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Background: Intrahepatic cholangiocarcinoma (ICC) is the second most common primary
liver cancer with increasing incidence in the last decades. Microvascular invasion (MVI) is a
poor prognostic factor for patients with ICC, which correlates early recurrence and poor
prognosis, and it can affect the selection of personalized therapeutic regime.

Purpose: This study aimed to develop and validate a radiomics-based nomogram for
predicting MVI in ICC patients preoperatively.

Methods: A total of 163 pathologically confirmed ICC patients (training cohort: n = 130;
validation cohort: n = 33) with postoperative Ga-DTPA-enhanced MR examination were
enrolled, and a time-independent test cohort (n = 24) was collected for external validation.
Univariate andmultivariate analyses were used to determine the independent predictors of
MVI status, which were then incorporated into the MVI prediction nomogram. Least
absolute shrinkage and selection operator logistic regression was performed to select
optimal features and construct radiomics models. The prediction performances of models
were assessed by receiver operating characteristic (ROC) curve analysis. The
performance of the MVI prediction nomogram was evaluated by its calibration,
discrimination, and clinical utility.

Results: Larger tumor size (p = 0.003) and intrahepatic duct dilatation (p = 0.002) are
independent predictors of MVI. The final radiomics model shows desirable and stable
prediction performance in the training cohort (AUC = 0.950), validation cohort (AUC =
0.883), and test cohort (AUC = 0.812). The MVI prediction nomogram incorporates tumor
size, intrahepatic duct dilatation, and the final radiomics model and achieves excellent
predictive efficacy in training cohort (AUC = 0.953), validation cohort (AUC = 0.861), and
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test cohort (AUC = 0.819), fitting well in calibration curves (p > 0.05). Decision curve and
clinical impact curve further confirm the clinical usefulness of the nomogram.

Conclusion: The nomogram incorporating tumor size, intrahepatic duct dilatation, and
the final radiomics model is a potential biomarker for preoperative prediction of the MVI
status in ICC patients.
Keywords: intrahepatic cholangiocarcinoma, microvascular invasion, prognosis, magnetic resonance imaging,
radiomics, nomogram
1 INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) is the second most
common primary liver cancer and accounts for 10%–15% of all
cases, which arises from cholangiocytes of intrahepatic bile ducts
or bile ductules (1–3). ICC has three predominant macroscopic
growth patterns: mass-forming type, periductal infiltrating type,
and intraductal papillary type (4). Several studies have reported
increasing incidence of ICC in the last decades (5, 6) and the 5-
year survival rate is still lower than 10% (7). At present,
hepatectomy is still the most effective treatment for long-term
survival of ICC patients (8, 9), and several poor prognostic
factors have been reported, including lymph node metastasis,
microvascular invasion (MVI), tumor size ≥5 cm, and multiple
nodules (10).

MVI is an important histopathological feature and refers to
the cancer cell nest in vessels of the surrounding hepatic tissue
lined with endothelial cells (11). As a poor prognostic factor,
MVI correlates early recurrence and poor outcomes and is an
independent factor for overall survival in ICC patients (12, 13).
However, the status of MVI is difficult to detect by radiographic
images and can only be determined by histological evaluation
after hepatectomy (14). In addition, MVI can affect the selection
of personalized therapeutic regime, for instance, ICC patients
without MVI do not need to receive adjuvant chemotherapy after
R0 resections (10). Herein, the preoperative determination of
MVI status is of great value in ICC patients, and it holds
promises for effective patient management and estimation
of outcomes.

Radiomics is a powerful and sophisticated image mining tool,
and it can improve diagnostic accuracy and predict prognosis by
high-throughput selecting imaging features from medical images
(15). Also, several studies have constructed radiomics-based
nomogram in distinguishing different pathological types of
primary liver cancer (16) and predicting MVI of hepatocellular
carcinoma preoperatively (17, 18). Recently, radiomics
nomograms have been established for the prediction of lymph
node metastasis (19), early recurrence (20), and prognosis after
hepatectomy (21) in ICC patients. For MVI prediction of ICC,
Zhou et al. showed the promise of seven wavelet features
extracted from preoperative dynamic contrast-enhanced (DCE)
MR images with an area under curve (AUC) of 0.873 (22).

In the present study, we focused on mass-forming ICCs and
aimed to develop and validate a radiomics nomogram
integrating clinical, imaging, and radiomics features for
preoperative prediction of MVI in ICC. In order to verify the
2

accuracy, the radiomics nomogram will be further validated by a
test cohort.
2 MATERIALS AND METHODS

2.1 Patients
Zhongshan Hospital, Fudan University, and Xuzhou Central
Hospital ethics committees approved this retrospective study,
and patient informed consent was waived. Between June 2015
and June 2019, 163 pathologically confirmed ICC patients (118
men and 45 women; 60.48 ± 11.42 years) after hepatectomy with
postoperative Ga-DTPA-enhanced MRI examination from
Zhongshan Hospital were enrolled by the following inclusion
criteria (Figure 1): (a) without previous history of liver cancer
treatment (including hepatectomy, transcatheter arterial
chemoembolization, radiofrequency ablation, chemotherapy,
radiotherapy, and immunosuppressive therapy); (b) single
mass-forming type ICC with the longest diameter ≥1.0 cm,
and without macrovascular invasion and lymphatic metastasis;
FIGURE 1 | Study flowchart of the enrolled patients.
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(c) complete histopathologic description of ICC; (d) MRI
scanned within 30 days before surgery; (e) sufficient MR image
quality satisfied the diagnostic criteria. All enrolled patients from
June 2015 to June 2019 were divided into training cohort (n =
130, 38 MVI positive and 92 MVI negative) and validation
cohort (n = 33, 10 MVI positive and 23 MVI negative) in a
ratio of 8:2. Importantly, between July 2019 and October 2021, a
time-independent test cohort (n = 24, 12 MVI positive and 12
Frontiers in Oncology | www.frontiersin.org 3
MVI negative) from Zhongshan Hospital and Xuzhou Central
Hospital was collected for external validation (Supplementary
Table S1).

2.2 Laboratory Tests and Histopathology
Demographic and preoperative laboratory indexes (Table 1)
including serum alpha-fetoprotein (AFP), carcinoembryonic
antigen (CEA), carbohydrate antigen 19-9 (CA199), hepatitis B
TABLE 1 | Comparison of MVI status and clinicoradiologic characteristics in ICC patients of training and validation cohorts.

Characteristics Training cohort (n = 130) Validation cohort (n = 33) p-Inter

MVI (−), (n = 92) MVI (+), (n = 38) p-Intra MVI (−), (n = 23) MVI (+), (n = 10) p-Intra

Clinical features
Age (years)a 60.05 (11.72) 61.21 (10.32) 0.598 60.91 (11.92) 60.70 (12.91) 0.964 0.838
Gender 0.920 0.444 0.698

Female 25 (27.2) 10 (26.3) 6 (26.1) 4 (40.0)
Male 67 (72.8) 28 (73.7) 17 (73.9) 6 (60.0)

HBV 0.541 0.707 0.535
Negative 49 (53.3) 18 (47.4) 14 (60.9) 5 (50.0)
Positive 43 (46.7) 20 (52.6) 9 (39.1) 5 (50.0)

AFP 0.808 1.000 0.930
<20 ng/ml 79 (85.9) 32 (84.2) 20 (87.0) 9 (90.0)
≥20 ng/ml 13 (14.1) 6 (15.8) 3 (13.0) 1 (10.0)

CEA 0.031 1.000 0.641
<5 ng/ml 80 (87.0) 27 (71.1) 18 (78.3) 8 (80.0)
≥ 5ng/ml 12 (13.0) 11 (28.9) 5 (21.7) 2 (20.0)

CA199 0.028 0.707 0.946
<34 U/ml 58 (63.0) 16 (42.1) 14 (60.9) 5 (50.0)
≥34 U/ml 34 (37.0) 22 (57.9) 9 (39.1) 5 (50.0)

Edmondson-Steiner grade 0.017 0.109 0.777
I–II 34 (37.0) 6 (15.8) 10 (43.5) 1 (10.0)
III–IV 58 (63.0) 32 (84.2) 13 (56.5) 9 (90.0)

MR imaging features
Tumor size (mm)a 40.92 (21.66) 59.93 (26.55) <0.001 42.70 (21.79) 46.34 (19.53) 0.653 0.568
Tumor morphology 0.168 0.279 0.713

(Hemi-)spherical and oval 40 (43.5) 10 (26.3) 12 (52.2) 3 (30.0)
Lobulated 36 (39.1) 18 (47.4) 7 (30.4) 6 (60.0)
Irregular 16 (17.4) 10 (26.3) 4 (17.4) 1 (10.0)

SI on T1WI 0.236 1.000 0.693
Low 91 (98.9) 36 (94.7) 22 (95.7) 10 (100.0)
Moderate 1 (1.1) 1 (2.6) 1 (4.3) 0 (0.0)
High 0 (0.0) 1 (2.6) 0 (0.0) 0 (0.0)

SI on T2WI-FS 0.699 1.000 0.474
Low 1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0)
Moderate 2 (2.2) 1 (2.6) 2 (8.7) 0 (0.0)
High 89 (96.7) 37 (97.4) 21 (91.3) 10 (100.0)

Target sign on T2WI-FS 0.560 0.444 0.583
Negative 58 (63.0) 26 (68.4) 17 (73.9) 6 (60.0)
Positive 34 (37.0) 12 (31.6) 6 (26.1) 4 (40.0)

Target sign on DWI 0.552 0.707 0.701
Negative 48 (52.2) 22 (57.9) 14 (60.9) 5 (50.0)
Positive 44 (47.8) 16 (42.1) 9 (39.1) 5 (50.0)

Rim enhancement on AP 0.735 0.673 0.522
Negative 17 (18.5) 8 (21.1) 5 (21.7) 3 (30.0)
Positive 75 (81.5) 30 (78.9) 18 (78.3) 7 (70.0)

Complete rim on AP 0.288 0.378 0.580
Negative 29 (38.7) 15 (50.0) 10 (55.6) 2 (28.6)
Positive 46 (61.3) 15 (50.0) 8 (44.4) 5 (71.4)

Enhancement pattern 0.423 0.195 0.376
Gradual and filling 70 (76.1) 29 (76.3) 14 (60.9) 8 (80.0)
Arterial and persistent 13 (14.1) 3 (7.9) 4 (17.4) 0 (0.00)

(Continued)
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virus (HBV), and HBV-DNA loads were collected from our
electronic medical records system. ICC specimens were sampled
using 7-point baseline sampling protocol (11). Pathological
characteristics including tumor number, Edmondson-Steiner
grade, and MVI status were assessed in consensus by two
experienced abdominal pathologists. MVI was defined as the
presence of tumor cell nest (the number of suspended tumor cell
more than 50) in the portal vein, hepatic vein, or large capsular
vessel of the surrounding hepatic tissue that was only visible by
microscopy (11, 23).

2.3 Gd-DTPA MR Imaging
All patients underwent MR imaging with intravenous injection of
0.2 mmol/kg gadopentetate dimeglumine (Gd-DTPA; Bayer
HealthCare, Berlin, Germany) and immediately followed by a 20-
ml saline flush at a speed of 2 ml/s. Taking Magnetom Aera 1.5T
scanner (Siemens Healthcare, Erlangen, Germany) as an example,
imaging sequences included axial T2-weighted imaging with fat
suppression (T2WI-FS), diffusion-weighted imaging (DWI), in-
phase and opposed-phase T1-weighted imaging (IP-OP T1WI),
axial precontrast three-dimensional volumetric-interpolated breath-
hold examination T1-weighted imaging (3D-VIBE T1WI) with fat
suppression, and postcontrast dynamic-enhanced 3D-VIBE-T1WI
at arterial phase (AP, 20–30 s), portal venous phase (PVP, 60–70 s),
and delayed phase (DP, 180 s). Detailed parameters of each
acquisition sequence are shown in Supplementary Table S2.

2.4 MR Images Analysis
All MR images were reviewed independently on a picture
archiving and communication system (PACS; Pathspeed, GE
Medical Systems Integrated Imaging Solutions, Chicago, IL,
Frontiers in Oncology | www.frontiersin.org 4
USA) by 2 experienced abdominal radiologists (XM and XL
with 10 and 15 years of experience, respectively). Both
radiologists were blinded to all demographic, clinical, laboratory,
and histopathologic information. If any discrepancies occurred, a
consensus was reached after discussion. The following imaging
features were assessed by 2 abdominal radiologists: (a) tumor size,
defined as the maximum diameter on transverse T1WI image; (b)
tumor morphology, including spherical/hemispherical/oval,
lobulated and irregular; (c) signal intensity on T1WI, T2WI-FS,
and DWI, including hypointense, isointense, and hyperintense; (d)
target sign on T2WI-FS and DWI, defined as peripheral
hyperintense with central isointense/hypointense (24); (e) rim
enhancement on AP, defined as peripheral enhancement of the
lesion on AP, including complete and incomplete rim; (f)
enhancement pattern, including gradual and filling, arterial and
persistent, and wash-in and wash-out enhancement; (g) the liver
imaging reporting and data system (LI-RADS), defined as LR
category based on LI-RADSv2018 (25); (h) intrahepatic duct
dilatation, defined as intrahepatic duct dilatation within or
outside of the lesion; (i) hepatic capsular retraction, defined as
retraction of hepatic capsular adjacent to the lesion; (j) visible
vessel penetration, defined as the presence of penetrating vessels in
the lesion, including hepatic artery, portal vein, and hepatic vein
(26); and (k) peripherally hepatic enhancement, defined as
enhancement of liver parenchyma around the lesion on any phase.

2.5 Radiomics Analysis
2.5.1 Workflow
The workflow of the radiomics analysis included tumor
segmentation, feature extraction, feature selection, model
construction, model analysis, and evaluation (Figure 2).
TABLE 1 | Continued

Characteristics Training cohort (n = 130) Validation cohort (n = 33) p-Inter

MVI (−), (n = 92) MVI (+), (n = 38) p-Intra MVI (−), (n = 23) MVI (+), (n = 10) p-Intra

Wash-in and wash-out 9 (9.8) 6 (15.8) 5 (21.7) 2 (20.0)
LI-RADS 0.087 1.000 0.242
LR-3 1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0)
LR-4 5 (5.4) 0 (0.0) 0 (0.0) 0 (0.0)
LR-5 4 (4.3) 4 (10.5) 4 (17.4) 1 (10.0)
LR-M 82 (89.1) 33 (86.8) 19 (82.6) 9 (90.0)
LR-TIV 0 (0.0) 1 (2.6) 0 (0.0) 0 (0.0)

Intrahepatic duct dilatation <0.001 0.686 0.114
Negative 64 (69.6) 11 (28.9) 16 (69.6) 8 (80.0)
Positive 28 (30.4) 27 (71.1) 7 (30.4) 2 (20.0)

Hepatic capsular retraction 0.806 0.139 0.702
Negative 53 (57.6) 21 (55.3) 16 (69.6) 4 (40.0)
Positive 39 (42.4) 17 (44.7) 7 (30.4) 6 (60.0)

Visible vessel penetration 0.599 1.000 0.618
Negative 36 (39.1) 13 (34.2) 10 (43.5) 4 (40.0)
Positive 56 (60.9) 25 (65.8) 13 (56.5) 6 (60.0)

Peripherally hepatic enhancement 0.146 1.000 0.351
Negative 38 (41.3) 21 (55.3) 8 (34.8) 4 (40.0)
Positive 54 (58.7) 17 (44.7) 15 (65.2) 6 (60.0)
February 2022 | Volume 12 | Article
Data are shown as number of patients and percentage in parentheses, unless otherwise stated.
aData are means and standard deviations in parentheses.
MVI, microvascular invasion; OR, odds ratio; HBV, hepatitis B; AFP, a-fetoprotein; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; SI, signal intensity; T1WI, T1-
weighted imaging; T2WI, T2-weighted imaging; FS, fat suppression; DWI, diffusion-weighted imaging; LI-RADS, the liver imaging reporting and data system; AP, arterial phase.
The bold values are statistically significant with p <0.05.
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2.5.2 Image Segmentation
The whole tumor segmentation was manually delineated in ITK-
SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) by an
abdominal radiologist with 6 years of experience (XQ) and
validated by a senior abdominal radiologist with 15 years of
experience (XL). Volumes of interests (VOIs) were drawn on 6
sequences: DWI with b-values of 500 s/mm2, T2WI-FS, 3D-
VIBE T1WI, AP, PVP, and DP.

2.5.3 Feature Extraction
Radiomics features were extracted from the VOIs using uAI
Research Portal (Version: 20210730), and 2,600 radiomics
features were extracted from each sequence (Supplementary
Table S3). These radiomics features were classified into First
Order, Shape, Gray-Level Co-occurrence Matrix (GLCM), Gray-
Level Size Zone Matrix (GLSZM), Gray-Level Run Length Matrix
(GLRLM), Neighboring Gray Tone Difference Matrix (NGTDM),
and Gray-Level Dependence Matrix (GLDM) features.

2.5.4 Feature Selection
To eliminate index dimension difference, the extracted radiomics
features of each sequence were standardized into a normal
distribution with z-scores. A test-retest procedure was performed on
30 randomly selected tumors, reproducible radiomics features were
considered features with intraclass correlation coefficient greater than
0.75 and included in the following feature selection procedures. The
variance threshold, SelectKBest and least absolute shrinkage and
selection operator (LASSO) methods were performed to select
optimal features of each sequence (Supplementary Table S3 and
Supplementary Figure S1). The corresponding radiomics score (Rad-
score) of each sequence in the training and validation cohorts was
calculated (Supplementary Table S4 and Supplementary Figure S2).

2.5.5 Model Construction
To construct clinical and imaging models, the univariate analysis
was used to assess the potential predictors of MVI status, and the
Frontiers in Oncology | www.frontiersin.org 5
multivariate logistic regression analysis was used to determine
the independent predictors of MVI status. Radiomics models of
each sequence were constructed by the corresponding optimal
features. The sequences with Rad-scores showed significant
differences between MVI-positive and MVI-negative ICCs in
both the training cohort and validation cohort were selected for
the final radiomics model construction. The MVI prediction
model incorporated imaging model and the final radiomics
model. All models were constructed with logistic regression
(LR), random forest (RF), and support vector machine (SVM)
classifiers respectively for comparison.

2.5.6 Model Analysis and Evaluation
The receiver operating characteristic curves were plotted, and the
AUC, accuracy, sensitivity, specificity, F1-score, and precision
were calculated to quantify the predictive efficacy of each model
in training, validation, and test cohorts. The comparison of
predictive performances between multiple models was
performed by the Delong test. A radiomics nomogram was
built on the MVI prediction model with the LR classifier.
Hosmer-Lemeshow test was performed to identify the
agreement between nomogram-predicted MVI status and
actual MVI status, and calibration curves in the training and
validation cohorts were plotted. Decision curve and clinical
impact curve were plotted for assessing the clinical usefulness
of the nomogram by quantifying the net benefits at different
risk thresholds.

2.6 Statistical Analysis
Clinical and imaging features were analyzed for statistical
differences in the training, validation, and test cohorts by
Student’s t-test, Mann-Whitney U test, Wilcoxon test, Chi-
square test, or Fisher’s exact test, as appropriate. The statistical
analyses were conducted using the IBM SPSS Statistics (version
20) and R software (version 3.4.1). A two-tailed p-value of less
than 0.05 was considered statistically significant.
FIGURE 2 | Study flowchart of the radiomics analysis.
February 2022 | Volume 12 | Article 838701
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3 RESULTS

3.1 Clinicoradiologic Characteristics and
Performances
Comparison of MVI status and clinicoradiologic characteristics in
training and validated ICC patients are shown in Table 1. The
final cohort of 163 patients with single ICC was divided into
training cohort (n = 130, 92 patients were MVI negative and 38
patients were MVI positive) and validation cohort (n = 33, 23
patients were MVI negative and 10 patients were MVI positive).
There is no significant difference of the status of MVI between
training and validation cohort (p = 0.904). Univariate analysis of
clinicoradiologic characteristics indicates that serum CEA level
(p = 0.035; OR = 2.716, 95% CI: 1.065–6.918), serum CA199 level
(p = 0.030; OR = 2.346, 95% CI: 1.092–5.139), Edmondson-
Steiner grade (p = 0.021; OR = 3.126, 95%CI: 1.254–8.977), tumor
size (p < 0.001; OR = 1.033, 95% CI: 1.016–1.052), tumor
morphology (p= 0.071; OR = 1.604, 95% CI: 0.964–2.708), and
intrahepatic duct dilatation (p < 0.001; OR =5.610, 95% CI: 2.505–
13.308) are significantly associated with MVI. At the multivariate
analysis, tumor size (p = 0.003; OR = 1.032, 95% CI: 1.011–1.055)
and intrahepatic duct dilatation (p = 0.002; OR = 4.552, 95% CI:
1.777–12.259) are independent predictors of MVI (Table 2). The
imaging model constructed with two predictors has an AUC of
0.726 in the training cohort and 0.522 in the validation cohort
(Table 3). Examples of representative radiological characteristics
of MVI-positive and MVI-negative ICCs are shown in Figure 3.

3.2 Performance of Radiomics Features
From Single MR Sequence
Robust radiomics features of each single MR sequence were
selected by reproducibility analysis and LASSO analysis
Frontiers in Oncology | www.frontiersin.org 6
(Supplementary Table S3 and Supplementary Figure S1).
The predictive performance of radiomics features on each MR
sequence is shown in Table 3. However, all single sequences
show overfit predictive performance in the training cohort
(AUCs = 1.000) and poor predictive performance in the
validation cohort (AUCs: 0.422–0.665). The Rad-score of each
MR sequence in the training and validation cohorts are shown in
Supplementary Table S4, and Rad-scores of the diffusion-
weighted imaging, precontrast T1-weighted imaging, and
delayed phase imaging show significant differences between
MVI-positive and MVI-negative ICCs in both the training
cohort (p < 0.001) and validation cohort (pDWI = 0.025, pT1 =
0.003, pT1D = 0.001) (Supplementary Table S4 and
Supplementary Figure S2). Therefore, further analysis about
diffusion-weighted imaging, precontrast T1-weighted imaging,
and delayed phase imaging was conducted. The detailed
information of 22 radiomics features in diffusion-weighted
imaging, 17 radiomics features in precontrast T1-weighted
imaging, and 5 radiomics features in delayed phase imaging
are shown in Supplementary Table S5.

3.3 Performance of Radiomics Features
From Multiple MR Sequences
Three pairwise combination models of the diffusion-weighted
images, precontrast T1-weighted images, and delayed phase
images are constructed, and all show a satisfying performance
in both the training cohort (AUC = 0.883–0.941) and validation
cohort (AUC = 0.817–0.874) (Table 3). The final radiomics
model incorporates these three sequences, and it performs better
in predicting MVI of ICC in both the training cohort (AUC =
0.950, accuracy = 0.862, sensitivity = 0.921, and specificity =
0.837) and validation cohort (AUC = 0.883, accuracy = 0.788,
TABLE 2 | Univariate and multivariate analyses of predictive characteristics related with MVI status in ICC.

Characteristics Univariate Multivariate

p-value OR (95% CI) p-value OR (95% CI)

Age 0.595 1.009 (0.976–1.045)
Gender 0.920 0.957 (0.394–2.211)
HBV 0.541 1.266 (0.594–2.717)
AFP 0.808 1.139 (0.373–3.157)
CEA 0.035 2.716 (1.065–6.918) 0.463 1.517 (0.491–4.629)
CA199 0.030 2.346 (1.092–5.139) 0.973 0.984 (0.365–2.541)
Edmondson-Steiner grade 0.021 3.126 (1.254–8.977)
Tumor size <0.001 1.033 (1.016–1.052) 0.003 1.032 (1.011–1.055)
Tumor morphology 0.071 1.604 (0.964–2.708) 0.440 0.757 (0.362–1.504)
SI on T1WI 0.175 4.225 (0.715–80.403)
SI on T2WI-FS 0.701 1.455 (0.282–24.396)
Target sign on T2WI-FS 0.541 0.776 (0.337–1.723)
Target sign on DWI 0.552 0.793 (0.366–1.695)
Rim enhancement on AP 0.735 0.850 (0.339–2.273)
Enhancement pattern 0.659 1.130 (0.640–1.926)
LI-RADS 0.715 0.912 (0.521–1.447)
Intrahepatic duct dilatation <0.001 5.610 (2.505–13.308) 0.002 4.552 (1.777–12.259)
Hepatic capsular retraction 0.806 1.100 (0.510–2.355)
Visible vessel penetration 0.599 1.236 (0.567–2.780)
Peripherally hepatic enhancement 0.148 0.570 (0.263–1.217)
February 2022 | Volum
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sensitivity = 0.900, and specificity = 0.739) than three pairwise
combination models (Tables 3, 4). Notably, the final radiomics
model also performs desirably and stably in the test cohort with
AUC, accuracy, sensitivity, and specificity of 0.812 (95% CI:
0.617–1.000), 0.792, 0.750, and 0.833, respectively (Table 3).

3.4 Performance of MVI Prediction Model
The MVI prediction model includes imaging model and final
radiomics model, and it achieves excellent predictive efficacy in
the training cohort (AUC = 0.953, accuracy = 0.892, sensitivity =
0.974, and specificity = 0.859), validation cohort (AUC = 0.861,
accuracy = 0.818, sensitivity = 0.900, and specificity = 0.783), and
test cohort (AUC = 0.819, accuracy = 0.875, sensitivity = 0.833,
and specificity = 0.917) (Table 3).

Moreover, the MVI prediction model performs better than
imaging model in the training cohort (AUCs: 0.953 vs. 0.726, p <
Frontiers in Oncology | www.frontiersin.org 7
0.001) and validation cohort (AUCs: 0.861 vs. 0.522, p = 0.018).
However, there is no statistical difference between the MVI
prediction model and final radiomics model in the training
cohort (AUCs: 0.953 vs. 0.950, p = 0.629), validation cohort
(AUCs: 0.861 vs. 0.883, p = 0.202), and test cohort (AUCs: 0.819
vs. 0.812, p = 0.732) (Table 4, Figure 4 and Supplementary
Figure S3).

3.5 Development and Verification of the
Nomogram
The nomogram of the MVI prediction model is presented in
Figure 5A, and the formula is as follows. It achieves satisfying
performance with AUCs of 0.953 in the training cohort
and 0.861 in the validation cohort. Calibration curves
(Figures 5B, C) of the nomogram exhibiting satisfactory
predictive performances are aligned with the actual MVI
TABLE 3 | The performance of imaging, radiomics of single and multiple MR sequences, and final fusion models for predicting MVI in ICC patients.

Models Classifier and cohort AUC Accuracy Sensitivity Specificity Precision

Imaging model LR (TD/VD) 0.726/0.522 0.669/0.545 0.605/0.400 0.696/0.609 0.451/0.308
RF (TD/VD) 0.742/0.578 0.731/0.697 0.211/0.100 0.946/0.957 0.615/0.500
SVM (TD/VD) 0.726/0.483 0.708/0.697 0.000/0.000 1.000/1.000 0.000/0.000

DWI model LR (TD/VD) 1.000/0.530 1.000/0.485 1.000/0.600 1.000/0.435 1.000/0.316
RF (TD/VD) 0.943/0.530 0.800/0.697 0.316/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.774 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000

T1 model LR (TD/VD) 1.000/0.643 1.000/0.636 1.000/0.700 1.000/0.609 1.000/0.438
RF (TD/VD) 0.949/0.687 0.823/0.697 0.395/0.100 1.000/0.957 1.000/0.500
SVM (TD/VD) 1.000/0.513 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000

T1A model LR (TD/VD) 1.000/0.443 1.000/0.636 1.000/0.500 1.000/0.304 1.000/0.238
RF (TD/VD) 0.967/0.700 1.000/0.364 0.158/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.500 0.754/0.697 1.000/0.000 1.000/1.000 1.000/0.000

T1D model LR (TD/VD) 1.000/0.665 1.000/0.606 1.000/0.700 1.000/0.565 1.000/0.412
RF (TD/VD) 0.978/0.765 0.738/0.697 0.105/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.574 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000

T1V model LR (TD/VD) 1.000/0.430 1.000/0.424 1.000/0.600 1.000/0.348 1.000/0.286
RF (TD/VD) 0.979/0.661 0.738/0.697 0.105/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.426 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000

T2 model LR (TD/VD) 1.000/0.422 1.000/0.424 1.000/0.100 1.000/0.565 1.000/0.091
RF (TD/VD) 0.969/0.383 0.746/0.697 0.132/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.448 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000

DWI+T1 model LR (TD/VD) 0.941/0.817 0.892/0.758 0.895/0.800 0.891/0.739 0.773/0.571
RF (TD/VD) 0.963/0.854 0.908/0.848 0.895/0.900 0.913/0.826 0.810/0.692
SVM (TD/VD) 0.941/0.826 0.892/0.788 0.816/0.800 0.924/0.783 0.816/0.615

DWI+T1D model LR (TD/VD) 0.901/0.852 0.846/0.788 0.684/0.700 0.913/0.826 0.765/0.636
RF (TD/VD) 0.897/0.852 0.792/0.636 0.816/0.800 0.783/0.565 0.608/0.444
SVM (TD/VD) 0.890/0.835 0.815/0.788 0.474/0.600 0.957/0.870 0.818/0.667

T1+T1D model LR (TD/VD) 0.883/0.874 0.846/0.818 0.711/0.600 0.902/0.913 0.705/0.750
RF (TD/VD) 0.905/0.878 0.869/0.818 0.816/0.800 0.891/0.826 0.756/0.667
SVM (TD/VD) 0.884/0.835 0.777/0.727 0.237/0.100 1.000/1.000 1.000/1.000

Radiomics model LR (TD/VD) 0.950/0.883 0.862/0.788 0.921/0.900 0.837/0.739 0.700/0.600
RF (TD/VD) 0.967/0.891 0.908/0.879 0.895/0.900 0.913/0.870 0.801/0.750
SVM (TD/VD) 0.947/0.865 0.869/0.818 0.579/0.700 0.989/0.870 0.957/0.700

Imaging+radiomics model LR (TD/VD) 0.953/0.861 0.892/0.818 0.974/0.900 0.859/0.783 0.740/0.643
RF (TD/VD) 0.988/0.878 0.946/0.909 0.895/0.800 0.967/0.957 0.919/0.889
SVM (TD/VD) 0.898/0.878 0.869/0.909 0.763/0.900 0.913/0.913 0.784/0.818

Radiomics model LR (test) 0.812 (0.617–1.000) 0.792 0.750 0.833 0.818
RF (test) 0.757 (0.532–0.982) 0.792 0.667 0.917 0.889
SVM (test) 0.812 (0.617–1.000) 0.708 0.500 0.917 0.857

Imaging+radiomics model LR (test) 0.819 (0.620–1.000) 0.875 0.833 0.917 0.909
RF (test) 0.771 (0.556–0.986) 0.750 0.583 0.917 0.875
SVM (test) 0.771 (0.555–0.987) 0.792 0.667 0.917 0.889
February 20
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LR, logistic regression; RF, random forest; SVM, support vector machine; TD, training dataset; VD, validation dataset; AUC, area under the curve.
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estimates in the training (p = 0.364) and validation (p = 0.543)
cohorts. Decision curve (Figure 5D) of the nomogram shows
that the net benefit is higher than that assuming all patients have
MVI. Clinical impact curve (Figure 5E) shows that the predicted
probabilities of the nomogram is close to actual high risk with
event when risk threshold is 0.2–0.7 and is consistent when risk
threshold is over 0.7.

Y = −11:420 + 0:020� ImagingTumor size + 0:723

� ImagingIntrahepatic duct dilatation + 9:130� Rad ScoreDWI

+ 10:835� Rad ScoreT1 + 4:690� Rad ScoreT1D
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DISCUSSION

In this study, we established a radiomics-based nomogram for
preoperatively predicting MVI in patients with ICC. The final
MVI prediction model achieves a satisfying prediction
performance, and it incorporates Ga-DTPA-enhanced MRI-based
radiomics features of the diffusion-weighted images, precontrast T1-
weighted images, and delayed phase images and imaging features
including tumor size and intrahepatic duct dilatation.

High serum level of CEA and CA199 (>100 U/ml) can predict
the diagnosis of ICC (27, 28), but the predictive value in predicting
MVI status of ICC is still unknown. Although univariate analysis
shows elevated serum CEA and CA199 level are significant clinical
February 2022 | Volume 12 | Article 838701
t

FIGURE 3 | Two examples of representative MVI-negative and MVI-positive ICCs. (A–D) A 62-year-old man with a well-circumscribed MVI-negative ICC in hepatic
segment II (arrows). DWI image showed target sign (A), axial arterial phase image showed rim enhancement (B), and portal vein phase image (C) and delayed phase
image (D) showed the typical enhancement type of ICC: gradual and filling enhancement. (E–H) A 62-year-old man with a lobulated MVI-positive ICC in hepatic
segment IV (arrows). DWI image showed hyperintensity (E), axial arterial phase image showed marginal moderate enhancement with no internal enhancement
(F) and dilated bile ducts next to tumor (arrowheads), and portal vein phase image (G) and delayed phase image (H) showed the typical enhancement type of ICC:
gradual and filling enhancement.
TABLE 4 | The comparison of models in training, validation, and test cohorts.

Models for comparison Classifier ptraining cohort pvalidation cohort ptest cohor

Radiomics model vs. DWI+T1 model LR 0.222 0.013 0.591
RF 0.674 0.217 0.260
SVM 0.636 0.197 0.151

Radiomics model vs. DWI+T1D model LR 0.014 0.527 0.766
RF 0.003 0.522 0.493
SVM 0.012 0.421 0.214

Radiomics model vs. T1+T1D model LR 0.018 0.888 0.092
RF 0.006 0.751 0.659
SVM 0.027 0.572 0.334

Radiomics model vs. imaging model LR <0.001 0.018 0.193
RF <0.001 0.023 0.071
SVM <0.001 0.003 0.294

Imaging+radiomics model vs. imaging model LR <0.001 0.023 0.206
RF <0.001 0.021 0.055
SVM <0.001 0.002 0.306

Imaging+radiomics model vs. radiomics model LR 0.629 0.202 0.732
RF 0.032 0.505 0.569
SVM 0.018 0.757 0.325
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features, there are no statistical difference between the MVI-positive
and MVI-negative groups by multivariate analysis, which are
consistent with the studies of Zhou et al. (22) and Ma et al. (29).
As other studies on preoperative MVI prediction in HCC (30–32)
and ICC (14, 22, 33), tumor size is also an independent predictor of
MVI in ICC patients in our study, but intrahepatic duct dilatation is
another important imaging predictor, which is different from the
studies of Zhou et al. (22). This may be due to the different MVI
predictor screening methods; in his study, intrahepatic duct
dilatation was excluded because there was no significant difference
between MVI-positive and MVI-negative groups in the validation
cohort (p = 0.279), but a p-value with 0.097 in the training cohort
indicated this predictor should be further analyzed by multivariate
analysis. Although hepatic capsular retraction and progressive
centripetal enhancement in the venous phase have been described
as classical imaging features of ICC (34), there are no statistical
difference between MVI-positive and MVI-negative groups. In
general, the imaging model constructed with tumor size and
intrahepatic duct dilatation yields a good performance in the
training cohort, but an unsatisfying performance in the validation
cohort limits its application in preoperatively predicting MVI.
Therefore, a combined model based on radiomics is necessary.

Of 44 radiomics features, 6 are considered optimal features with
the absolute values of LASSO coefficients being greater than 0.1,
including First Order _Uniformity, GLCM _Maximum Probability,
GLCM _Inverse Difference, GLCM _ Informational Measure of
Correlation 1, GLDM _Dependence Variance, and GLRLM _Long
Run Emphasis. Histologically, ICC often shows aggressive trait, and
inflammation, necrosis, and fibrosis are common (2); therefore,
heterogeneous signal intensity in MR images are found to be more
frequent for MVI-positive ICC, which is in concordance with First
Order _Uniformity. Additionally, other 5 radiomics features
indicate the higher the neighboring intensity value, variance, and
gray-level value of VOI, the higher is the probability of MVI.
Compared with the 100 radiomics features pool constructed by
Zhou et al. (22), 42 of 44 radiomics features in our study are
repeatable, and 3 of 7 optimal radiomics features in his study are
also detected in our study. Both three pairwise combination models
Frontiers in Oncology | www.frontiersin.org 9
and the final radiomics model based on the diffusion-weighted
images, precontrast T1-weighted images, and delayed phase images
have solved the defect of overfit predictive performance in the
training cohort and poor predictive performance in the validation
cohort of single MR sequence models.

As far as we know, this study is the first to establish a nomogram
based on clinicoradiologic and radiomics features. TheMVI prediction
model incorporates the final radiomics model, and imaging model
exhibits excellent performance in both the training cohort (AUC =
0.953) and validation cohort (AUC = 0.861) with good calibration,
which are better than the previous study (AUCtraining = 0.873,
AUCvalidation = 0.850) (22). Also, the MVI prediction model achieves
better efficacy than the imaging model in our study, suggesting
radiomics features are indispensable in MVI prediction. More
importantly, the nomogram in our study also exhibits a desirable
prediction performance in the test cohort (AUC = 0.819) and
performs better than clinical factor model constructed by Tang et al.
(35) with AUCs of 0.739, 0.717, and 0.709 in training, validation, and
test cohorts. Hence, the use of our nomogram preoperatively may be a
noninvasive and robust method of assisting personalized treatment
making, and patients with ICCsmay suffer a higher net benefit from it.

There are some limitations in our study. Firstly, selection bias
is inevitable in our retrospective study. Secondly, compared with
MVI-negative ICCs, the number of MVI-positive ICCs is
relatively small. Thirdly, the association between radiomics
features and complex tumor biological features needs to be
further explained. Fourthly, the study about whether the
preoperative prediction of overall survival (OS) and disease-
free survival (DFS) based on our MVI prediction model has the
same effect as the postoperative prediction of OS and DFS based
on pathological MVI after surgery is needed. Finally, although
the nomogram has achieved a desirable prediction performance
in the test cohort, larger cohorts from other centers are needed to
be collected for the prospective validation of our nomogram.

In conclusion, radiomics features extracted from diffusion-
weighted images, precontrast T1-weighted images, and delayed
phase images of Ga-DTPA-enhanced MR imaging can assist in
predicting MVI status of ICC patients. The MVI prediction
A B C

FIGURE 4 | Comparison of receiver operating characteristic (ROC) curves for prediction of MVI in ICC. ROC curves of imaging model constructed with tumor size
and intrahepatic duct dilatation, radiomics model constructed with diffusion-weighted image, precontrast T1-weighted image, and delayed phase image, and MVI
prediction model constructed imaging model and radiomics model in the (A) training, (B) validation, and (C) test cohorts.
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nomogram incorporating radiomics features and imaging
features including tumor size and intrahepatic duct dilatation
is a potential biomarker and clinical tool in MVI stratification of
ICC patients preoperatively.
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FIGURE 5 | Nomogram of MVI prediction model, calibration curves of the nomogram in the training and validation cohort, decision curve, and clinical impact curve
in the overall ICC patients. (A) A nomogram integrates imaging factors including tumor size and intrahepatic duct dilatation, and radiomics factors includes Rad-
scores of diffusion-weighted images, precontrast T1-weighted images, and delayed phase images. (B, C) Calibration curves of the nomogram in the training and
validation cohort. x-axis is a nomogram-predicted risk of MVI. y-axis is actual risk of MVI, and the diagonal dashed line indicates the ideal prediction by an ideal
model. (D) Decision curve for the nomogram in the overall patients. The gray line is the net benefit of assuming that all patients have MVI; the black line is the net
benefit of assuming no patients have MVI; and the red line is the expected net benefit of per patient based on the nomogram. (E) Clinical impact curve for the
nomogram in the 1,000 simulated samples. The blue dashed line is the actual number of high risk, and the red line is the number of high risk based on nomogram.
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