speed and variations, while
preserving user privacy and being a non-obtrusive solution. Particularly, the ultra
wideband radar had an average deviation of only 6.8% when compared to GAITRite.
While the thermal camera also showed little deviation from the mat, it requires
complex processing and could create privacy concerns as it is still possible to iden-
tify silhouettes in the thermal imaging. This poses some concerns of in-home use
in private residences, but still provides a solid method for monitoring gait speeds
in public settings as the common areas of retirement homes. The PNAS was the
most complex system to setup, tune, and process with the greatest variation in
speed distributions. While complex to use, the PNAS would be an ideal solution
for naturalistic studies in which gait speed needs to be measured in multiple differ-
ent locations. The scope of this study, in its first stage, was to estimate gait speed
and future work will explore how this method compares to video or marker-based
systems. Our results demonstrate that these technologies are all sensitive to accelera-
tion/deceleration, providing an opportunity implement other applications, such as fall
detection.
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6 Conclusion

This study presents a comparative analysis of unobtrusive sensor-based technolo-
gies that might be used for in-home walking speed monitoring. While this study is
exploratory in nature, the results indicate that radar- and thermal-based systems could
be used for monitoring gait as they can detect walking speeds that includes levels
used as a clinical indication of frailty, while providing fairly accurate estimates of
gait speed. Future research should examine the applicability of the suggested systems
in real home environments as well as use with multiple people. The technologies
reviewed in this paper provide ideal tools for naturalistic monitoring of gait speed,
allowing patients to be monitored outside of the controlled environment of a medi-
cal clinic. Technologies as described in this paper have the potential to prevent falls,
monitor the deterioration of physical and cognitive state, and empower seniors to live
independently in the community.
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