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Abstract: Bovine endometritis is a serious pathogen-induced infectious disease that affects the
physiological processes of estrus, pregnancy and the postpartum condition. The inflamed endometrium
responds by activating an inflammatory intracellular signaling cascade that leads to increased
expression of proinflammatory cytokines and reactive oxygen species (ROS). Oxidative stress is
closely related to several pathological conditions in perinatal dairy cows and play a key role in tissue
damage. Hydroxytyrosol (HT), a natural phenolic alcohol with a strong antioxidant activity, displayed
a wide range of biological effect. The aim of this study was to evaluate the protective effects of HT in
an in vitro model of lipopolysaccharide (LPS)-induced inflammation in bovine uterine endometrial
cells. Our results showed that HT had a significant protective effect in LPS-induced inflammation
and oxidative stress. HT was also able to increase the capacity of endogenous antioxidant systems
through the up-regulation of the NRF2 pathway. Furthermore, HT restored the tight junction protein
expressions. In conclusion, our results showed the protective effects of HT in LPS-stimulated BEND
cells. Therefore, the results of this study suggest an important protective role of HT in the treatment
and prevention of uterine pathologies in dairy cows.
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1. Introduction

Bovine endometritis is a serious pathogen-induced infectious disease that affects the physiological
processes of estrus, pregnancy and the postpartum condition. During pregnancy, uterine inflammation
activates the inflammatory responses involved in maternal-fetal crosstalk and may cause premature
birth [1–3]. It could result in decreased milk production and long-term infertility. Currently, bovine
endometritis represents a serious worldwide economic problem for the cattle industry, as it is highly
associated with reduced reproductive activity [4,5]. This is also translated into an increase in the
costs for the farm and an increase in the cost per liter of milk. Thus, investigating the pathways
and processes involved in endometrial inflammation are important steps for understanding the
events that occur in the presence of pathogens and may result in embryo loss, pregnancy failure
and infertility [6,7]. Trueperella pyogenes and Escherichia coli are often associated with the uterine
infection [8]. Pathogenic microorganisms that attack the reproductive tract are firstly recognized
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by the cells of the innate immune system within the binding of pattern-recognition receptors to the
pathogen-associated molecular patterns (PAMPs) [9]. PAMPs including lipopolysaccharides (LPS),
constituents of the cell wall of Gram-negative bacteria, strongly activate the immune system and trigger
the inflammatory answer [10–12]. The inflamed endometrium responds by activating an inflammatory
intracellular signaling cascade that leads to increased expression of proinflammatory cytokines and
reactive oxygen species (ROS) [13–15]. This oxidative stress damages different biomolecules including
proteins, nucleic acids and lipids [16]. Additionally, it leads to the activation of transcription factors
that propagate the inflammation. Nevertheless, several examples of evidence indicate that prolonged
proinflammatory insults and oxidative stress can negatively affect uterine normal function and block
embryonic development [1–3]. Despite different studies about bovine endometritis, its treatment
did not advance during these decades, and it still trusts broad spectrum antibiotics, which leads
to a decrease in immunity and an increase in bacterial resistance, as well as residues of drugs in
meat and milk. Hence, new effective treatments against bovine endometritis should be investigated.
Hydroxytyrosol (3,4-dihydroxyphenylethanol, HT), a biological antioxidant, has been reported to
improve cellular defenses against oxidative injury. It is one of major polyphenol constituent of the
plant Olea europaea L., which belongs to the Oleaceae family. HT represents the 80% of the total
phenolic fractions of extra virgin olive oil [17]. Elevated HT concentration has also been detected in
olive mill wastewater and leaf extract [18]. In particular, numerous beneficial activities have been
attributed to HT and its application has been described in different diseases [18–24]. From the molecular
point of view, HT enhanced the Nrf2 pathway [25,26] and ameliorated the antioxidant activity of
several enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase
(CAT) [27]. A recent study of our laboratory showed the positive effects of HT on oxidative stress
and inflammatory response in bovine mammary alveolar (MAC-T) cells, proposing it as therapeutic
strategy for the management of bovine mastitis. Studying large animal systems may be challenging
due to the complexities of multi-cell interactions [28–31]. Therefore, the aim of this study was to
evaluate the protective effects of HT in an in vitro model of LPS-induced inflammation in bovine
uterine endometrial cells.

2. Materials and Methods

2.1. Cell Culture

The BEND cells were purchased from American Type Culture Collection (ATCC; Manassas, VA,
USA). They were derived from the uterine endometrium of on Day 14 of the estrous cycle [32]. Cells were
cultured in DMEM/F12 medium containing 10% (v/v) FBS and 0.5% (v/v) penicillin streptomycin
(Sigma, Italy) and incubated at 37 ◦C in a humidified atmosphere of 5% CO2. Every 48 h, fresh medium
was supplied. At 80–90% confluency cells were split using 0.25% trypsin solution. The cells were
cultured in cell flasks, their morphology was checked daily and prepared for the following experiments.
All experiments were performed between the 3rd and 4th passage.

2.2. Cell Treatment

BEND cells (2 × 106 cells/mL) were seeded in six-well plates (2 mL/well) at confluent (80–90%),
were treated with HT (10 µM and 25 µM) (Sigma-Aldrich, Milano, Italy). One hour after HT treatment,
cells were stimulated with LPS 1 µg/mL (Escherichia coli, Sigma-Aldrich, Milano, Italy) for 6 h,
as already described [33], and each treatment was replicated 3 times. LPS concentrations were chosen
based on previous studies by others using endometrial epithelial cells [33].

2.3. Cell Viability Assay

The possible toxic effect of HT on BEND cells was evaluated by methyl thiazolyl tetrazolium
(MTT) assay as already shown [34]. Briefly, a suitable amount of cell suspension (2 × 106 cells/mL) was
inoculated onto a 96-well plate (100 µL/well) and pre-cultured in a 37 ◦C, 5% CO2 incubator, then cells
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were incubated with HT at 10, 25, 50, 100, and 250 µM, for 24 h, followed by the MTT treatment (10 µL
of 0.5 mg/mL) for 4 h. The optical density at 550 nm was measured using a microplate reader and used
to calculate the cell viability.

2.4. ELISA

Secretions of TNF-α and IL-6 were measured using commercial ELISA kits from Cusabio (Houston,
TX, USA). Briefly, cell supernatants were centrifuged for 10’ at 3000 rpm. The supernatants were
collected and used for ELISA kits according to the manufacturer’s protocol. Briefly 50 µL of Standard
(to create a 4-point standard curve) or Sample was added for each well, and subsequently 50 µL of
HRP-conjugate and antibody were added and incubated for 1 h. Then the plate was washed three times
and 50 µL of substrate (A and B) were added for 15’, to which finally was added 50 µL of stop solution,
and absorbance at 450 nm was recorded [35]. The assay was performed in duplicate for each standard
and sample, then the duplicate readings were averaged, and the average optical density of Blank
was subtracted. The results were obtained by creating (with GraphPad Prism v. 8) a standard curve,
generating a four-parameter logistic curve fit (4-PL) and then interpolating the OD of the samples [36].
The results are expressed as concentrations ng/mL. For both TNF-α and IL6 tests used Intra-assay
Precision and Inter-assay Precision were CV < 15%.

2.5. Reactive Oxygen Species (ROS) Evaluation

Total cellular ROS were evaluated using the 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA)
dye. BEND cells were grown to confluence, trypsinized, and then washed twice with washing buffer.
Next, cells were incubated with H2DCFDA dye 1 µM at 37 ◦C for 60’. Then the cells were washed and
then kept at room temperature for an additional 30 min to allow for complete dye de-esterification.
Then, excitation and emission were monitored at 490 nm and 530 nm, respectively, using a fluorescence
plate reader [37]. The levels of increased ROS production were expressed as percentage of the
control (nmol/mL).

2.6. RNA Extraction-cDNA Synthesis

To evaluate the mRNA expression of target genes, RNA was extracted from BEND cells using
RNeasy kit (Qiagen, Italy), for real-time polymerase chain reaction (PCR) analysis. Briefly, samples were
lysed, and subsequently ethanol was added for ideal binding conditions. The lysates obtained were
loaded into the RNeasy silica membrane. RNA binds into column and all contaminants were washed
out. Pure, concentrated RNA was eluted in 50 µL water. RNA was quantified with a spectrophotometer
(NanoDrop Lite; Thermo Fisher Scientific, Wilmington, DE, USA). iScript RT-PCR kit (Bio-Rad, Hercules,
CA, USA) was used to synthesize first-strand cDNA according to manufacturer’s recommendations.
Briefly, the reverse transcription master mix was prepared adding to 1 µg of RNA template the
iScript RT Supermix (5× RT supermix with RNase H+ Moloney (gray cap, 25 or 100 reactions) murine
leukemia virus (MMLV) reverse transcriptase, RNase inhibitor, dNTPs, oligo(dT), random primers,
buffer, MgCl2 and stabilizers) and the nuclease-free water. The complete reaction mix was incubated
in a thermal cycler (Priming 5 min at 25 ◦C, Reverse transcription 20 min at 46 ◦C, RT inactivation for
one minute at 95 ◦C).

2.7. Real-Time PCR

In total, 1 µL of total cDNA was used to perform Real-time PCR analysis with by SYBR Green
method on a StepOnePlus Real-Time PCR System (Applied Biosystems, USA). PCR conditions were:
initial denaturation at 95 ◦C for 15 min, followed by 45 cycles of amplification at 95 ◦C for 20 s
and 60 ◦C for 40 s. Final extension at 60 ◦C for 60 s and ahold at 4 ◦C were then performed. Data
analysis was performed using the 2−∆∆Ct method and the results are expressed as fold-changes [38].
GAPDH was used as an internal control for normalizing relative expression levels between samples.
For each target gene, besides the biological replicates, three technical replicates were performed.
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Negative controls using RNA as a template were also included in all runs to test for the possible
genomic DNA contamination of the samples.

2.8. Statistical Analysis

For each experiment, three or more independent experiments have been performed, and for each
experiment five repeat samples were used. The data resulting from all experiments are expressed
as means ± SEM. Statistical differences between groups were compared using ANOVA, followed by
Tukey’s test. A p-value of less than 0.05 was considered statistically significant. Data are representative
of at least three experiments, means ± SEM; * p < 0.05 vs. control; ** p < 0.01 vs. control; # p < 0.05 vs.
LPS; ## p < 0.01 vs. LPS; *** p < 0.001 vs. control; ### p < 0.001 vs. LPS.

3. Results

3.1. HT Effect on BEND Cells Viability

Firstly, we evaluated any possible toxic effect of HT on the BEND cells by the MTT cell viability
assay. We tested crescent concentrations of HT (10, 25, 50, 100, 250 µM). Cells were pre-treated with HT
and subsequently incubated with MTT for 4 h. No changes in cells viability were detected at low HT
concentration (HT 10 µM 98.6 ± 0.50; HT 25 µM 98.4 ± 0.67; HT 50 µM 97.8 ± 0.86) compared to the
control. At 100 (94.6% ± 1.2) and 250 µM (93.3 % ± 1.56) of HT a significant reduction in cell viability
was detected (Table 1).

Table 1. Effects of HT on BEND cells viability.

LPS -/HT -

Ctrl 100 ± 0
HT 10 µM 98.6 ± 0.50
HT 25 µM 98.4± 0.67
HT 50 µM 97.8 ± 0.86
HT 100 µM 94.6 ± 1.20#

HT 250 µM 93.6 ± 1.56##

# p < 0.05 vs. LPS; ## p < 0.01 vs. LPS.

3.2. HT Effect on LPS-Induced Inflammatory Response and Oxidative Stress in BEND Cells

LPS stimulation (1 µg/mL) induced the overexpression of the main pro-inflammatory
cytokines IL-6 and TNF-α (Table 2), compared to the control (IL6 (4.30 ± 120.8 vs. 1.70 ± 0.1),
TNF-α (304.8 ± 7.41 vs. 252.8 ± 10.8)). HT treatment at 10 and 25 µM prevents the increase of IL6 (HT
10 µM: 1.50 ± 0.11 and HT 25 µM: 1.32 ± 0.16) and TNF-α (HT 10 µM: 241.8 ± 5.2 and HT 25 µM:
237 ± 7.36) in a dose-dependent manner (Table 2). Additionally, to test the antioxidant effect of HT
pre-treatment on LPS-induced oxidative stress in BEND cells we quantified the levels of intracellular
ROS (Table 2). LPS stimulation increased intracellular ROS expression compared to the control
(33.8 ± 1.68 vs. 16.6 ± 0.02), while samples pre-treated with HT at 10 and 25 µM showed reduced levels
of intracellular ROS (HT 10 µM: 22.4 ± 1.20 and HT 25 µM: 15.6 ± 1.07) (Table 2).

Table 2. Effects of HT on oxidative stress and inflammation in BEND cells stimulated with
lipopolysaccharides (LPS).

LPS -/HT - LPS +/HT- LPS +/HT 10 µM LPS +/HT 25 µM

ROS 16.6 ± 0.02 33.8 ± 1.68 *** 22.4 ± 1.20 ## 15.6 ± 1.07 ###

TNF-α 252.8 ± 10.8 304.8 ± 7.41 ** 241.8 ± 5.2 # 237 ± 7.36 ###

IL-6 1.70 ± 0.1 4.30 ± 120.8 ** 1.50 ± 0.11 ## 1.32 ± 0.16 ###

ROS, reactive oxygen species; TNF-α, tumor necrosis factor α; IL-6, interleukin 6. ** p < 0.01 vs control; # p < 0.05 vs.
LPS; ## p < 0.01 vs. LPS; *** p < 0.001 vs. control; ### p < 0.001 vs. LPS.
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3.3. HT Effect on LPS-Induced Nrf2 Pathway

To verify the effect of the HT pre-treatment on the Nrf2 pathway activated by the LPS stimulation
RT-PCR were conducted. HT pre-treatment at 10 and 25 µM in a dose-dependent manner up-regulated
Nrf2 expression compared to the control (HT 10 µM: 2.00 ± 0.15 and HT 25 µM: 3.12 ± 0.31) (Figure 1A).
Nrf2 improves the expression of several antioxidant response genes; in particular, we evaluated
Heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1) expressions by RT-PCR.
HT pre-treatment at both concentrations increased HO-1 (Figure 1B) (HT 10 µM: 1.46 ± 0.05 and HT 25
µM: 1.64 ± 0.09) and NQO-1 (Figure 1C) (HT 10 µM: 2.7 ± 0.34 and HT 25 µM: 3.74 ± 0.62).

Vet. Sci. 2020, 7, x FOR PEER REVIEW 5 of 10 

 

up-regulated Nrf2 expression compared to the control (HT 10 μM: 2.00 ± 0.15 and HT 25 μM: 3.12 ± 
0.31) (Figure 1A). Nrf2 improves the expression of several antioxidant response genes; in particular, 
we evaluated Heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1) 
expressions by RT-PCR. HT pre-treatment at both concentrations increased HO-1 (Figure 1B) (HT 10 
μM: 1.46 ± 0.05 and HT 25 μM: 1.64 ± 0.09) and NQO-1 (Figure 1C) (HT 10 μM: 2.7 ± 0.34 and HT 25 
μM: 3.74 ± 0.62). 

 
Figure 1. HT pre-treatment on LPS-induced Nrf2 pathway in BEND cell: mRNA levels of Nrf2 (A), 
HO-1 (B) and NQO-1 (C). * p < 0.05 vs control; # p < 0.05 vs. LPS; ## p < 0.01 vs. LPS; *** p < 0.001 vs. 
control; ### p < 0.001 vs. LPS. 

3.4. HT Effect on and Expressions of Tight Junction Proteins 

Tight junctions are involved in tissue protection against pathogen invasion. We employed RT-
PCR to investigate the changes in tight junction protein expressions induced by LPS in BEND cells. 
LPS stimulation significantly reduced Claudin (Figure 2A), CDH1 (Figure 2B) and TJP1 (Figure 2C) 
mRNA expression compared to the control, (respectively, 0.51 ± 0.11, 0.4 ± 0.07, 0.42 ± 0.07). HT pre-
treatment restored in a dose-dependent manner Claudin (HT 10 μM: 0.91 ± 0.08 and HT 25 μM: 1.1 ± 
0.07), CDH1 (HT 10 μM: 0.90 ± 0.09 and HT 25 μM: 1.1 ± 0.08) and TJP1 (HT 10 μM: 0.99 ± 0.1 and HT 
25 μM: 1.1 ± 0.09) mRNA expressions. 

 
Figure 2. HT pre-treatment on LPS-induced changes in tight junction expressions Nrf2 in BEND cell: 
mRNA levels of Claudin (A), CDH1 (B) and TJP1 (C). * p < 0.05 vs control; # p < 0.05 vs. LPS; ## p < 0.01 
vs. LPS; ** p < 0.01 vs. control; ### p < 0.001 vs. LPS. 

4. Discussion 

The endometrium is a peculiar mucosa, and in several conditions, it becomes exposed to many 
bacteria, such as during post-partum periods. Indeed, post-partum periods involve several 
physiological events such as the expulsion of the placenta, prompt involution of the uterus, which 
have as their final endpoint a restoration of a receptive endometrium. Many factors influence these 
events, in particular environmental factors play a key role in increasing the risk of development of 
post-partum uterine diseases. Uterine disease includes retained placenta, metritis and clinical 
endometritis, or subclinical endometritis [39]. To date up to 40% of dairy cattle develop post-partum 
uterine diseases such as endometritis. The bacteria infection of the female genital tract is a severe 
disease in cattle that leads to infertility, endometrium mucosa damage, and even mortality [40]. E. 

Figure 1. HT pre-treatment on LPS-induced Nrf2 pathway in BEND cell: mRNA levels of Nrf2 (A),
HO-1 (B) and NQO-1 (C). * p < 0.05 vs control; # p < 0.05 vs. LPS; ## p < 0.01 vs. LPS; *** p < 0.001 vs.
control; ### p < 0.001 vs. LPS.

3.4. HT Effect on and Expressions of Tight Junction Proteins

Tight junctions are involved in tissue protection against pathogen invasion. We employed
RT-PCR to investigate the changes in tight junction protein expressions induced by LPS in BEND
cells. LPS stimulation significantly reduced Claudin (Figure 2A), CDH1 (Figure 2B) and TJP1
(Figure 2C) mRNA expression compared to the control, (respectively, 0.51 ± 0.11, 0.4 ± 0.07, 0.42 ± 0.07).
HT pre-treatment restored in a dose-dependent manner Claudin (HT 10 µM: 0.91 ± 0.08 and HT 25 µM:
1.1 ± 0.07), CDH1 (HT 10 µM: 0.90 ± 0.09 and HT 25 µM: 1.1 ± 0.08) and TJP1 (HT 10 µM: 0.99 ± 0.1
and HT 25 µM: 1.1 ± 0.09) mRNA expressions.
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4. Discussion

The endometrium is a peculiar mucosa, and in several conditions, it becomes exposed to
many bacteria, such as during post-partum periods. Indeed, post-partum periods involve several
physiological events such as the expulsion of the placenta, prompt involution of the uterus, which have
as their final endpoint a restoration of a receptive endometrium. Many factors influence these
events, in particular environmental factors play a key role in increasing the risk of development
of post-partum uterine diseases. Uterine disease includes retained placenta, metritis and clinical
endometritis, or subclinical endometritis [39]. To date up to 40% of dairy cattle develop post-partum
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uterine diseases such as endometritis. The bacteria infection of the female genital tract is a severe
disease in cattle that leads to infertility, endometrium mucosa damage, and even mortality [40]. E. Coli
is one of the major pathogens responsible for endometritis [41] and is the main uterine microbial
disease in cattle. LPS is the main component of Gram-negative bacteria cell walls. It is well known
that LPS induces a strong inflammatory response in both local and systemic tissue through blood
circulation. Together with the inflammatory response the increase in oxidative stress is a physiological
response against various stimuli such as LPS. Moreover, an imbalance in normal equilibrium with
an increase in oxidative stress can occur under conditions in dairy cows [42]. However, increased
oxidative stress is closely related to several pathological conditions in perinatal dairy cows and plays a
key role in tissue damage [43]. The use of natural compounds is a growing pharmacological approach
in the treatment of uterine diseases or prophylaxis. Several studies have shown that the use of natural
compounds in combination with other drug therapies is a useful therapeutic strategy [44], as has been
seen for example in the case of garlic [45,46] and turmeric [47]. HT is a natural phenolic alcohol with
a strong antioxidant activity and has been shown to exert a wide range of biological effects, such as
cardioprotective, neuroprotective, and anti-inflammatory effects [48]. Recent evidence has shown the
protective effect of HT in bovine mammary epithelial cells, modulating the inflammatory response
and reducing the oxidative stress induced by LPS [49,50]. The aim of this study was to evaluate
the protective effect of HT on bovine endometrial epithelial cell line (BEND) stimulated with LPS 1
µg/mL. The concentrations of HT used in this study (10 and 25 µM) did not show cytotoxic effects on
BEND cells, while a reduction in cell viability was observed for concentrations of 50, 100, and 250 µM;
this effect, as seen previously, could be explained by an effect of high HT concentrations on the apoptotic
process [51]. Inflammatory response is closely associated with increased oxidative stress, and our results
showed a significant increase in ROS levels after LPS stimulation. As previously seen the wide range
of biological effect of HT was associated with a strong antioxidant activity, as HT acts as metal-chelator
and free radical-scavenger [48]. In particular this strong antioxidant activity, is due to the presence of
o-dihydroxyphenyl moiety. In fact, in the presence of free radicals (ROO *) it acts mainly by donating a
hydrogen atom. In this way ROO * reacting with HT are transformed into non-reactive compounds.
According to the mechanism of action of HT, compared to LPS group we observed a significantly lower
ROS level in groups treated with HT 10 and 25 µM, in a dose-dependent manner. We also evaluated
the levels of pro-inflammatory cytokines TNF-α and IL-6 as key mediator in inflammatory cascade.
Our result showed that BEND cells exposed to LPS (1 µg/mL) respond with a significantly increased
level of pro-inflammatory cytokines, such as TNF-α and IL-6. The treatment with HT at 10 and 25 µM
showed a significant protective effect in a dose-dependent manner, according to the effect observed on
ROS levels. Reduction of IL-6 and TNF-α levels is a key factor for preventing an excessive inflammatory
response and consequent complications of the pathology. Furthermore, an increase in oxidative
stress is related to an increase in pro-inflammatory cytokine secretion, and in particular oxidative
stress-mediated inflammatory responses have long been recognized as important causes of various
inflammatory diseases in perinatal dairy cows [43]. The effects of HT in reducing pro-inflammatory
cytokine levels observed in this study can be explained by the reduction of LPS-induced oxidative
stress. Moreover, the ability of HT in potentiating endogenous antioxidant mechanisms has been
demonstrated, and in particular this mechanism of action HT seems to occur through the up-regulation
of NRF2. In this study we observed an up-regulation of NRF2 after treatment of HT at 10 and 25 µM in
a dose-dependent manner. According to the NRF2 trend we observed, after HT treatment, there is also
an increased level of HO-1 and NQO-1 in a dose-dependent manner. Reduction in inflammation and
oxidative stress play a key role in maintaining the normal protective barrier. Tight junction proteins
are the most important components of the epithelial barrier and play a key role in the maintenance
of endometrial homeostasis by restricting the invasion of pathogens, and it has been shown that a
reduction of the tight junction proteins occurs in the course of inflammatory pathological processes.
Therefore, in this study we decided to evaluate whether the protective effects of HT on inflammation
and oxidative stress are translated to a protective effect on the integrity of the mucosa. In particular,
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we evaluated the expression levels of the tight junction proteins claudin, CDH1 and TJP1. In fact,
these tight junctions play a key role in mucosal barrier integrity, and, in particular, this homeostasis
is regulated on one side by stimuli on the mucosa wall, such as the presence of bacteria pathogenic,
and on the other side they are regulated by immune cells and the levels of cytokines. Immune cells
and in particular T cells, play a key role in regulatory function and maintain tight junctions, blocking a
major proinflammatory response while maintaining an anti-inflammatory environment. Inflammatory
stimuli and cell damage results in a down regulation of the tight junction, as this is a fundamental
step for the initiation and progression of pathological processes in the endometrial epithelium [52].
Our results show that in BEND cells exposed to LPS there was a significant reduction of the tight
junction proteins claudin, CDH1, and TJP1. In accordance with the reduction of oxidative stress
markers and pro-inflammatory cytokines observed above, we observed that treatment with HT at
concentrations of 10 and 25 µM had a significant protective effect of the tight junction proteins claudin,
CDH1, and TJP1.

5. Conclusions

Our results showed that HT had a significant protective effect in LPS-induced inflammation
and oxidative stress. HT was also able to increase the capacity of endogenous antioxidant systems
through the up-regulation of the NRF2 pathway. Furthermore, these effects also produced a significant
protective effect on of the tight junction proteins. Therefore, the results of this study suggest a possible
positive outlook, encouraging future clinical animal studies.
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