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near-threshold fatigue crack 
propagation without oxide-induced 
crack closure
Koki tazoe1 ✉, Hiroto tanaka1, Masanori oka1 & Genki Yagawa2

An accurate value for the threshold stress intensity factor range, ΔKth, is a key parameter for studying 
crack-like defects. However, it is difficult to obtain accurate ΔKth values due to oxide-induced crack 
closure. In this study, we report conditions for minimizing the effects of oxide-induced crack closure 
near the threshold region, where a concave curve of the effect on the loading frequency on oxide-
induced crack closure is achieved. the resulting conditions allow for an accurate determination of ΔKth, 
which is a key material parameter relating to the pertinent loading ratio.

Almost all the mechanical structures are exposed to cyclic loading, which means that it is important to esti-
mate the fatigue strength of mechanical structures to ensure safe operation. It is also well known that obtaining 
an accurate value for the threshold stress intensity factor range, ΔKth, is necessary for studying fatigue related 
problems.

ΔKth is typically obtained via the ΔK-decreasing test based on ASTM E647 standard1, that the force 
is controlled to decrease step-by-step as the crack grows in the fatigue test, which is known to be affected by 
plasticity-induced2–7, roughness-induced2,8–12 and oxide-induced crack closures2,4,5,7,11,13–31. Among these types 
of crack closures, the roughness-induced closure is thought to be a material property because the roughness of 
the fracture surface is related to the microstructure of the material10. In contrast, the plasticity-induced and the 
oxide-induced closures are considered to be dependent on the testing conditions2–5,11,13–28. In order to obtain an 
accurate ΔKth value, these types of closures should be minimized.

Many studies have been performed on the plasticity-induced closure32–35 and have been summarized in 
the ASTM standard1. The oxide-induced closure has also been studied in order to discuss the effects of various 
parameters2,4,5,11,13–31. However, to the best of our knowledge, there have been no studies on the conditions that are 
necessary to minimize the oxide-induced closure at a low stress ratio when tested in air.

According previous studies, it is considered that the large amount of oxides is generated on fracture surfaces 
by fretting oxidation18, causing the closure effect due to pushing up the crack closing point2. Regarding the causes 
for the oxidation, the humidity19,29 and the loading frequency15,22,27,30 are important factors.

Since high-moisture conditions accelerate oxidation, a low-humidity condition is recommended to mini-
mize the oxide-induced closure. The effects of the loading frequency on the oxide-induced closure were studied 
by Bignonnet et al.22, who found that the magnitude of the closure in a structural steel at 7 Hz is smaller than that 
at 65 Hz. Todd et al30. also reported a similar trend based on results from a MIL-S-24645 base metal. Conversely, 
Radon36 reported that the ΔKth of an aluminium alloy tested at a high frequency tends to be smaller than that at a 
low frequency based on test results at 35 and 0.15 Hz. Skelton and Haigh15 also reported the same tendency based 
on results from a Cr-Mo-V steel at a high temperature and 10 to 0.01 Hz conditions. These studies, although they 
are contradictory, clearly show that the loading frequency significantly affects the oxide-induced closure.

On the other hand, Tazoe et al37. reported that no oxides can be clearly observed on the near-threshold frac-
ture surface of a low alloy steel tested at 5 Hz in air. In contrast, Suresh et al20. reported that for a similar material 
tested at 50 Hz that the oxides can clearly be observed on the fracture surface. In addition, Tkach and Lenets27 
tested a similar material with ΔK = 9 MPa m1/2 reporting that the clear oxides are observed on the fracture sur-
faces when tested at 15 Hz and 7.5 Hz but not at 0.15 Hz. Accordingly, we could create a hypothesis that the oxi-
dation is minimal near 5 Hz.

To investigate the validity of the hypothesis and to study if the same hypothesis is applicable to other iron-based 
structural materials, the ΔK-decreasing tests1 for three different iron-based materials were carried out.
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Results
Observation of macroscopic fracture surfaces. Figure 1 shows the macroscopic fracture surfaces of a 
low alloy steel (JIS-SCM440), a carbon steel (JIS-S50C) and cast iron. As seen in Fig. 1, the cracks propagate from 
the bottom to the top and the final crack-front lines, where ΔK = ΔKth, are indicated by triangles.

In the case of the low alloy steel, at 20 Hz (see Fig. 1a), the oxides, which are the debris with diameters of 
0.1 mm, are distributed near the centre of the fracture surface. Additionally, the belt-like oxides can be observed 
across the whole fracture surface. At 10 Hz (see Fig. 1b), the oxide debris can still be seen, but a smaller amount 
is present than was seen at 20 Hz. In contrast, at 5 and 3 Hz (see Fig. 1c–e, respectively), no oxides are observed, 
and this result does not depend on the specimen thickness. Therefore, these results clearly show that decreasing 
the loading frequency decreases the amount of oxides on the fracture surface, and the clearly observable oxides 
disappear at approximately 5 Hz.

In the case of the carbon steel, at 10 Hz (see Fig. 1f) the oxides can clearly be seen at the centre of the fracture 
surface in larger quantities than was observed in the low alloy steel. At 5 Hz (see Fig. 1g) no oxides are observed, 
which is similar to the low alloy steel.

In case of the cast iron, it is difficult to find any oxides or crack-front shapes on the macroscopic fracture 
surface (see Fig. 1h). In the next subsection, the crack-front lines were analysed in detail by scanning electron 
microscope (SEM) before energy-dispersive X-ray spectrometry (EDX) analysis was performed.

eDX analysis. Figure 2 shows the EDX analysis results of the fracture surfaces of the low alloy steel and 
the carbon steel shown above. The analysed areas were approximately 0.6 mm in the direction of the specimen 
thickness and 0.3 mm in the direction of the crack propagation near the crack-front region (see Fig. 1). For each 
fracture surface, a few areas near the centre region were analysed and the representative histograms are shown in 
the figure.

For the low alloy steel, a clear oxygen peak is present for both the 20 and 10 Hz samples (see Fig. 2a and b, 
respectively), and the oxides can clearly be seen. In contrast, no oxygen peak was detected for the 5 or 3 Hz sam-
ples (see Fig. 2c and d, respectively).

Similarly, for the carbon steel, a clear oxygen peak was detected for the 10 Hz sample, and the oxides are 
visible, but no oxygen peak was detected for the 5 Hz sample (see Fig. 2e and f for the data at 10 Hz and 5 Hz, 
respectively).

Figure 3 shows SEM images and the EDX analysis results for the cast iron. Figure 3a–c show the fracture 
surfaces near the crack-front area in the centre region of Fig. 1h. Crack-front lines are visible at the border of the 
brittle region (see Fig. 3b) and the fatigue (see Fig. 3c) fracture surfaces. Furthermore, for the 20 Hz sample the 
clear oxides are present on the near threshold region (see Fig. 3c and d, respectively).

A clear oxygen peak is present for the 20 Hz cast iron sample (see Fig. 3e), and a small peak is also observed 
for the 10 Hz sample (see Fig. 3f). Similar to the results from the other materials, no oxygen peak was detected for 
the 5 Hz sample (see Fig. 3g).

Figure 1. Macroscopic fracture surfaces. Low alloy steel tested at (a) 20 Hz, (b) 10 Hz, (c) 5 Hz, (d) 3 Hz and (e) 
5 Hz. Carbon steel tested at (f) 10 Hz and (g) 5 Hz. Cast iron tested at (h) 20 Hz.
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As shown in the above figures, no oxides were detected by EDX for the fracture surfaces of any of the samples 
tested at 5 and 3 Hz. It is believed that new fracture surfaces created during fatigue tests in air should be oxidized 
immediately, however, as the macroscopic fracture surfaces show, natural oxides are only observed in very low 
quantity. Thus, they were not detectable by EDX.

fatigue crack propagation. According to the above results, excess oxides were not present on the frac-
ture surfaces when the samples were tested at approximately 5 Hz, and the same trend was observed in all the 
tested materials. Therefore, in this subsection the threshold phenomenon without the presence of excess oxides 
is discussed.

Figure 4a shows the relationship between the fatigue crack growth rate, da/dN, and ΔK for the low alloy steel. 
For the 20 and 10 Hz samples, i.e., the conditions that clearly produce the oxides, da/dN decreases significantly 
at 9.0 and 5.4 MPa m1/2, and the threshold behaviour appears at 7.1 and 5.0 MPa m1/2, respectively. On the other 
hand, for the 5 Hz and 3 Hz samples, i.e., the conditions without the oxides, da/dN is almost the same across the 
whole ΔK region, and the threshold behaviour appears at almost the same ΔK value (4.6 MPa m1/2).

Figure 4a also shows that two samples with different thicknesses (12.7 and 6 mm) have almost the same da/dN 
curves and the same threshold behaviour. Past studies have reported that the threshold behaviour is affected by the 
specimen thickness due to differences in the oxide-induced closure26,31. However, in the present conditions without 
the presence of excess oxides, the difference in behaviour for the 12.7 and 6 mm low alloy steels clearly disappears.

Figure 4b shows the results for the cast iron samples. At 20 Hz, the oxides are clearly visible and the threshold 
behaviour appears at 9.0 MPa m1/2. For the 10 Hz and 5 Hz samples where the oxides are only present in small 
amounts or not at all, the da/dN values show nearly the same results, and the same threshold behaviours appear 
at ΔK = 8.0 MPa m1/2.

Based on these results, the use of a loading frequency of approximately 5 Hz for the above iron-based materials does 
not induce the oxide-induced closure and produces thresholds equivalent to the material properties under the same 
loading ratio. The above results also suggest the possibility that other iron-based materials have similar properties.

Discussion
The above results show that the amount of oxides on the fracture surfaces of iron-based materials can be reduced 
by decreasing the loading frequency, and the oxides disappear completely at approximately 5 Hz. Based on the 
above findings, it is necessary to discuss the mechanism behind the disappearance of the oxides and the effect of 
the loading frequency has on this mechanism in relation to the results of past studies.

According to previous studies, the main cause of the oxide-induced closure is fretting oxidation due to frac-
ture surfaces smashing into each other18. Therefore, it is reasonable to think that the mechanism behind the 
disappearance of the oxides is related to the mechanism of fretting oxidation.

Schematics that show fracture surfaces smashing into one another are shown in Fig. 5. During the process 
of unloading in a fatigue cycle, the gap between the fracture surfaces decreases and the fracture surfaces make 
contact due to the roughness-induced closure2,8–12 and the fracture surfaces start grinding against each other. 
Minakawa and McEvily9 emphasized that this smashing model contains mode II loading. However, according 
to in situ observations using atomic force microscopy made by Oda et al.38,39, Sugeta et al40. and Jono et al.41, the 
fracture surfaces are offset in the direction of the crack propagation during glide plane decohesion42 under mode 
I loading. In addition, Tomlinson et al43. reported that fretting could occur due to a short slip distance, such as a 

Figure 2. EDX analysis results of the low alloy steel and the carbon steel samples. (a) crack-front area of Fig. 1a, 
(b) the area of Fig. 1b, (c) the area of Fig. 1c, (d) the area of Fig. 1d, (e) the area of Fig. 1f and (f) the area of 
Fig. 1g.
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Figure 3. SEM images and EDX analysis results of the cast iron sample. (a) crack-front area of Fig. 1h. (b and 
c) detailed images of a. (d) distribution of oxygen in c. (e) EDX analysis result of crack-front area tested at 20 Hz 
(shown in Fig. 1h), (f) 10 Hz and (g) 5 Hz.

Figure 4. Relationships between da/dN and ΔK. (a) low alloy steel and (b) cast iron.
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few nanometres. Therefore, it is thought that the models shown in Fig. 5 are also valid for mode I loading. Next, 
the mechanism of the disappearance of the oxides is discussed in relation to the smashing model.

The quantity of heat generated during a fatigue cycle due to the friction between the fracture surfaces, Qcy, is 
calculated as follows:

δ≈Q F (1)cy

where F and δ are the friction force and the distance of the slip on the surfaces, respectively. Here, F is calculated 
as follows:

μ≈F P (2)

where μ and P are the coefficient of friction and the vertical force on the fracture surfaces, respectively. For the 
above equations, the characteristics of the fracture surfaces are related to the microstructures of the materials;10 in 
other words, μ and δ are considered material properties. In addition, P is related to the amount of plasticity-induced 
closure2–7, which means P is related to the yield stress and the Young’s modulus. Therefore, under the same loading 
conditions, P is also considered a material property. Accordingly, Qcy must then also be a material property, and the 
quantity of heat released in a unit of time, Qut, should be proportional to the loading frequency f as follows:

≈Q Q f (3)ut cy

Consequently, reducing f, which is a reduction of Qut, is the main cause behind the disappearance of the 
oxides. Furthermore, it is assumed that the difference in the magnitude of oxidation of the low alloy steel and the 
carbon steel is caused by differences in the materials’ properties, such as δ and P.

If the above hypotheses are correct, an increase in the other fretting parameters would create the oxides at the 
5 Hz condition. To verify the above hypotheses, an additional ΔK-decreasing test was carried out with the low 
alloy steel at the 5 Hz condition. In this additional test, a small amount of mode III loading was added by twisting 
the positions of the loading pins. Due to this twisting, δ was specifically increased.

Figure 6 shows the macroscopic fracture surface of this tested specimen. As shown in the figure, the belt-like 
oxides are clearly visible at the centre of the fracture surface. Moreover, the crack-front shape is slightly concave, 
which indicates that the oxides are likely inducing closure in that location. Therefore, increasing the above fretting 
parameters creates oxides, and the amount of oxides produced is strongly related to Qut.

Furthermore, it is thought that a decrease in Qut indicates a decrease in the temperature of the fracture sur-
face. Benoit et al18. observed a crack tip in a stainless steel by thermography and reported that a large amount of 
thermal flux, which is equivalent to 423 K or more, was not detected. Loos and Brotzen44 reported the same result. 
However, as suggested by Tkach and Lenets27, temperature increases due to the smashing of the fracture surfaces 
might occur locally. Moreover, as shown in Fig. 1a,b, f and  3c, d, the oxides, at the centre of the specimen thick-
ness also suggest that local heating might occur there. However, it is difficult to observe such local temperatures 

Figure 5. Schematics of smashing fracture surfaces. Schematics of (a) crack opening, (b) contacting and (c) 
closing.

Figure 6. The macroscopic fracture surface of the additional test sample.
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in detail, especially in the centre of the specimen thickness, with contemporary techniques. We hope that techno-
logical advances will enable us to elucidate these phenomena in the future.

In contrast to the results of this study, some past reports have shown that the magnitude of oxide-induced clo-
sure increases by decreasing the loading frequency15,36. For example, Radon36 tested an aluminium alloy at several 
loading frequency conditions (35 and 0.15 Hz) and reported that the ΔKth at low frequencies is higher than that 
at high frequencies. In addition, Skelton and Haigh15 reported the same result for a cast Cr-Mo-V steel at high 
temperature condition (823 K). However, they did not discuss the mechanisms of those processes15,36.

In the case of an extremely low loading frequency (0.01 Hz or less), it is assumed that the fracture surfaces are 
exposed to air for a long period of time; therefore, oxidation might be enhanced, especially in high oxidation rate 
conditions as moist, high temperature and other conditions. Therefore, at an extremely low loading frequency, a 
higher frequency may be beneficial for decreasing the oxide-induced closure.

On the other hand, Todd et al30. reported that the ΔKth of MIL-S-24645 steel obtained at 0.2 Hz is lower than 
that at 10 Hz, and the two reports by Todd et al30. and Radon36 contradict each other. Differences in the properties 
of the materials used in these studies (easy to oxidize or not) or in the testing environments (moist or not) may 
have occurred, leading to the contradictory results. Therefore, it is thought that both findings (that low frequen-
cies can be beneficial for avoiding the oxide-induced closure22,27,30 or not beneficial15,36) are true depending on the 
testing conditions. However, these past studies missed that the curve of the effect of the loading frequency on the 
oxide-induced closure is concave, as shown in Fig. 7.

The effect of the loading frequency on oxide-induced crack closure is summarized in Fig. 7. Most notably, the 
curve is concave, which means that oxide-induced crack closure is negligible got that condition. In addition, the 
results from the three different materials in this study suggest that almost all steels and cast irons might have an 
ideal condition, meaning that the ideal condition consists of an upper frequency of approximately 5 Hz where the 
effects of oxide-induced crack closure are minimized.

conclusions
In this study, the conditions necessary to minimize oxide-induced crack closure in the near threshold region were 
found using the ΔK-decreasing tests for a low alloy steel, a carbon steel, and cast iron under varying loading conditions. 
The results for the three different materials suggest that other iron-based materials also have the same conditions.

Furthermore, it was confirmed that the testing conditions determines the shape of the crack-front line near the 
threshold region and can be influenced by controllable parameters such as plasticity-induced crack closure and 
the residual stress of the specimen. Thus, we could realize the very small and ideal surface defects employing the 
pre-cracked specimen with a reproducible crack front shape in the near threshold region.

Methods
Materials and specimen. The materials used in the present study were a low alloy steel (JIS-SCM440), a 
carbon steel (JIS-S50C) and cast iron. The chemical compositions are shown in Table 1. The micro-structures of 
these samples are martensite, ferrite/pearlite and flake graphite with ferrite/pearlite, respectively. The Vickers 
hardness (2 kgf/30 sec) of the low alloy steel and the carbon steel are 437 and 195, respectively. The Brinell hard-
ness (735 kgf / Φ 5 mm) of the cast iron is 219. These materials were chosen because they have different character-
istics and because they are the most popular materials used for mechanical structures.

In order to study the effect of the thickness of specimen on the test results, we used two compact tension (CT) 
specimens1 with the width W = 50.8 mm, one with the thicknesses B = 12.7 mm and the other 6 mm. To decrease 
the effect of the residual stress on the test results, the specimens were machined using the wire electric discharge 
machining and the surfaces were finished by polishing. To avoid the pre-crack surface to be exposed to air for a 
long period of time, the specimens were pre-cracked just before the testing.

fatigue crack growth testing. The tests were carried out using the electrohydraulic servo fatigue testing 
machine. The stress ratio was 0.1. To exclude the frequency effect on the plastic deformation near the crack tip, 
the sinusoidal wave was employed.

Figure 7. Summary of the effects of loading frequency on oxide induced crack closure.
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The loading frequencies were chosen to be 20, 10, 5 and 3 Hz. The reasons why they were employed were as 
follows, 20 Hz: the upper limit of our testing system, 10 Hz: for comparison with the result of Tokaji et al.26, 5 Hz: 
for comparison with the result of Tazoe et al.37, and 3 Hz: the lower limit due to the allowance of testing time.

To minimize the effects of the plasticity-induced crack closures on the test results, the ΔK-decreasing condi-
tions based on ASTM standards1 were employed. During the tests, the crack lengths, a, were measured using the 
compliance method with a clip gage (MTS 632.03F-30) and the K value was calculated as follows,

K P
B W

(2 )
(1 )

(0 886 4 64 13 32 14 72 5 6 )
(4)

load
3/2

2 3 4α
α

α α α α=
+

−
. + . − . + . − .

where Pload is the fatigue load, α = a/W, and the normalized K-gradient, C = (1/K)(dK/da), is kept larger than 
−0.08 mm−1.

The environment of the testing room was controlled by a gas heat pump system and the temperature and 
humidity were set to be approximately 298 K and less than 30%, respectively.

To analyse the fracture surface, the tested specimens were soaked in liquid nitrogen and broken along the 
loading direction. The broken specimens were soaked in isopropyl alcohol (99.7%) immediately and warmed to 
room temperature without dew condensation.

Equipment and settings. The macroscopic fracture surfaces (shown in Figs. 1 and 6) are observed by opti-
cal microscope. The magnification was 20. The EDX analysis (shown in Figs. 2 and 3d–g) was carried out using a 
Horiba-Oxford EMAX-EX series detector. The accelerating voltage of SEM was 15 kV. The SEM images (shown in 
Fig. 3a–c) are also captured with the accelerating voltage of 15 kV.
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