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Abstract

Analyses investigating low frequency variants have the potential for explaining additional genetic heritability of many
complex human traits. However, the natural frequencies of rare variation between human populations strongly confound
genetic analyses. We have applied a novel collapsing method to identify biological features with low frequency variant
burden differences in thirteen populations sequenced by the 1000 Genomes Project. Our flexible collapsing tool utilizes
expert biological knowledge from multiple publicly available database sources to direct feature selection. Variants were
collapsed according to genetically driven features, such as evolutionary conserved regions, regulatory regions genes, and
pathways. We have conducted an extensive comparison of low frequency variant burden differences (MAF,0.03) between
populations from 1000 Genomes Project Phase I data. We found that on average 26.87% of gene bins, 35.47% of intergenic
bins, 42.85% of pathway bins, 14.86% of ORegAnno regulatory bins, and 5.97% of evolutionary conserved regions show
statistically significant differences in low frequency variant burden across populations from the 1000 Genomes Project. The
proportion of bins with significant differences in low frequency burden depends on the ancestral similarity of the two
populations compared and types of features tested. Even closely related populations had notable differences in low
frequency burden, but fewer differences than populations from different continents. Furthermore, conserved or functionally
relevant regions had fewer significant differences in low frequency burden than regions under less evolutionary constraint.
This degree of low frequency variant differentiation across diverse populations and feature elements highlights the critical
importance of considering population stratification in the new era of DNA sequencing and low frequency variant genomic
analyses.
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Introduction

In the field of human genetics research, there has been

increasing interest in the role of low frequency variation in

complex human disease (defined in this text as variants with a

minor allele frequency between 0.5%–3%). This is in many ways a

response to changing technology, but more importantly a response

to the inability to completely explain heritability in common

complex diseases and recognition of the true multifactorial

mechanisms of genetic inheritance [1]. Since low frequency

variants are likely essential in understanding the etiology of

common, complex traits, it is critical to elucidate the genetic

architecture and population substructure of low frequency variants

for future work in this field. Factors such as rapid population

growth and weak purifying selection have allowed ancestral

populations to accumulate an excess of low frequency variants

across the genome. This affects genomic analyses in two ways:

proportion of deleterious versus neutral variation expected in low

frequency variants and population stratification.

It has been suggested that slightly deleterious single nucleotide

variants (SNVs) subjected to weak purifying selection are major

players in common disease susceptibility [2,3]. For example,

Nelson et al. found that in 202 drug target genes, 2/3 of the low

frequency variants were nonsynonymous mutations. This is a

much higher ratio than found for common variants, and reflect the

expected proportion given random mutation and degenerate

coding. This ratio also suggests low frequency variants are only

weakly filtered by selection [2,4]. In addition, low frequency

variants represent a considerable proportion of the genome due to

recent explosive population growth [3]. Gorlov estimates up to

60% of SNVs in the genome are variants with an allele frequency

,5% [5]. Since the allele frequency distribution is skewed towards
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more low frequency variants, a higher number of low frequency

deleterious variants are expected. Subsequently, low frequency

variants appear to be enriched for functional variation, including

protein coding changes and altered function [6].

Further, low frequency variants exhibit extreme population

stratification. Demonstrating the magnitude of low frequency

population stratification between two populations, Tennessen et al.

identified more than 500,000 SNVs using 15,585 protein-coding

genes from 2,440 individuals. Of these SNVs, 86% had a

MAF,0.5% and 82% were population specific between European

Americans and African Americans [3]. Low frequency allele

sharing between populations on the same continent can be

between 70% and 80%. In contrast, low frequency allele sharing

between populations on different continents can be lower than

30% and variants are often unique to a single population. This

extreme geographic stratification can lead to higher false positives

and difficulty in replicating associations across genetic studies

when not considered as part of the experimental design for low

frequency SNV analyses [6].

To study the ‘‘landscape’’ of low frequency variant stratification

across populations, we grouped low frequency variants across

pertinent genome-wide biological features in a series of pairwise

population comparisons across multiple ancestries. We define the

boundaries of grouping by features, which consist of genomic

regions (one or many) that belong to a genomic category, for

example, a gene or a set of genes in a pathway. Methods that

aggregate variants have been shown to be much more powerful

than single-variant association testing for low frequency variants

[7–10], and thus are reliable to detect population stratification.

Our collapsing method, BioBin, provides the opportunity to cast a

broader net and uncover stratification across meaningful elements

such as genes, pathways, and evolutionary conserved regions by

aggregating low frequency variants based on expert biological

knowledge.

Herein we have applied BioBin to individuals from 1000

Genomes Project Phase I data; we defined ‘‘cases’’ and ‘‘controls’’

randomly between exhaustive pairwise population comparisons.

Our goal was to identify features across the genome with

differences in low frequency burden between populations;

specifically, to look for aggregate differences in low frequency

variation between populations, not to detect individual population-

specific variants. We show that BioBin is effective in identifying

differences in low frequency variant burden centered on biological

criteria and highlights the considerable differences in low

frequency variants across ancestry groups. These results further

emphasize the critical importance of considering low frequency

population substructure in future rare and low frequency variant

analyses.

Results

Low frequency variant burden analysis in 1000 Genomes
Project data

We applied BioBin to whole-genome population data using the

1000 Genomes Project Phase I data. The populations, sample

sizes, and total number of loci, variants, low frequency variants,

and private variants are listed in Table 1. Although the Iberian

population (IBS) is listed in Table 1, this population was not used

in the analyses presented in this paper. There was not a sufficient

sample size to meet our low frequency criteria (N = 14, MAF

cutoff = 0.03).

In addition to the differences in overall magnitude of variation

seen in Table 1 between these population groups, there were also

differences in the distribution of this variation. In Figure 1, we

present an allele frequency density distribution plot of all

autosomal chromosomes for all 13 populations. African descent

populations have the highest density of low frequency variation.

Others have found a similar trend genome-wide [11]. In general,

the African ancestral populations not only have more variants

overall than other ancestral groups (see Table 1), these populations

also have a higher distribution of low frequency variants than

other ancestral groups (see Figure 1).

Although low coverage next generation sequence data is prone

to errors, we found no evidence that sequence technology led to

differential bias in a way that could explain the trends found in this

paper (Text S1, Table S1, Figures S1, S2).

Investigation of allele sharing
We investigated sample-relatedness with respect to common

and low frequency variants using both identity-by-descent (IBD)

and identity-by-state (IBS) estimations, and in each analysis, we

found evidence of increased relatedness in ASW (African ancestry,

USA), CHB (Han Chinese Beijing, China), CHS (Han Chinese

Shanghai, China), CLM (Medellin, Columbia), GBR (England

and Scotland), JPT (Japan), LWK (Luhya, Kenya), and MXL

(Mexican Ancestry, California). We performed iterative IBD

calculations in plink to eliminate related individuals from

continental groups. Seventy-five individuals of 1080 total individ-

uals were parsimoniously removed to achieve a pi_hat, = 0.3 in

each continental population. The remaining 1,005 individuals

were used for the binning analyses presented in this paper.

An alternate allele sharing method described by Abecasis et al.

uses IBS rather than IBD to review allele sharing [12,13]. In the

case of low frequency or rare variants, IBS approximates IBD.

Figure 2 shows within population IBS for all 13 populations for

variants with a MAF,3%, where each point represents a pairwise

IBS calculation within the same population (i.e. YRI-YRI but not

YRI-CEU). In Figure 2A, the pairs with average IBS calculations

that fall outside of the cluster are cryptically related individuals

with increased allele sharing. Figure 2B shows the IBS calculations

after removing 75 individuals with cryptic relatedness. Complete

Author Summary

Low frequency variants are likely to play an important role
in uncovering complex trait heritability; however, they are
often continent or population specific. This specificity
complicates genetic analyses investigating low frequency
variants for two reasons: low frequency variant signals in
an association test are often difficult to generalize beyond
a single population or continental group, and there is an
increase in false positive results in association analyses due
to underlying population stratification. In order to reveal
the magnitude of low frequency population stratification,
we performed pairwise population comparisons using the
1000 Genomes Project Phase I data to investigate
differences in low frequency variant burden across
multiple biological features. We found that low frequency
variant confounding is much more prevalent than one
might expect, even within continental groups. The
proportion of significant differences in low frequency
variant burden was also dependent on the region of
interest; for example, annotated regulatory regions
showed fewer low frequency burden differences between
populations than intergenic regions. Knowledge of pop-
ulation structure and the genomic landscape in a region of
interest are important factors in determining the extent of
confounding due to population stratification in a low
frequency genomic analysis.

Low Frequency Burden Analyses in 1000 Genomes Data
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Table 1. Phase I 1000 Genomes Project data characteristics.

Continental Group POP POPULATION N REL
TOTAL
LOCI

TOTAL
VARIANTS

LOW FREQ
VARIANTS

PRIVATE
VARIANTS

African descent (AFR) ASW HapMap African ancestry
individuals from SW US

61 5 18819173 18762530 7948290 1059215

LWK Luhya individuals 97 10 19936728 19857956 8781777 2600039

YRI Yoruba individuals 88 0 18022152 17926400 7328288 1032847

Asian descent (EAS) CHB Han Chinese in Beijing 97 16 10566371 10292757 3673350 860493

CHS Han Chinese South 100 16 10547019 10251069 3872508 1102270

JPT Japanese individuals 89 17 10368186 10063756 3535488 1233969

European descent (EUR) CEU CEPH individuals 87 0 11198921 10994490 4028071 520730

FIN HapMap Finnish
individuals from Finland

93 0 11005104 10799742 3549441 524199

GBR British individuals from
England and Scotland

89 3 11411688 11212275 4064515 576664

IBS Iberian populations in
Spain

14 0 8424366 8155987 0 129800

TSI Toscan individuals 98 0 11858607 11668150 4502592 818043

Spanish/Mexican descent
(AMR)

CLM Colombian in Medellin,
Colombia

60 1 13869201 13753047 6063724 729009

MXL HapMap Mexican
individuals from LA
California

66 7 12929352 12788406 5322835 840056

PUR Puerto Rican in Puerto
Rico

55 0 14066653 13958200 6266201 561551

Fourteen populations released in the Phase I 1000 Genomes Project data release, including the continental group, population abbreviation (POP), short description of
each population (POPULATION), number of individuals (N), number of cryptically related individuals dropped in final analyses (REL), total number of loci, variants, low
frequency variants (MAF, = 0.03), and private variants. Only autosomal variants were considered. The total loci column refers to the number of variant lines in the VCF
file, but not all of these lines contain binnable variants, due to filtering and missing data.
doi:10.1371/journal.pgen.1003959.t001

Figure 1. Minor allele frequency distribution on autosomal chromosomes for 13 1000 Genomes Project Phase I populations. Groups
are color coordinated by continental ancestry: greens = African descent (YRI, LWK, ASW); blues = Mexican/Spanish descent (PUR, CLM, MXL); orange/
reds = European descent (GBR, FIN, CEU, TSI); and pink/purple colors = Asian descent (JPT, CHB, CHS). The populations of African descent have the
highest proportion of low frequency variation.
doi:10.1371/journal.pgen.1003959.g001

Low Frequency Burden Analyses in 1000 Genomes Data
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details of these and additional sample-relatedness analyses are

available in Text S2, Figure S3, Figure S4, and Figure S5.

Genomic feature exploration
Knowledge of population substructure in low frequency variants

is critical for genomic studies. We applied BioBin to test for low

frequency (MAF#0.03) variant burden differences between 13

populations from the 1000 Genomes Project across different

genomic features: genes (intronic and exonic variants, filtered

nonsynonymous and predicted damaging variants), intergenic

regions, ORegAnno annotated regulatory regions, pathways,

pathway-exons, evolutionary conserved regions, and regions

considered to be under natural selection. Results are shown in

Figure 3, Figure 4, Figure 5, Figure 6, Figure S6, and Figure S7. In

each matrix plot, we have indicated the proportion of significant

bins (after Bonferroni correction) out of the total number of bins

generated between two populations. The color intensity represents

the proportion of total bins that were significant [0,1]. Overall, there

are large differences across populations with regard to low

frequency variant burden and the distribution of low frequency

variants is not random across the genome. The magnitude of

stratification corresponds to the mutational landscape of the region.

Coding and noncoding regions
We chose NCBI Entrez to provide the boundaries for gene

regions and created a custom role file of intron and exon

Figure 2. Within population identity-by-state (IBS) estimations A) before and B) after removing individuals with cryptic
relatedness. The x-axis represents the IBS mean for low frequency variants averaged over 22 autosomal chromosomes. The y-axis corresponds to
the standard deviation of IBS scores across 22 autosomal chromosomes. The colors and point types correspond to each population; color schemes
correspond to general ancestry groups as defined for Figure 1. Each point represents a population pairwise IBS calculation (i.e. YRI-YRI, not YRI-CEU).
Identifying and excluding related individuals removes the outliers seen in the top plot.
doi:10.1371/journal.pgen.1003959.g002

Low Frequency Burden Analyses in 1000 Genomes Data
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Figure 3. Proportion of significantly different bins in A) gene exon, B) gene intron, and C) intergenic regions. The abbreviations for the
each population on found on the x and y-axes. The numbers in each block and the color intensity [0,1] indicate the proportion of significant bins
(after Bonferroni correction) for the 1000 Genomes populations on each axis, where the darker the color, the higher the proportion of significant bins.
In general, the x-axis is organized with African descent populations on the far right and increasing differentiation with regard to low frequency

Low Frequency Burden Analyses in 1000 Genomes Data
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boundaries using data provided from UCSC Genome Browser

[14]. In Figure 3, the top matrix corresponds to bins created using

gene-exon boundaries, the middle matrix corresponds to bins

created using gene-intron boundaries, and the bottom matrix

corresponds to bins created using regions between genes

(intergenic). The values and color intensity within each block

represent the proportion of significant bins after Bonferroni

correction out of the total number of bins generated between

two populations.

The coding regions show a trend of a lower proportion of

significant bins with low frequency variant burden differences than

either the intron or intergenic bins. For example, in the CEU

(Northern/Western European Ancestry, USA)2YRI (Yoruba

African) comparison, approximately 44% of the gene-exon

bins had significant differences in low frequency variant

burden. In contrast, the noncoding region bins, gene-introns

and intergenic bins had 66% and 70% of bins with significant

differences in low frequency variant burden. The coding

regions appear to be under more constraint across populations

than noncoding regions. Comparing only the noncoding

regions, introns tend to have slightly fewer variation differ-

ences than intergenic bins, most likely because introns are by

burden towards the left (i.e. populations of Asian descent have the highest proportion of significant bins compared to African descent groups). The
proportion of significant bins across all population comparisons increases from coding (A) to noncoding (B) and finally intergenic (C) regions.
doi:10.1371/journal.pgen.1003959.g003

Figure 4. Proportion of significantly different bins for gene-exon filters: A) nonsynonymous and B) predicted deleterious variants.
The abbreviations for the each population on are on the x and y-axes. The numbers in each block and the color intensity [0,1] indicate the proportion
of significant bins (after Bonferroni correction) for the 1000 Genomes populations on each axis, where the darker the color, the higher the proportion
of significant bins. In general, the x-axis is organized with African descent populations on the far right and increasing differentiation with regard to
low frequency burden towards the left (i.e. populations of Asian descent have the highest proportion of significant bins compared to African descent
groups). Filtering gene exon regions by mutation type and predicted functional significance lead to smaller bins and overall greatly reduced
proportions of significance.
doi:10.1371/journal.pgen.1003959.g004

Low Frequency Burden Analyses in 1000 Genomes Data
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default nearest neighbors to the selective pressures on coding

regions.

We filtered the gene-exon bins using annotations from the

Variant Effect Predictor Software (VEP) [15]. We created gene

bins with only nonsynonymous variants and a second analysis

using only predicted damaging variants annotated by SIFT or

PolyPhen2 [15–17]. The results in Figure 4 indicate that these

potentially functional and significant changes are even more

conserved between populations than coding regions (Figure 3A).

ORegAnno annotated regions
We used ORegAnno (Open Regulatory Annotation database)

to define regulatory region boundaries for the bin analysis. The

top matrix of Figure 5 shows the 78 population comparisons for

the ORegAnno regulatory feature analysis.

In comparison to Figure 3, the annotated regulatory regions

have fewer significant bins. For example, in gene-exon analysis

shown in Figure 3, approximately 44% of the ASW-CHB gene-

exon bins contained significant differences in low frequency

burden. However, in Figure 5, only 28% of the ASW-CHB

annotated regulatory bins contained significant differences in low

frequency burden. This trend is consistent across the matrix of

population comparisons; regulatory regions have fewer significant

bins than the coding or noncoding features of the same population

comparison.

Pathway and group features
Several biological pathway and group sources from LOKI (the

Library of Knowledge Integration, which is described in detail in

the methods) were used to generate low frequency variant bins;

Figure 5. Proportion of significantly different bins in A) ORegAnno regulatory and B) pathway feature analysis. The abbreviations for
the each population on are on the x and y-axes. The numbers in each block and the color intensity [0,1] indicate the proportion of significant bins
(after Bonferroni correction) for the 1000 Genomes populations on each axis, where the darker the color, the higher the proportion of significant bins.
In general, the x-axis is organized with African descent populations on the far right and increasing differentiation with regard to low frequency
burden towards the left (i.e. populations of Asian descent have the highest proportion of significant bins compared to African descent groups). From
more conserved regulatory regions to relatively large binned pathways, Figure 5A shows conservation in comparison to genic regions (Figure 3) and
Figure 5B shows occasionally very high proportions of significant bins in parent pathway bins in comparison to genic regions (Figure 3).
doi:10.1371/journal.pgen.1003959.g005

Low Frequency Burden Analyses in 1000 Genomes Data
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Figure 6. Proportion of significantly different bins in natural selection analysis by region of identification: A) AFR continental
group, B) EAS continental group, and C) EUR continental group. The abbreviations for the each population on are on the x and y-axes. The
numbers in each block and the color intensity [0,1] indicate the proportion of significant bins (after Bonferroni correction) for the 1000 Genomes
populations on each axis, where the darker the color, the higher the proportion of significant bins. In general, the x-axis is organized with African

Low Frequency Burden Analyses in 1000 Genomes Data

PLOS Genetics | www.plosgenetics.org 8 December 2013 | Volume 9 | Issue 12 | e1003959



including, PFAM, KEGG, NetPath, PharmGKB, MINT, GO,

dbSNP, Entrez, and Reactome. The Figure 5B shows the 78

population comparisons for the pathway group feature analysis.

Of all of the feature analyses, pathway bins consistently show

the highest proportion of significant differences in low frequency

variant burden between populations. There are several potential

explanations. First, since pathway bins are generally much larger

than the other feature types, it is possible that large bins increase

the false positive rate. Second, the same genes and regions can

recur in multiple pathways. If the region has significant differences

in low frequency variant burden, then each pathway or group

containing that region will have a higher chance of having

significant differences in low frequency variant burden. Following

this logic, a pathway containing many genes has a higher chance

of having at least one gene with extreme low frequency variant

stratification. To compare only coding regions within a pathway,

we filtered the pathway analysis to include only variants within

exons. The proportions are reduced (shown in Figure S6) but still

higher than the gene-exon proportions shown in Figure 3A.

Evolutionary conserved regions (ECRs)
PhastCons output downloaded from UCSC Genome Browser

was used to derive evolutionary conserved feature boundaries for

primates, mammals, and more than 40 species of vertebrates.

Figure S7 shows the 78 population comparisons for the ECR

feature analysis. Of all of the feature analyses, ECR bins had the

smallest proportion of significant bins. More ancestrally similar

populations tended to have negligible low frequency burden

differences in these conserved segments. For example, approxi-

mately 7% of the ECR region bins (vertebrate alignment) were

significantly different between FIN (Finnish) and JPT (Japanese)

individuals. However, the significant number of bins between the

two ancestrally similar GBR (British) and CEU individuals was less

than 1%.

Regions of natural selection
To investigate regions of natural selection, we created a feature

list using regions recently identified/confirmed by Grossman et al.

with the Composite Multiple Signals algorithm on the 1000

Genomes Project data [18]. In addition, a publication by Barreiro

et al. provided a list of specific genes with the strongest signatures

of positive selection; i.e. genes that contained at least one

nonsynonymous or 59 UTR mutation with an FST value greater

than 0.65 [19].

After lifting positions to build 37, there were only 368 regions

from the regions identified by Grossman et al. The results are

shown in Figure 6. The top plot corresponds to regions identified

in African ancestry, the middle plot corresponds to regions

identified in populations of Asian ancestry, and the bottom plot

corresponds to regions identified specifically in populations of

European ancestry. The trends in these three matrix plots are

distinctly different from the trends shown in Figures 3–5. The

blocks of comparisons within a continental group (shown in black

boxes on each matrix plot) still have very little color, which means

that the low frequency variant burden between populations within

a continental group is very similar. The main difference is the gain

of intensity outside of the continental groups. For example, in

Figure 6B (regions identified in Asian populations), the European

continental group and Spanish continental group mostly have

proportions over 60% when compared to populations of Asian

descent. In the same plot, the populations in the African group

have proportions over 85% when compared to populations in the

Asian group.

In general, we found regions considered to be under natural

selection unlikely to have significant differences in low frequency

burden between ancestrally similar populations, and very likely to

have significant differences in regions considered to be under

natural selection between ancestrally distant populations (see

Figure 6). Additional analyses were performed using regions

identified in other publications and can be found in Text S3,

Table S2, and Table S3.

Linkage disequilibrium in binned low frequency variants
Although low frequency variants are commonly assumed as

independent (in low linkage disequilibrium (LD) with other

variants), there are rare haplotypes within related individuals

and populations [20]. In Figure 7, three pairwise population

comparisons are shown. We investigated the top 10 ranked bins

from the CEU-CHB (A), CHB-YRI (B), and CEU-YRI (C)

coding and noncoding analyses for presence of LD (r2.0.3)

between two variants in the same bin. Figure 7 shows bins

predominately filled with white-space indicating low to no

pairwise LD between variants in those bins. In the top ten bins

from these three analyses, rare haplotypes do not appear to be

driving the significant differences seen in low frequency variant

burden.

Correlation between significance and bin size
Since the proportion of significant bins in the feature analyses is

considerably higher for pathway bins than any other feature, we

wanted to investigate the correlation between pathway p-value and

bin size. We chose to assess the correlation between significance

and several characteristics of the pathways using the pathway

feature CEU-YRI population comparison. Figure S8 and Figure

S9 show the correlations between six untransformed and

transformed variables (with outliers removed), where each pairwise

correlation is significant (p-value,0.05). A bin was considered an

outlier if the number of loci in the bin was more than 2.5 standard

deviations from the mean transformed loci value. The most

interesting correlations were the nonlinear correlations between

the loci/variants/genomic coverage and p-values. Figure S9B is a

higher magnification of the highlighted correlation in Figure S9A,

specifically; we plotted the correlation between 2log10 p-values

and log10 variants. The lowess smoothing function is shown in red,

and the function appears to change slope twice. From x = 1 to

x = 3, the slope is increasing with increasing number of variants.

From x = 3 to x = 4, the slope is near 0. From x = 4 to x = 5, the

slope is increasing with increasing numbers of variants. When the

log10-transformed value of the number of variants is less than 3 or

greater than 4, there appears to be a positive correlation between

the number of variants in a bin and increasing significance of that

bin. However, the data is not uniformly distributed and is sparse in

descent populations on the far right and increasing differentiation with regard to low frequency burden towards the left (i.e. populations of Asian
descent have the highest proportion of significant bins compared to African descent groups). The regions of natural selection, particularly negative
selection, are often accompanied by excess low frequency variants. As world populations evolved, selective forces were often unique and location
specific. Therefore, the evolution of low frequency variants compared across world populations can be markers of past selective events. Populations
within a continental group are very similar and we see high proportions of statistically significant bins between populations of different continental
groups.
doi:10.1371/journal.pgen.1003959.g006

Low Frequency Burden Analyses in 1000 Genomes Data
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those same areas. Therefore, the trends in the tails are most likely

unreliable.

We created boxplots describing certain characteristics from

each data source. Figure S10 shows that specific sources (i.e.

KEGG) consistently have larger bin characteristics (number of

loci, number of genes, coverage (kb), etc.) and also have much

more significant bin p-values (Figure S10B). It appears that certain

sources might inherently have more significant groups by nature of

the information that source provides, or because of the size of

groups found in the source.

From the matrix plots shown above, there is undoubtedly a

functional component that influences the evolution of low

frequency variants. However, from the correlations in the pathway

analyses, it is also clear that larger bins can contain more

stratification and thus more likely to have significance differences

in low frequency burden. In more traditional case/control

analyses, large bins are less likely to be significant because

increasing binsize generally means more noise to mitigate the

signal. However, in this study, when diverse populations are

compared, larger bin sizes have more opportunity to capture

population stratification.

Figure S11 shows the relative number of loci across tested

features and varying interregion parameters. Boxplots in Figure

S11A represent each feature tested in the population comparison.

The small inset figure shows the magnitude of difference between

the numbers of loci in pathways (peak) versus other feature types.

The main plot in Figure S11A shows the same information, but is

limited to 2000 loci. In general, ECRs/exonic regions/nonsynon-

ymous gene variants/ORegAnno annotated regions/predicted

deleterious gene variants/UTRs are very small bins. Pathway bins

have a broader distribution, but in general are much larger. For

comparison, we varied the size of intergenic regions (only

noncoding regions) between 10 kb and 200 kb, those results are

shown in Figure S11B. We also split the entire genome (including

coding and noncoding regions) by various windows between

10 kb–200 kb. Figure S11C represents a genome ‘‘average,’’ and

both Figure S11B and S11C can be used as comparison for feature

tests. Figure S11B and S11C show increasing bin size as windows

increase, the proportion of significant bins increase as window size

increases as well (see Figure S12 and S13).

For example, Figure S13 shows matrix plots from whole-

genome ‘‘average’’ analyses (A–G correspond to 10 kb, 25 kb,

50 kb, 75 kb, 100 kb, 150 kb, and 200 kb respectively). According

to Figure S11A and S11C, exon bins from the original feature

analysis are roughly comparable in size to 10 kb bins from the

whole-genome ‘‘average’’ analysis. In the gene analysis results,

approximately 43.9% of bins are significant after Bonferroni

correction between CEU-YRI. Comparatively, the genome

average between CEU-YRI for 10 kb bins is 57.64%. This

supports the idea that coding regions are presumably more

Figure 7. Proportion of loci in top bins in high LD with other variants in the same bin in A) CEU-CHB, B) CHB-YRI, and C) CEU-YRI
population gene feature comparisons. Each bar represents a gene or intergenic bin. For a particular population comparison (A–C), the total
height of the bar corresponds to the number of loci in that bin. The shades of blue and purple correspond to loci with r2 LD values greater than 0.3
for a specific population shown in the legend. The variant can be in LD in one population, the other population, or both (described in each legend).
Almost all of the low frequency loci in LD had r2 values of approximately 0.5 or 1, corresponding to almost perfect LD. The white space corresponds
to loci in the bin with LD values less than 0.3. The top bins are therefore, mostly composed of independent loci.
doi:10.1371/journal.pgen.1003959.g007
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functional and perhaps more conserved than other regions in the

genome of comparative size.

According to Figure S11A and S11C, pathway bins from the

original feature analysis are roughly comparable in size to 150 kb

bins from the whole-genome ‘‘average’’ analysis. In the pathway

analysis results, approximately 81.28% of bins are significant after

Bonferroni correction between CEU-YRI. Comparatively, the

genome average between CEU-YRI for 150 kb bins is 86.09%.

The gap between pathway bins and ‘‘average’’ genome stratifica-

tion given similar size is much smaller for pathways than it is for

exons. This particular pathway analysis includes introns (which

typically have more variation than coding regions and larger bins

are expected to collect more stratification. However, there are still

fewer significant bins than expected on average.

Discussion

1000 Genomes Project data
Since the reference genome is predominantly of European

ancestry [21–23], populations with non-European ancestry gen-

erally have more variation with respect to the reference genome

than those of European ancestry (see Table 1). Therefore, to

interpret the results of this study, one might conclude that non-

European populations have higher rates of sequencing error than

European descent populations. However, in the most recent 1000

Genomes Project publication, the authors report an accuracy of

individual genotype calls at heterozygous sites more than 99% for

common SNVs and 95% for SNVs at a frequency of 0.5%.

Furthermore, the authors found that variation in genotype

accuracy was most related to sequencing depth and technical

issues than population-level characteristics [11]. Therefore, neither

the sequencing error nor the predominantly European reference

genome adequately explains the trends seen in the genomic feature

exploration (see Text S1, Table S1, Figures S1, S2).

Both sequence generation (technology and/or site) and popu-

lation identity strongly contributes to underlying stratification in

next-generation sequence data. After removing individuals with

cryptic relatedness, 4 out of 13 Phase I populations were

sequenced entirely using a single sequence technology (CHB,

CHS, JPT, and TSI). The other 9 populations had between 3–18

individuals or ,5%–57% of the population sequenced on

technologies other than Illumina (ABI SOLID or LS454). Note:

all three of the Asian populations (after removing individuals with

cryptic relatedness) were sequenced only with Illumina technolo-

gies.

In our IBD analysis using variants with a minor allele frequency

of 5% or greater and linkage disequilibrium r2, = 0.2, we

identified and eliminated 75 individuals of various population

backgrounds. In addition to the previously documented related-

ness in 1000 Genomes Project [http://www.1000genomes.org/

phase1-analysis-results-directory], we also found additional cryptic

relatedness seen in other work [24,25]. The differences are likely

because we used continental groups (not a single population or the

entire 1080 individuals) to identify cryptically related individuals

and in our analysis that could include variants with fixed opposite

frequencies and are overall common. This is infrequent in

populations of the same continental group, but could be

stratification introduced by different sequencing technologies.

Genomic feature exploration
The major goal of this study was to investigate population

stratification across multiple biological features. We created matrix

plots to illustrate the proportion of significant bins in each

comparison (shown in Figure 3, Figure 4, Figure 5, Figure 6,

Figure S6, and Figure S7). Our results show an interesting trend

between functional regions of the genome and variant tolerance.

Mutations appear to be less tolerated in functional regions.

Similarly, ECRs, which are known to be conserved among species,

are also the features least likely to have variation burden

differences between two populations. There is some debate about

selection and functional significance in these conserved regions, it

is unknown what factors have the largest effect on mutation rates

[26], but it is possible that consistently low mutation rates in these

features have generated conserved regions throughout evolution

[27]. There are two potential explanations: 1) additional level of

repair of DNA damage in transcriptional active regions by

transcription coupled repair (TCR), 2) approximately 3% of the

genome is subject to negative selection, however it is estimated that

functionally dense regions contain up to 20% of the sites under

selection [26,27].

A number of the top results in each comparison have an

interesting context, particularly in light of natural selection.

Perhaps one of the most notable is SLC24A5 (Ensembl

ID:ENSG00000188467), which is one of the top ten results in

19 out of 78 populations comparisons in the gene feature analysis.

European specific selective sweeps estimated in the last 20,000

years suggest that SLC24A5 is key in skin pigmentation and

Zebrafish with ‘‘golden’’ mutations exhibit melanosomal changes

[28–30]. The presence of selection in particular populations due to

environmental factors such as distance to the equator has led to

the evolution and expansion of low frequency variants in some

populations but not others. A second notable top result is DARC

(Ensembl ID:ENSG00000213088), which encodes the Duffy

antigen. The DARC gene bin was in the top ten results in 14 out

of 78 population comparisons in the gene feature analysis. It has

long been known that populations of African descent have

increased diversity due to natural selection at this location, which

prevents Plasmodium vivax infection.

The top result from the regulatory region analysis was a region

on chromosome 20 (chr20:45395536–45396346) which was in the

top ten bins in 24 out of 78 populations comparisons in the

ORegAnno feature analysis. This region also overlaps ENCODE

transcription factor binding sites in multiple cell lines, including:

CTCF, POLR2A, NFYA, E2F1, FOS, and more. It was also

annotated as an insulator in multiple cell lines in ENCODE

Chromatin State Segmentation analyses using Hidden Markov

Models [14,31]. One last example, chr15.968, contains variants in

the genome location chr15:48400199–48412256. This bin is one

of the top ten bins in 17 out of 78 population comparisons in the

intergenic analysis. The region covered by the chr15.968 bin is less

than 1 kb upstream of SCL24A5 on chromosome 15 and overlaps

with several transcription factor-binding sites (including CTCF),

regions thought to be weak enhancers, and regions thought to be

insulators. According to Grossman et al., there are defined regions

under natural selection before and after this region

(chr15:45145764–45258860 and chr15:48539026–48633153),

and all are very likely to participate in the transcriptional

regulation of SLC24A5 [18].

The natural selection features require knowledge of three things

for interpretation: 1) population A, 2) population B, and 3) the

population where this signature was identified. When all three of

these are within the same ancestral or continental group, we

expect very few differences in low frequency burden. However, if

population A is the same or similar to the population possessing

the selection signature and population B is different, we expect

significant differences in low frequency burden between popula-

tion A and population B. In our results, we found that the vast

majority of regions considered to be under natural selection had
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significant differences in low frequency burden between disparate

ancestral populations, which support the theory of selection in

these regions.

Correlation between significance and bin size
In general, size of bins can influence the number of stratified

variants contained and thus the significance of that bin. It is

important to prove that this is because larger bins have a greater

opportunity to ‘‘collect’’ variants that are stratified and not

because of inflated type I error. We have tested type I error rates in

bins between approximately 40 variants to over 100,000 variants,

which covers all analyses presented in this paper, and found no

correlation between bin size and Type I error rate (unpublished

data). However, it should also be noted that while larger bins have

more chances to collect stratified variants, there is also a larger

capacity to collect neutral variants that contribute noise and

decrease the signal.

Using CEU-YRI pathway burden analysis, we reviewed the

correlation between pathway size and significance. The number of

genes in pathways ranged from 1 to over 700 genes, with the

average around 5 genes per group. Correlations for this data are

shown in Figure S9. Not surprisingly, there were very linear and

positive correlations between number of loci, number of variants,

and genomic coverage. However, each of these had a nonlinear

and somewhat complex relationship with the log-transformed p-

value. This is highlighted in Figure S9B, which shows the

relationship between the 2log10 transformed p-value and the

log10 transformed number of variants in the bin. The trend

indicates that p-values are positively correlated (become more

significant) with numbers of variants in a bin when the numbers of

variants are relatively small or very large.

Two reasons could explain this correlation: 1) the false-positive

rate is influenced by bin size (number of variants per bin), and 2)

true signals from gene bins with burden differences perpetuate

higher numbers of significant pathway bins. After extensive

simulation testing (unpublished data) and recent publications in

the literature, we believe the later is true [32,33]. A single or small

number of child bins (gene bins in this example), can drive parent

bins (pathways in this example) to be significant even if no other

child bin contains stratification.

The comparison in Figure S10 between group sources available

in LOKI suggests KEGG, NetPATH, PharmGKB, and Reactome

have consistently larger bins (higher number of loci, variants, and

coverage). On average, these same four sources also tend to have

bins with smaller p-values. Therefore, larger pathways are more

likely to contain a gene with extreme low frequency variant

stratification.

Population stratification is incredibly important in genomic

analyses, particularly when low frequency variants are being

studied. Expected stratification and potential bias is related to bin

size and functional significance of region studied. Regions with

more selective pressure often have fewer differences between

populations than one would expect by chance. However, it is also

important to consider the size of the region since population

stratification tends to become more of a problem in large bins.

Trends in the Asian continental group
The x-axis of each matrix plot (i.e. Figure 3) are oriented with

African continental populations on the far right and the

continental group with the highest proportion of significantly

different low frequency variant bins on the far left. According to

these matrix plots, Asian populations have more bins that are

significantly different when compared to African populations than

European/African population comparisons. Popular evolutionary

theories suggest that the population that left Africa split before

travelling East and West. One would expect low frequency burden

differences (compared to African populations) to be very similar.

However, populations from the Asian continental group tend to

have more low frequency burden differences with African groups

than European descent populations differences with African

groups. There are at least three possible explanations; first, the

Asian populations were the only continental group to be

sequenced on the same technology, which could introduce a

different bias when testing any of these populations with

populations outside of Asian ancestry. While this is true of the

1,005 unrelated individuals, there were cryptically related

individuals sequenced using SOLID technologies in all three of

the Asian populations. The only population (including cryptically

related individuals) to be sequenced exclusively on Illumina was

TSI. When we examined the Asian populations and included the

cryptically related individuals (and thus individuals sequenced with

different technologies), the trend was the same. Asian populations

are the most different from African populations with regard to low

frequency variant burden. The second potential explanation is that

Asian populations had considerable proportions of cryptic

relatedness that had to be removed for our analysis, 49 of the 75

individuals removed were from Asian populations. Perhaps there

was something unique about how those samples were collected.

The third and most interesting explanation is a speculation that

involves the journey for early Asian populations after leaving

Africa. Travelling east was much different geographically than

travelling west. For example, early Asian migrants would have

traversed the Himalayan Mountains. The harsh travel could have

induced bottlenecks and other evolutionary mechanisms that

would uniquely change the genetic architecture, specifically the

architecture of low frequency variation. The course of travel for

European descent populations was very different; they were

exposed to unique challenges and climates. As each continental

group diverged from Africa, their separate paths could explain

why the difference in burden exists (EAS/AFR and EUR/AFR).

Conclusion
As we continue in pursuit of genetic etiology explaining

heritability in common, complex disease, it is important to

consider multiple types of genomic data, specifically variation

beyond common variants. Low frequency variants are more

frequent in the genome than common variants and are likely to

have significant functional impact on human health. However, as

we look forward to many successes in next-generation data

analysis, it has become increasingly clear that we can’t apply the

same methods and corrections to low-frequency variants as we did

in GWAS. Since low frequency variants are often recent

mutations, they are specific to continental ancestry groups. This

provides two important conclusions. First, potentially functional

low-frequency variants are likely not the same across distantly

related individuals. Second, low frequency population substructure

leads to substantial differentiation and cannot be ignored [11].

Until relatively recently, we have not focused on the challenges

presented by low frequency population stratification. Current

methods used for GWAS to correct for ancestry are not likely

adequate for low frequency stratification [34,35]. Therefore, it is

imperative that researchers are aware of potential pitfalls

stratification can introduce to low frequency genomic analyses.

In summary, we were able to expose the magnitude of low

frequency population stratification between all populations avail-

able in 1000 Genomes Project Phase I release across multiple

interesting biological features. The magnitude of low frequency

stratification appeared to be dependent on the functional location
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of the variation and the genomic size of the pertinent features. For

example, there were fewer differences in low frequency burden in

coding regions than intergenic regions. We found features with less

variant tolerance and possibly more evolutionary constraint to

have fewer differences in low frequency variant burden between

different populations, i.e. significant low frequency bins seemed to

be consistent with mutation theory. In addition, larger features

were more likely to contain stratified variants and thus be

significantly different between two populations. Low levels of

stratification existed even between populations of the same

continental group. The results of this study serve as a warning to

researchers whom wish to use population control groups such as

1000 Genomes Project or shared control sets, unmatched case and

control groups can contribute significantly to type I error rates.

Future studies should focus on methods to accurately control for

low frequency population stratification.

Methods

BioBin software
BioBin is a standalone command line application written in C++

that uses a prebuilt LOKI database described below (software

paper in preparation). Source distributions are available for Mac

and Linux operating systems and require minimal prerequisites to

compile. Included in the distribution are tools that allow the user

to create and update the LOKI database by downloading

information directly from source websites. The computational

requirements for BioBin are quite modest; for example, during

testing, a whole-genome analysis including 185 individuals took

just over two hours using a single core on a cluster (Intel Xeon

X5675 3.06 GHz processor). However, because the vast amount

of data included in the analysis must be stored in memory, the

requirements for memory usage can be high; the aforementioned

whole-genome analysis required approximately 13 GB of memory

to complete. Even with large datasets, BioBin can be run quickly

without access to specialized computer hardware or a computing

cluster. The number of low frequency variants is the primary

driver of memory usage [36]. BioBin is open-source and publicly

available on the Ritchie lab website (http://ritchielab.psu.edu/

ritchielab/software/).

Library of Knowledge Integration (LOKI) database
Harnessing prior biological knowledge is a powerful way to

inform collapsing feature boundaries. BioBin relies on the Library

of Knowledge Integration (LOKI) for database integration and

boundary definitions. LOKI contains resources such as: the

National Center for Biotechnology (NCBI) dbSNP and gene

Entrez database information (downloaded dbSNP b137: Dec 21

2012, Entrez: Feb 1 2013) [37], Kyoto Encyclopedia of Genes and

Genomes (KEGG, downloaded Dec 21 2012, Release 64) [38],

Reactome (downloaded Dec 12 2012) [39], Gene Ontology (GO,

downloaded Feb 1 2013) [40], Protein families database (Pfam,

downloaded Dec 1 2011) [41], NetPath - signal transduction

pathways (downloaded Sept 3 2011) [42], Molecular INTeraction

database (MINT, downloaded Oct 29 2012) [43], Biological

General Repository for Interaction Datasets (BioGrid, download-

ed Feb 1 2013, version 3.2.97) [44], Pharmacogenomics Knowl-

edge Base (PharmGKB, downloaded Jan 6 2013) [45], Open

Regulatory Annotation Database (ORegAnno, downloaded Jan 10

2011) [46], and evolutionary conserved regions from UCSC

Genome Browser (downloaded Nov 10 2009) [14].

LOKI provides a standardized interface and terminology to

disparate sources each containing individual means of representing

data. The three main concepts used in LOKI are positions, regions

and groups. The term position refers to single nucleotide polymor-

phisms (SNPs), single nucleotide variants (SNVs) or low frequency

variants. The definition of region has a broader scope. Any genomic

segment with a start and stop position can be defined as a region,

including genes, copy number variants (CNVs), insertions and

deletions, and evolutionary conserved regions (ECRs). Sources are

databases (such as those listed above) that contain groups of

interconnected information, thus organizing the data in a

standardized manner.

LOKI is implemented in SQLite, a relational database

management system, which does not require a dedicated database

server. The user must download and run installer scripts (python)

and allow for 10–12 GB of data to be downloaded directly from

the various sources. The updater script will automatically process

and combine this information into a single database file (,6.7 GB

range). A system running LOKI should have at least 50 GB of disk

storage available. The script to build LOKI is open source and

publicly available on the Ritchie lab website (http://ritchielab.psu.

edu/ritchielab/software/). Users can customize their LOKI

database by including or excluding sources, including additional

sources, and updating source information as frequently as they like

[36].

Binning approach
We chose NCBI dbSNP and NCBI Entrez Gene as our primary

sources of position and regional information due the quality and

reliability of the data, clearly defined database schema, and

because they contain gene IDs that map to the majority of group

sources in LOKI. Gene boundary definitions were derived from

NCBI Entrez. Pathway/group bins, regulatory regions, and

evolutionary conserved regions were created using sources

available in LOKI (sources detailed in Software section). Some

sources explicitly provide lists of genes in pathways; others provide

groups of genes, which share a biological connection (i.e. protein-

protein interactions). For the purposes of this study, any bin

created by multiple regions/genes will be analyzed in the

‘‘Pathway-Groups’’ feature analysis. External custom input files

were generated using boundaries of annotated exon regions from

UCSC to bin exon and intron specific variants. For example, if

Gene A has three exons and two introns, only two bins would be

created: GeneA-exons and GeneA-introns. GeneA-exons would

contain all variants that fell within any of the three Gene A exon

boundaries. External custom feature files were also generated for

regions under natural selection by combining regions provided by

previously published work [18,19]. Example binning strategies can

be seen in Figure 8. Using hierarchical biological relationships and

optional functional or role information, BioBin can create many

combinations of variants to bin. Custom feature files and

additional binning details are explained in Text S4, Table S4,

and Table S5.

Statistical analysis
BioBin is a bioinformatics tool used to create new feature sets

that can then be analyzed in subsequent statistical analyses.

Statistical tests used with BioBin can be chosen according to the

hypothesis being tested, the question of interest, or the type of data

being tested [36]. Unless otherwise noted, the results presented

herein were calculated using a Wilcoxon 2-sample rank sum test

implemented and graphed in the R statistical package [47,48]. P-

values presented have been corrected using a standard Bonferroni

correction, adjusting for the number of bins created and tested in a

given analysis. Simulations confirming the power and validity of

using the Wilcoxon 2-sample rank sum test are described in Text

S5 and Table S6.
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Low frequency variant burden analysis in 1000 Genomes
Project data

To investigate population stratification using BioBin, we

analyzed the 1000 Genomes Project Phase I data. The 1000

Genomes Project was started in 2008 with the mission to provide

deep characterization of variation in the human genome. As of

October 2011, the sequencing project included whole-genome

sequence data for 1080 individuals, and aimed to sequence 2,500

individuals by its completion [49]. We removed 75 cryptically

related individuals and conducted a pairwise comparison of low

frequency variant burden differences between all 13 ancestry

groups included in the phase I release of the 1000 Genomes

Project (October 2011 release). Table 1 provides the total number

of variants (common and low frequency) and individuals included

in Phase I VCF files of 1000 Genomes Project data for 1080

individuals in all 13 populations.

Investigation of allele sharing
In any genetic study, and especially in consideration of low

frequency variants, it is important to evaluate sample relatedness.

We combined populations by continental ancestry (i.e. AFR

continental group includes ASW, LWK, YRI) and evaluated

sample relatedness between and within the general ancestry

groups using identity-by-state (IBS) and identity-by-descent (IBD).

Pairwise IBS represents the number of shared alleles at a specific

locus between two individuals. IBS can be observed as 0, 1, or 2

depending on how many alleles are in common between the pair.

If the shared alleles are inherited from a recent common ancestor,

they are also considered IBD. Pairwise IBS calculations for low-

frequency variants approximate IBD since the variants are likely to

be recent and the chance of being identical because of recurrence

is rare [50].

We used plink and plink-seq to estimate pairwise IBS and IBD

for individuals of the same general ancestry group (http://atgu.

mgh.harvard.edu/plinkseq/, http://pngu.mgh.harvard.edu/

,purcell/plink/) [51]. For common variants, we created an

independent subset of SNVs with a minor allele frequency greater

than 5% and r2 values less than 0.2 to calculate pairwise IBD

between individuals. For example, for the populations of African

descent (LWK, ASW, and YRI) we grouped all of the individuals

from these three populations and calculated the IBD. We removed

maximally connected or related individuals in a parsimonious and

iterative manner and repeated the IBD analysis until the

maximum pairwise pi_hat score was less than or equal to 0.3.

After repeating this analysis in each continental group, 75

individuals were dropped from BioBin analyses based on our

threshold for cryptic relatedness. We also evaluated allele sharing

within and between major ancestral groups using plink-seq to

calculate IBS for low frequency variants and common variants

(threshold 0.03 MAF and 0.25 MAF, respectively). Even though

we estimated IBD in common variants (described above), we

calculated the IBS in low frequency and common variants

separately to ensure the results were consistent. Using the ratio

of shared alleles divided by the total number of genotyped alleles

between two individuals, we evaluated excess sharing of low

frequency variants (MAF,0.03) compared to excess sharing of

common variants (MAF.0.25).

Genomic feature exploration
Feature selection in BioBin is a clear innovation over other

available collapsing methods. Knowledge of biological features,

such as genes and pathways, are available through LOKI for

binning. In this analysis, we used the feature options of BioBin to

investigate a variety of biologically relevant bins for differences in

low frequency variant burden across 13 populations. We

implemented a minimum bin size of two variants, inter-region

bin size of 50 kb, and set the MAF binning threshold to 0.03. We

chose a 3% MAF binning threshold to focus our analysis on rare

Figure 8. Alternate binning strategies using biological knowledge and functional or role annotations. Three example binning
strategies: gene burden analysis, pathway burden analysis, and functional pathway burden analysis using four genes, two pathways, and variant
functional prediction information.
doi:10.1371/journal.pgen.1003959.g008
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and near rare variation that differs between population groups.

Additional details concerning binning parameters can be found in

the Text S4. We binned genes (introns, exons, nonsynonymous

variants, and predicted deleterious variants), intergenic regions,

pathways, pathway-exons, regulatory regions, evolutionary con-

served regions, and regions thought to be under natural selection.

Natural selection can alter genomic variation in features,

particularly in regions with some impact on protein function

(regulatory regions, coding regions). Positive selection on a specific

variant allows the advantageous variant to sweep through a

population, which can lead to an excess of common variants.

Alternatively, weak negative selection or purifying selection can

result in selective removal of deleterious alleles. This can decrease

variation around the locus under selection and lead to an excess of

rare or low frequency variation [52]. Commonly, evidence of

natural selection is found only in one ancestral group, which is

consistent with the idea that these selection events postdate

population separation [53]. Because of this differentiation among

populations, we were interested in using regions identified as being

under selective pressures as features in a BioBin analysis. Table 2

shows the analysis plan, features tested, sources used, and the

mean number of bins generated across all pairwise comparisons.

After evaluating the population comparisons for the features

described in Table 2, we investigated the linkage disequilibrium

(LD) in 10 top-ranked bins for three population comparisons,

CEU-CHB, CHB-YRI, CEU-YRI. We calculated the LD

between binned variants and determined the number of variants

inside of a bin in LD with an r2. = 0.3. We also evaluated the

correlation between pathway significance and bin size. We took all

of the pathways in the YRI/CEU analysis and compiled the

following information for each pathway bin; total genomic

coverage, number of genes, number of independent genes,

number of loci, number of variants, and BioBin p-value. Because

the majority of pathways or groups are not very large, the data was

heavily skewed (see Figure S8). We performed a log10 transfor-

mation on all six variables: number of genes in the pathway or

group, number of unique genes (not present in any other pathway

or group), number of loci in the pathway bin, number of variants

in the pathway bin, genomic coverage of the pathway bin, and the

BioBin reported Bonferroni adjusted p-value. Because of the

skewness, we removed any pathway bins that had transformed loci

values outside of 2.5 standard deviations of the log-transformed

loci mean.

Supporting Information

Figure S1 Investigating differential bias in 1000 Genomes

Project data using principal components analysis. Each plot shows

the first two principal components calculated from each

continental group colored by population identity. Additionally,

the shapes of the points indicate technology used, with circles

representing ABI SOLiD and plusses representing Illumina

platforms The labels correspond to populations from four

continental groups: (A) EUR continental group, (B) EAS

continental group, (C) AMR continental group, and (D) AFR

continental group. Since the global variation is caused primarily

by sequence technology, and very few populations are actually

sequenced on a single technology, sequence technology likely

contributes little bias to the trends seen in our results.

(TIF)

Figure S2 Sample analysis with two methods of correcting for

technology effects. A) A sample analysis using gene bins with a

MAF binning threshold of 5% tested with Firth logistic regression.

B) The same analysis with the use of principal component

covariates with the population stratification effects removed. In

this analysis, the principal component covariates are able to

correctly predict the technology with 95% accuracy on average. C)

The same analysis using the sequencing technology itself as

covariates in the regression. In both methods of correction for

technology effects (B,C), we show no substantial influence of

technology effects on the population stratification.

(TIF)

Figure S3 IBD estimates using variants with MAF.10% within

and between ancestral groups. There are two frames for each

ancestral group. The labels correspond to populations from four

continental groups: (A/B) AFR continental group, (C/D) EUR

continental group, (E/F) EAS continental group, and (G/H) AMR

continental group. The left frame from each continental group

corresponds to the IBD estimate within each population (A, C, E,

G). The right frame from each continental group corresponds to

the IBD estimate between populations within the ancestral group

(B, D, F, H).

(TIF)

Figure S4 Pairwise IBS calculations for low frequency variants

(MAF,3%) within continental groups. Plots (A–D) show the IBS

calculations within continental groups for all 1080 individuals. The

Table 2. Binning analysis overview.

ANALYSIS FEATURE SOURCES AVG BIN TOTAL

A Genes-Exons (NS/DEL) NCBI Entrez, UCSC roles 80786

Genes-Introns NCBI Entrez, UCSC roles

Genes-Unknown NCBI Entrez

Intergenic (50 kb) -

B Pathways/Groups PFAM, KEGG, NetPath, PharmGKB,
MINT, GO, dbSNP, Entrez, Reactome

178497

C Natural Selection Grossman 368

D ORegAnno UCSC-ORegAnno 11293

E ECR-vertebrates UCSC-PhastCons 319269

ECR-placental mammals

ECR-primates

Analyses performed for each population comparison; including, features tested, contributing sources, and total of bins generated for each binning analysis.
doi:10.1371/journal.pgen.1003959.t002
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plots to the right (E–H) shows the IBS calculations within

continental groups for 1005 individuals (cryptically related

individuals removed). Each dot represents a pair of individuals;

the colors correspond to population comparisons. Points with the

higher mean IBS indicate increased sharing.

(TIF)

Figure S5 Pairwise IBS calculations for common variants

(MAF.25%) within continental groups (A–D). Plots (A–D) show

the IBS calculations within continental groups for all 1080

individuals. The plots to the right (E–H) shows the IBS

calculations within continental groups for 1005 individuals

(cryptically related individuals removed). Each dot represents a

pair of individuals; the colors correspond to population compar-

isons. Points with the higher mean IBS indicate increased sharing.

(TIF)

Figure S6 Proportion of significantly different bins for the

pathway-exon feature analysis. The numbers in each block and the

color intensity [0,1] indicate the proportion of significant bins for the

1000 Genomes populations on each axis. In general, the x-axis is

organized with African descent populations on the far right and

increasing differentiation with regard to low frequency burden

towards the left (i.e. populations of Asian descent have the highest

proportion of significant bins compared to African descent groups).

The overall proportion of significant bins is much less in this

pathway-exon analysis than the pathway analysis shown in Figure 5b.

(TIF)

Figure S7 Proportion of significantly different bins in evolution-

ary conserved region feature analysis (A) conserved with primates,

(B) conserved with mammals, and (C) conserved with vertebrates.

The numbers in each block and the color density indicate the

proportion of significant bins for the 1000 Genomes populations on

each axis. For example, in the ECR: vertebrate matrix, 16.38% of

the ECR bins have significant differences in low frequency burden

between YRI and CHS populations. In general, the x-axis is

organized with African descent populations on the far right and

increasing differentiation with regard to low frequency burden

towards the left (i.e. populations of Asian descent have the highest

proportion of significant bins compared to African descent groups).

(TIF)

Figure S8 Investigation of pathway significant correlation with

binsize using untransformed pathway variables. Correlation

scatterplot matrix for six untransformed variables: the number of

genes in a pathway (n_genes), the number of unique genes in the

pathway (n_uniq), the number of loci in the pathway bin (loci), the

number of variants in the pathway bin (variants), the genomic

coverage of pathway (coverage_kb), and the bin p-value (p-val).

Bins considered outliers were removed before generating the

correlations (http://stat.ethz.ch/R-manual/R-patched/library/

graphics/html/pairs.html). The variables are right skewed and

require transformation.

(TIF)

Figure S9 Investigation of pathway significant correlation with

binsize using log10 transformed pathway variables. A) Correlation

scatterplot matrix for six log10 transformed variables: the number

of genes in a pathway (n_genes), the number of unique genes in the

pathway (n_uniq), the number of loci in the pathway bin (loci), the

number of variants in the pathway bin (variants), the genomic

coverage of pathway (coverage_kb), and the bin p-value (p-val), B)

higher magnification of the correlation highlighted in Figure S8A,

but instead of the +log10 transform of p-values, it is showing the

the 2log10 transformed p-values and log10 transformed variants

with a loess smoothing function (red line) and 95% confidence

intervals (gray shading). Bins considered outliers were removed

before generating the correlations. The number of loci, number of

variants, and size of genomic region were significantly and linearly

correlated with each other (correlation coefficients .0.95). On the

x-axis, the slope from x = 1 to x = 3 is relatively linear and the

2log10 p-value increases with increasing number of variants (p-

value becomes more significant). From x = 3 to x = 4, the slope is

near 0. From x = 4 to x = 5, the slope appears nonlinear and with a

larger slope than the left slope, indicating again most significant p-

values with higher numbers of variants in a bin. Although these are

transformed values, the p-values are not perfectly uniform.

Therefore, the tails are possibly unreliable (http://stat.ethz.ch/

R-manual/R-patched/library/graphics/html/pairs.html).

(TIF)

Figure S10 Pathway characteristics presented by LOKI source.

Different pathway characteristics presented in box plots: A) The y-

axis shows the log10 frequency of each source statistic for the

number of genes (Num. Genes), the number of loci (Num. Loci),

the number of variants (Num. Variants), and the coverage in kb, B)

The distribution of p-values for the various knowledge sources. On

average, the same four sources listed above also tend to have bins

with smaller p-values. Each boxplot and color corresponds to the

biological knowledge sources listed in the legend. KEGG,

NetPATH, PharmGKB, and Reactome show consistently larger

bins (higher number of loci, variants, and coverage).

(TIF)

Figure S11 Bin size distribution (loci per bin) across features

tested in population comparison and various intergenic and whole-

genome bins. A) bin size for each feature across all population

comparisons, B) intergenic bins with variable window sizes

(excluding any/all coding regions), C) whole-genome bins with

variable window sizes. Each plot has a small inset with a complete

picture of the loci distribution. The larger plots are zoomed to

Y[0:2000] in order to compare between features and bin sizes.

(TIF)

Figure S12 Proportion of significantly different bins for the

intergenic feature analysis with variable window sizes (excluding any

coding regions). A) 10 kb window, B) 25 kb window, C) 50 kb

window, D) 75 kb window, E) 100 kb window, F) 150 kb window,

G) 200 kb window. The numbers in each block and the color

intensity [0,1] indicate the proportion of significant bins for the 1000

Genomes populations on each axis. In general, the x-axis is

organized with African descent populations on the far right and

increasing differentiation with regard to low frequency burden

towards the left (i.e. populations of Asian descent have the highest

proportion of significant bins compared to African descent groups).

(TIF)

Figure S13 Proportion of significantly different bins for the

whole genome feature analysis with variable window sizes. A) 10 kb

window, B) 25 kb window, C) 50 kb window, D) 75 kb window, E)

100 kb window, F) 150 kb window, G) 200 kb window. The

numbers in each block and the color intensity [0,1] indicate the

proportion of significant bins for the 1000 Genomes populations on

each axis. In general, the x-axis is organized with African descent

populations on the far right and increasing differentiation with

regard to low frequency burden towards the left (i.e. populations of

Asian descent have the highest proportion of significant bins

compared to African descent groups).

(TIF)

Table S1 Phase I 1000 Genomes Project sequence technology

data characteristics. 1000 Genomes Project Phase I populations

(1080 individuals, 13 populations) and number of individuals from
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each population sequenced on ABI solid, Illumina, LS454 or

Illumina and LS454.

(PDF)

Table S2 Reviewing regions of interest found in Barreiro study.

Genes identified in Barreiro study with an FST value .0.65 that

were also found in the regions identified by Pritchard (J.P.),

Stoneking (M.S.), and Sabeti (P.S.) [18,54,55].

(PDF)

Table S3 Specific genes of interest with known allele frequency

differences between ancestral populations.

(PDF)

Table S4 Example of BioBin parameter options, rare-case-

control (RCC) and overall-major-allele (OMA). Table S4 contains

iterations of major/minor allele selection and variant binning

using new parameters rare-case-control (RCC) and overall-major-

allele (OMA). Using both options is necessary to make the results

independent of control group selection.

(PDF)

Table S5 Excerpt of custom region file containing regions with

signatures of natural selection.

(PDF)

Table S6 Low frequency simulation using SimRare to assess

Type I error and power.

(PDF)

Text S1 Differential bias in 1000 Genomes Project data.

(DOCX)

Text S2 Investigation of allele sharing in 1080 individuals.

(DOCX)

Text S3 Additional results from regions of natural selection

analysis.

(DOCX)

Text S4 Additional binning algorithm details.

(DOCX)

Text S5 Data simulation strategy.

(DOCX)
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