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Abstract: Photoacoustic (PA) imaging is used widely in cancer diagnosis. However, the availability
of PA agents has not made great progress due to the limitations of the one currently in use, por-
phyrin. Porphyrin–Micelle (PM), developed by synthesizing porphyrin and PEG-3.5k, confirmed the
amplification of the PA agent signal, and added binding affinity in an LNCaP model by attaching
prostate-specific membrane antigen PSMA. Compared to the previously used porphyrin, a superior
signal was confirmed, and the potential of PMP was confirmed when it showed a signal superior to
that of hemoglobin at the same concentration. In addition, in the in vivo mouse experiment, it was
confirmed that the signal in the LNCaP xenograft model was stronger than that in the PC-3 xenograft
model, and the PMP signal was about three times higher than that of PM and porphyrin.

Keywords: photoacoustic; ultrasound; porphyrin; micelle; prostate cancer; cancer diagnosis;
PSMA targeting

1. Introduction

Prostate cancer is the second-most common cancer in men worldwide [1]. The 5-year
survival rates are relatively high, allowing numerous treatment options depending on the
patient’s condition [2]. Active surveillance, where cancer progression is monitored without
intervention, is regularly exercised during the early stages, while interventionist treatment
options such as chemotherapy, radiation, hormone therapy, and radical prostatectomy
are also practiced to prevent disease progression [3,4]. Nevertheless, these interventions
often have serious side effects such as urinary incontinence and erectile dysfunction,
affecting the quality of life for those receiving the treatment [5–7]. As such, theranostic
options with early diagnosis and minimal side effects are preferred [8]. Currently, biopsies,
prostate-specific antigen (PSA) tests, ultrasound, and magnetic resonance imaging (MRI)
are used for prostate cancer diagnosis. Each method has its limitations: biopsies are
often invasive and may cause discomfort; PSA tests and ultrasound imaging are prone to
misdiagnosis and often require biopsy confirmation; MRI imaging, while accurate, can
be quite costly and is often used to complement the abovementioned methods [9–15]. As
such, a minimally invasive, cost-efficient method to detect the disease in the early stages is
strongly desired [16–18].

Porphyrin-based substances are currently being used in clinical practice [19–23]. For
example, Visudyne is a porphyrin-based photosensitizer that is used to remove abnormal
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blood vessels in those with eye conditions such as macular degeneration [24–26]. Further-
more, due to their excellent biocompatibility and unique optical properties, porphyrin-
based molecules are being actively investigated preclinically and clinically for cancer
theranosis [27,28]. Accordingly, the optical properties of porphyrins have been maximized
by employing them in photoacoustic (PA) imaging, where the molecules are excited by a
laser to emit specific echogenic signals that are detected by ultrasound transducers. As PA
imaging is extremely sensitive and minimally invasive, it has become a strong candidate
for prostate cancer diagnosis [29–31].

To address the need for novel theranostic methods, we are reporting porphyrin-based
micelles targeting the prostate-specific membrane antigen (PSMA) [32–34]. Identifica-
tion of disease-specific biomarkers and targeting strategies have also greatly improved
treatment options by minimizing potential side effects [35–37]. Accordingly, PSMA is a
well-established biomarker for advanced prostate cancer, as prostate tumors highly overex-
press this antigen [38,39]. In addition to such active targeting, preparation of porphyrins
in micelles would also enhance their stability and half-life in circulation, thereby greatly
improving their therapeutic window by combining improved tumor accumulation ca-
pacities and active targeting methods. We were able to demonstrate the robustness of
PA signals from the porphyrin micelles themselves, and their superior sensitivity and
selectivity against PSMA-expressing tumors in a xenograft mouse model. All in all, we
believe that the concept of porphyrin micelles may become a strong candidate for the next
generation of theranosis in prostate cancer patients.

2. Results
2.1. Schematic of Porphyrin-Micelle-PSMA (PMP) Tumor Binding Phenomenon

A summary of PMP mechanisms is described in Figure 1. As depicted in the figure,
PSMA in PMP nanoparticles determines the intensity of binding affinity in PC-3 and
LNCaP cancer cells. In the case of PC-3 which does not have PSMA binding site, since
the binding affinity of PMP is relatively low, the phenomenon of materials passing in the
direction of the arrow increases. Conversely, in the case of LNCaP with PSMA binding
site, the amount of accession to cancer cells increases due to the effect of PSMA attached
to PMP.
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2.2. Characterization of PM and PMP

Porphyrin–Micelle (PM) and Porphyrin–Micelle–PSMA (PMP) nanoparticles were
characterized according to their size and zeta potentials (Table 1). For these measure-
ments, dynamic light scattering was used (Malvern Zetasizer Nano, Malvern Instrument
Ltd., Malvern, UK). There were no significant differences between the sizes and the to-
tal yields of the nanoparticle formulations, which had a mean diameter of 23 ± 4.5 and
26 ± 6.2 nm for PM and PMP, respectively. The sizes and the shapes of the nanoparticles
were also evaluated with scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) (Figure 2B). We confirmed the spherical shape of the nanoparticles
and that they were well-dispersed across the medium. Furthermore, there was no statisti-
cal difference between the zeta potential values for PM and PMP, which had voltages of
−11.3 ± 2.1 and −14.4 ± 2.8 mV, respectively. As such, we speculated that the effects of
the conjugated PSMA-targeting moiety on zeta potentials would be marginal. Furthermore,
we examined the molecular weight of PM and PMP using MALDI–TOF, according to
which data (Figure 2A), an increase in molecular weight was observed, suggesting the
formation of Porphyrin Micelles. There was also an intensity between 3000 and 4000 m/z
in the PEG3.5K graph, and it was speculated that most sizes of PEG3.5K would be in this
range. After PPR was conjugated to PEG3.5K, the m/z intensity in that range significantly
decreased, because, we speculated, the PPR reacted better with the short PEG.

Table 1. Size and zeta potential of porphyrin micelle nanoparticles.

Porphyrin Micelle Size (nm) Zeta Potential (mV)

PM 23 ± 4.5 −11.3 ± 2.1

PMP 26 ± 6.2 −14.4 ± 2.8
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2.3. In Vitro Cell Viability Study and Confocal Microscopy

The cytotoxic effects of Porphyrin, PM, and PMP were first evaluated in vitro us-
ing the PSMA-expressing LNCcP and PSMA-null PC3 cancer cell lines. First, different
concentrations of Porphyrin, PM, and PMP were incubated with the cells to observe the
effects on the cell viability of the two cell lines. Compared to the untreated control, none of
Porphyrin, PM, and PMP groups had a significant effect on the viability or morphology of
the LNCaP (Figure 3A) and PC3 (Figure 3B) cells. Next, the cells were incubated with PMP
for 24 h and then observed under a confocal microscope. While a strong localization signal
from PMP was observed on the surface of PSMA-expressing LNCaP cells, no fluorescence
was observed in the PSMA-null PC3 cells incubated with PMP, demonstrating the strong
binding efficiency of the PSMA-targeting PMPs (Figure 3C).
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Figure 3. Cytotoxicity of porphyrin, PM, and PMP in vitro. (A) LNCaP cell line at difference material concentrations.
(B) PC-3 cells at different material concentrations. (C) Confocal images of LNCaP and PC-3 cells treated with PMP to test
binding affinity. Scale bar: 50 µm.

2.4. Selection of Optimal Laser Wavelength

For the selection of the optimal imaging laser wavelength, PA signals generated by
porphyrin and PM were measured by changing the wavelength from 680 to 880 nm [40].
Note that changes in PA signal intensity were linearly proportional to the optical absorbance
of a target. The ultrasound images in Figure 4A showed the upper and bottom portions
of the silicone tube that contained PM nanoparticles, porphyrin, and water. Since the
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nanoparticle size was on the order of tens of nanometers and it was much smaller than
the ultrasound wavelength (i.e., hundreds of micrometers), ultrasound backscattering was
negligible and thus any information about the nanoparticles or porphyrin and water did
not appear in the ultrasound images. In contrast, the PA images of PMP and porphyrin
nanoparticles were clearly shown (Figure 4B) because the particles were able to absorb
the laser energy and generate PA signals. Since the water did not contains any laser
absorbers, low PA signals were observed. The average PA signal intensity was 2.89 times
higher for PMP than for porphyrin (Figure 4C). This implies that the PMP particles were
better laser absorbers than porphyrin. In addition, the PMP particles absorbed the laser
to the maximum when the wavelength was 680 nm; the PA signal generated by the PMP
particles was 5.06 times higher than that of porphyrin at the same wavelength; thus, it was
considered the optimal wavelength for PA imaging of the PMP particles.
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2.5. Photoacoustic Imaging of the Tumor In Vivo

The in vivo imaging performance of each particle was evaluated with the mouse
models bearing PC3 and LNCaP tumors. After injecting porphyrin, PM and PMP, both
ultrasound and PA images were acquired every 5 min for 30 min. For the PA imaging, the
optimal laser wavelength of 680 nm was used. The combined ultrasound and PA images are
shown in Figure 5 before the injection of PMP (left panel of Figure 5A), PM (the left panel
of Figure 5B), or porphyrin (left panel of Figure 5C). The PA signals were observed only in
the cutaneous region of the mice prior to the injection, but the generation of the PA signals
was negligible within the tumor regions indicated by the dashed white circles in Figure 5.
Five minutes after PMP injection, the PA signal strength increased significantly within the
LNCaP tumor, but it did not change much within the PC3 tumor (see Figure 5A,D,E). No
significant changes in PA signal strengths were also observed within the LNCaP and PC3
tumors after the PM and porphyrin injection. The average PA signal intensity was 13 times
higher for PMP inside the LNCaP tumor than for PMP inside the PC3 tumor or for PM
and porphyrin inside both LNCaP and PC3 tumors. The results implied that only PMP
nanoparticles bind well PSMA, which is highly overexpressed by prostate (LNCaP) tumors.
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3. Discussion

Porphyrin-based materials are continuously being investigated in biomedicine owing
to their unique characteristics, such as absorbing light efficiently at a wide range, thereby
inducing chemical and physical changes. Because of these properties, porphyrin deriva-
tives have been used in clinics as photodynamic agents in bladder cancer treatment. As
demonstrated in this work, a higher accumulation of photosensitizers at the tumor region
allows selective, highly sensitive PA imaging of the targeted tumors. To improve the
circulation half-life and the accumulation of these PA agents, we also prepared porphyrins
in nanoparticle formulations. The porphyrin micelles, PM, and the PSMA-targeting PMs
(PMPs) were prepared in a way that porphyrins were packed inside the globular structure
with branches of polyethylene glycol facing outward to the surface.

This phenomenon is presumed probably because the aggregated porphyrin concentra-
tion is higher than that of the porphyrin that only spread in all directions in the solution.
In fact, when compared to blood, a signal about 4 times higher than that of only porphyrin
was confirmed because of checking at the same concentration, and a superior signal was
confirmed compared to only porphyrin. Since the concentration of PMP that can be in-
jected is low compared to the high concentration of blood in living organisms, there was no
noticeable difference in the in vivo experiment, but when PSMA attached to the PM, the
signal difference between PM and PMP was secured in the LNCaP model. Through this, it
was possible to confirm the possibility of PMP. In addition to its diagnostic use, PMP is
expected to be used as an anticancer agent against the toxic side effects of anticancer drugs.
According to the results of many studies on porphyrin, the possibility of cancer treatment
was confirmed through ROS generated by the meeting of porphyrin and ultrasound, and
it can be considered as an excellent particle not only for diagnosis through PMP but also
used for cancer treatment using ultrasound in the future.

4. Materials and Methods
4.1. Reagents and Equipment

Hemin porphyrin was acquired from Sigma Aldrich (St. Louis, MO, USA). PEG3.5K
was acquired from creative PEG Works (Chapel Hill, NC, USA) (Sodium borohydride
(NaBH4), sodium cyanoborohydride (NaCNBH3), Zolazepam (Zoletil®) was obtained
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fromVirbac (Virbac, Carros, France), and xylazine hydrochloride (Rompun 2%)was ac-
quired from Bayer (Bayer Korea, Seoul, Korea). The 1260 Infinity II LC system was acquired
from Agilent Technologies (Agilent Technologies, Santa Clara, CA, USA).

4.2. Preparation of PMP

To synthesize PEG3.5K-TZ(PEG3.5K-methylenetetrazine), PEG3.5K-amine and methy-
lene tetrazine-NHS were dissolved in DCM at 1:1 molar ratio over stirring for 30 min. After
DCM was evaporated by distillation, Hemin Porphyrin and DMF were added in the same
batch and stirred for 1 h. The solution was distilled, and the pellet was re-dispersed with
distilled water. The solution was centrifugated at 15,000 rpm for 15 min at 4 ◦C to discard
unreacted water-insoluble material. The final material was checked with MALDI–TOF to
see if the PM had been synthesized. The size of PM was measured with DLS and freeze-
dried. To prepare PMP, PSMA targeting moiety, PM and CDI were dissolved in distilled
water at 0.3:1:0.3 molar ratio over stirring for overnight. 5k Amicon was used to purify the
PMP and stored at 5 ◦C.

4.3. Characterization of PMP

The hydrodynamic size, polydispersity, and zeta potential of the prepared PMP and
PM materials were measured by using the dynamic light scattering (DLS) (Zetasizer Nano
ZS90; Malvern Instruments, Malvern, UK). The molecular weight of the synthesized PM
was measured using MALDI–TOF and the morphology and size of the PMP and PM
materials were further studied with transmission electron microscopy (TEM) and scanning
electron microscopy (SEM) at the National Center for Inter-University Facilities, Seoul
National University, Korea.

4.4. Cell Culture

Human prostate cancer line LNCaP and PC3 cells were acquired from the American
Type Culture Collection (ATCC) and were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) and Roswell Park Memorial Institute (RPMI), respectively, and supplemented
with 10% heat-inactivated fetal bovine serum (FBS), 100 IU/mL penicillin, 100 mg/mL
streptomycin, and 2 mM L-glutamine. Cultures were stored in a humidified atmosphere
with 5% CO2 at 37 ◦C and frequently tested for mycoplasma contamination. Cells were sub-
cultured once they reached 80% confluence, determined by the trypan blue dye exclusion
method.

4.5. Cell Viability Assay

The CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) method was
used to measure the effects of PM, PMP, and porphyrin on cell viability. LNcaP and PC3
cells were seeded on 96-well plates at a density of 5 × 103 cells per well and incubated
overnight. First, the effects of PM, PMP, porphyrin on cell viability were evaluated by
adding various concentrations to both LNCaP and PC3 cells. Cells were removed from the
incubator at certain times, and their viability was evaluated against the phosphate-buffered
saline (PBS) controls using the MTS solution to derive approximate IC50 values.

4.6. Confocal Laser Scanning Microscopy

LNCaP and PC3 cells were seeded on 8-well chamber slides (Nunc—Lab-Tek—II
Chamber Slide—System, Thermo-Fisher Scientific, Waltham, MA, USA) at a density of
3 × 104 cells per well and incubated overnight. On the next day, the cells were treated with
various concentrations of Porphyrin, PM, and PMP and further incubated for varying peri-
ods. Once incubation was complete, the cells were fixed for 15 min with 4% formaldehyde
and counter-stained with 40,6-diamidino-2-phenylindole dyes (DAPI, Thermo-Fisher Sci-
entific, Waltham, MA, USA). During fixation and staining, the cells were washed with fresh
PBS. The images were acquired using a confocal microscope (Carl Zeiss, Inc., Oberkochen,
Germany), using the excitation/emission wavelengths of 600 nm.
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4.7. In Vivo Study

Immunodeficient, 6–8 week-old nude female mice were purchased from Orient Bio
(Seoul, Korea) for the toxicity and efficacy studies. The mice were acclimated for a week
before the start of the study and were maintained at standard conditions in specific
pathogen-free (SPF) environments: 25 ± 2 ◦C temperature, 50 ± 10% relative humid-
ity, and 12 h light/12 h dark. All mice were fed sterilized standard mouse chow and water
ad libitum. After acclimatization, 1 × 106 LNCaP and PC3 cells suspended in Matrigel
(Corning, Tewksbury, MA, USA) were injected into the right flank regions of the mice. Once
the tumor volume had reached ~150 mm3, the mice were randomly sorted for treatment.
The tumor sizes were monitored with a digital caliper, and the volumes were calculated
according to the formula width2 × length × 0.5. All the in vivo protocols (Approval Num-
ber: BA-1911-283-083-01) were verified according to the guidelines of the Seoul National
University Bundang Hospital.

4.8. Photoacoustic Protocols Ex-Vivo

For ultrasound imaging and PA signal reception, a commercial ultrasound research
imaging scanner (Vantage 128, Verasonics, Inc., Redmond, WA, USA) equipped with an
ultrasound linear array transducer (L7-4, Verasonics Inc., Kirkland, WA, USA) was used.
For PA imaging, the linear array transducer was integrated with custom-made bifurcated
optical fibers. Laser pulses with a length of 7 ns were generated by a Nd:YAG laser
excitation system Surelite III-10 and Surelite OPO Plus, Continuum Inc., Santa Clara, CA,
USA) and delivered into the target regions through optical fibers. The laser pulse repetition
rate was 10 Hz and the energy density was measured at 4.23 mJ/cm2 in front of the optical
fibers. Detailed experimental arrangement could be found in [41].

For optimal wavelength selection, three silicone tubes (AAQ04091, Tygon® Medical-
Tubing, Saint-Gobain Corp, Courbevoie, France) were prepared. The tube had an inner
diameter of 1.27 mm (or 0.05 inches) and an outer diameter of 2.286 mm (or 0.09 inches).
The tubes were immersed into a container filled with deionized water. Porphyrin, PM
nanoparticles, and water were injected into the tubes. The concentrations of porphyrin and
PM nanoparticles were each 0.8 mg/mL. Ultrasound imaging scanning was conducted to
place the tubes at the focal depth of the array transducer; the final location of the tubes was
25 mm from the array surface. PA signals were acquired by changing the laser wavelength
from 680 to 880 nm in 10 nm increments. The stored ultrasound and PA signals were used
to construct images on MATLAB (MathWorks Inc., Natick, MA, USA). The strength of PA
signals inside the ultrasound images of the tubes was measured, and the maximum signal
intensity was calculated.

The in vivo experiment was performed with the same imaging equipment, but the
laser wavelength was fixed at 680 nm, selected as the optimal wavelength. The ultrasound
and PA images of both LNCaP and PC3 cells injected regions were acquired as reference
images. The PMP, PM, and porphyrin were injected into the tumor sites of three mice,
respectively. Both ultrasound and PA image data were acquired for 30 min at an interval
of 5 min after the injection. The image data were used for construction of combined
ultrasound and PA images with the MATLAB software. After delineating the LNCaP and
PC3 tumor regions on the ultrasound images, the strengths of PA signals inside the regions
were measured, and the average PA strength was calculated.

5. Conclusions

In this work, we synthesized porphyrin conjugated to PEG3.5K and clarified the
hydrophilic and hydrophobic parts that induce self-assembled porphyrin micelles. In
addition, by attaching a targeting moiety (PSMA), which can only be attached to LNCaP,
the delivery also improved. Through the photoacoustic device, it was possible to confirm
the increase in the signal of the substance and its binding affinity, and through this another
possibility for prostate cancer diagnosis was confirmed. Here, if porphyrin and ROS
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generated by ultrasound are used together, it will be an excellent theragnostic material that
can be used to diagnose and treat at the same time without using anticancer drugs.
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