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A new performance analysis 
method for rolling bearing based 
on the evidential reasoning rule 
considering perturbation
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Peng Han1

Rolling Bearing is a key component of the transmission of rotating machinery, and it is widely used 
in industrial fields. Therefore, it is of vital importance to evaluate the performance and reliability of 
rolling bearing. Aiming at the interference problems faced by rolling bearings during operation, a 
performance evaluation model based on the evidential reasoning (ER) rule is proposed in this article. 
Firstly, the time domain and frequency domain characteristic indicators of bearing vibration signals 
are taken as evaluation indicators, and the evaluation system is constructed. Secondly, various 
indicator information is unified into a belief structure, and the reliability and the weight of the 
indicators are fully considered in the ER rule. Thirdly, to simulate the complex working environment 
of rolling bearings, the perturbation analysis method is adopted. After determining the maximum 
perturbation error and perturbation coefficient, the performance reliability of the rolling bearing 
is analysed, and a performance reliability evaluation model considering perturbation is proposed. 
Finally, based on the whole-life open data set of rolling bearing from the University of Cincinnati, the 
validity and reliability of the proposed model are verified in performance analysis.

Rolling bearing is a precise mechanical element that converts the sliding friction between the running shaft 
and the shaft seat into rolling friction, thereby reducing friction. It is commonly used as a rotating part and the 
main supporting part in the rotating device. It is widely used in  machinery1,  aviation2,  transportation3 and other 
fields. Rolling bearing have the characteristics of high running accuracy, low power loss, and limited adaptability 
to working conditions. Based on the above characteristics, environmental interference, load intensity, and self-
wear can easily disturb the bearing performance, so it is essential to study the bearing performance state and 
performance reliability under perturbation conditions.

For the performance evaluation of rolling bearing, many researches have been given by scholars at home 
and abroad. At present, the commonly used methods of performance evaluation and reliability analysis include 
model-driven approaches, data-driven approaches and deep learning approaches. For model-driven approaches, 
Tran et al. studied mechanical performance degradation assessment based on equipment proportional failure 
models and support vector  machines4. Cubillo et al. proposed a combination of data-driven technology and 
physics-based technology to establish a rolling bearing’s performance degradation model, evaluate the state 
of hydrodynamic bearing and achieve good  results5. Ding et al. used the proportional failure rate model as 
reliability evaluation model, and the effective value and kurtosis were used as the model covariates to evaluate 
the reliability of railway locomotive bearing in real  time6. Gao et al. proposed a prediction method of rolling 
bearing operational reliability based on isometric mapping and a nonhomogeneous cuckoo search-least squares 
support vector machine (NoCuSa-LSSVM). To reduce the dimension of high-dimensional acquisition, which 
is composed of time domain, frequency domain and time–frequency domain features of vibration signals, the 
isometric mapping algorithm is adopted. The NOCUSA-LSVM model is used to predict the state characteristics 
of bearing performance degradation, which can obtain the prediction results of bearing operating  reliability7. 
Yang et al. established a novel RUL prediction model based on degradation indicators. The vibration signal of 
the rolling bearing is decomposed into some intrinsic scale components, and the time break point is obtained by 
signal reconstruction. The generalized regression neural network model based on HI is constructed to predict 
the bearing’s  RUL8.
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From the perspective of data-driven approaches, Qin et al. proposed a digital twin model of a rolling bearing 
driven by a data-model combination, and a life-cycle bearing dynamic model in virtual space was formed. By 
comparing the obtained digital twin result with the measured signal in the time domain and frequency domain, 
the effectiveness of the model was  verified9. Wu et al. proposed a degradation condition monitoring method 
based on adaptive noise and fully integrated empirical mode decomposition and principal component analysis 
for rolling bearing. After analyzing the robustness and attenuation of health indicators, it can identify the running 
state of rolling  bearings10. Wang et al. constructed a data-driven rolling bearing fault detection model based on 
vibration signal analysis, realizing fault detection and early  warning11. Wu et al. proposed an evaluation method 
of bearing performance degradation based on fuzzy C-means clustering, by studying the process of data-driven 
performance degradation to evaluate the rolling bearing’s degradation  state12.

From the perspective of deep learning approaches, Jaouher et al. used a data-driven method to study bear-
ing life prediction based on Weibull and artificial neural  network13. Jin et al. proposed an intelligent method 
to achieve the contact fatigue reliability analysis of aviation bearing and applied an artificial neural network to 
achieve fatigue reliability  analysis14. To reflect the health state of rolling bearings, Wang et al. proposed a perfor-
mance degradation evaluation architecture, which is based on the Internet and deep long short-term  memory15. 
Based on the convolutional neural network and bidirectional long short-term memory network model, Cheng 
et al. proposed a new rolling bearing health prediction method, which can predict the remaining life of rolling 
bearing by predicting nonlinear degradation  indicators16.

The above performance analysis of rolling bearing focuses on model-driven, data-driven and deep learning. 
The model-driven performance evaluation method needs to establish a bearing performance evaluation model 
accurately. However, the mechanism of performance degradation process is complex in engineering, so it is 
difficult to establish a universal evaluation model of all kinds of rolling bearings. The data-driven performance 
evaluation approach uses algorithms to mine performance degradation information from historical monitor-
ing  data17,18. However, the objectivity of data-driven approaches is strong and the subjective control of expert 
knowledge is ignored. Deep learning approaches often use neural networks to evaluate the performance, but the 
evaluation process is in a black box, which is not interpretable. Moreover, the real-time rolling bearing data are 
unsupervised. General unsupervised learning methods, such as knowledge-based analytic hierarchy processes 
and data-based clustering methods, are prone to interference from extreme data and cannot effectively consider 
perturbations. To evaluate the performance of rolling bearing, multiple performance characteristics and per-
turbations should be comprehensively considered. The above methods have no good effect on evaluating the 
performance of rolling bearing under perturbations. The ER rule has a good processing effect in uncertainty and 
multi-index joint reasoning. In addition, the ER rule and perturbation analysis can be  combined27, so we used 
the ER rule to evaluate the performance of rolling bearing in this article.

In 2013, Yang et al. established the ER rule considering evidence weight and evidence reliability. The ER rule 
is a further development and extension of Dempster–Shafer (D–S)  theory19 and the ER  algorithm20. It clearly 
distinguished the importance and reliability of evidence, and forms a general joint probabilistic reasoning process. 
It can effectively solve problems such as evidence conflict and index explosion in D–S evidential  reasoning21. In 
the ER rule, weight and reliability are fully considered, and experts’ subjective experience and objective data are 
combined to describe the data, which has great advantages in dealing with information  uncertainty22,23. The ER 
rule shows good effect on uncertainty and considers the evidence weight and the evidence reliability. Therefore, 
it has been widely used in many fields such as evaluation and decision making. The ER rule is a semi-quantita-
tive evaluation method, semi-quantitative evaluation method can evaluate the objective from qualitative and 
quantitative  aspects24,25, considering subjectivity and objectivity, and making the evaluation result reasonable. 
For example, Zhao et al. proposed an online security evaluation method based on evidential reasoning, which 
integrates the state of the system at “history”, “current” and “future” moments to evaluate the comprehensive 
security level of the  system26. Zhou et al. extended the ER rule to the MADM problem in a group decision-making 
environment. In the process of evaluating the service life of electric vehicles, interval weights, reliability of experts 
and evidence are fully  utilized27. Xu et al. applied the ER rule to the fusion decision problem of uncertain fault 
feature information and achieved good results in fault diagnosis of motor  rotors28. The above cases demonstrate 
the effectiveness of the ER rule in the evaluation and decision-making fields. Based on the advantages of the 
ER rule in dealing with uncertainty and fuzzy information, it is used to evaluate the performance state of the 
rolling bearing in this article.

Due to rolling bearings are easily affected by their own and external disturbances in operation, there are no 
specific methods to evaluate its performance under perturbation conditions. Therefore, to analyse the adaptability 
of bearing performance to different disturbances, the perturbation analysis method is used to simulate internal 
and external disturbances. Perturbation analysis was proposed by Ho. It was initially applied to a discrete event 
dynamic system by adding a disturbed sample track on the basis of original data, and it was used to analyse the 
sensitivity of the system performance index to a key  parameter29. Tang et al. proposed the ER rule considering 
perturbation and verified the practicability of this  method30,31. The above literature provides a theoretical basis 
for the research and application of the ER rule and perturbation analysis, which can be applied to the reliability 
analysis of rolling bearing performance.

In summary, the bearing performance evaluation model based on the ER rule and performance reliability 
analysis model considering perturbation are constructed in this article. The contributions of this article are 
described as follows:

1. The time domain and frequency domain characteristics of rolling bearing vibration signals are used as evalu-
ation indicators to construct an evaluation factor system.
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2. The ER rule can effectively fuse multiple pieces of information, which is suitable for fusing multiple charac-
teristic indicators of bearing vibration signals to obtain reasonable performance evaluation results. Therefore, 
it is used to evaluate the performance state of rolling bearing, which can clearly show the performance level 
of rolling bearing at different times.

3. The perturbation analysis method is used to simulate the internal and external perturbations during the 
operation of rolling bearing. The adaptability of bearing to perturbations is quantified.

The rest of this article is organized as follows: the performance and performance reliability of rolling bearing 
are described in “Problem definition”, and all the steps of the evaluation process are determined. The evaluation 
indicators, evaluation model of the ER rule and evaluation model of perturbation analysis are constructed in 
“Construction of the models”. The real data of rolling bearing is analysed, and the validity of the proposed model 
is demonstrated in “Case study”. The conclusion is presented in “Conclusion”.

Problem definition
Rolling bearings are easily affected by perturbations, resulting in performance fluctuations. The external per-
turbations include heavy load and high temperature, and the interior perturbations include wear, crack and seal 
damage. The adaptability of rolling bearing to different perturbations can be reflected by perturbation analysis. 
Therefore, a performance evaluation model is established based on the evaluation indicator system and the ER 
rule. Then, to further evaluate the reliability of rolling bearing under perturbations, a performance evaluation 
model considering perturbations is proposed. The main problems to be solved in this article are as follows:

Problem 1: Construction of the evaluation indicator system.
In practical engineering, vibration signals are easy to collect, so the diagnosis method based on vibration 

signals is generally adopted to evaluate the bearing performance. The characteristic indicators reflecting the bear-
ing’s working conditions are extracted from vibration signals to evaluate the bearing’s performance. Common 
characteristic indicators are divided into time domain indicators and frequency domain indicators. Selecting 
appropriate indicators is the basis of evaluation. We established an evaluation indicator system:

where Indicator is the indicator system, and Xi is the indicator i . I is the number of the different indicators.

Problem 2: Construction of the rolling bearing performance evaluation model based on the ER rule. There 
are many characteristic indicators that can reflect the performance of rolling bearing, such as the effective value, 
kurtosis, and centroid frequency. Among them, only RMS have national standards for reference. However, the 
effective value cannot completely evaluate the performance of rolling bearings. It needs to be combined with other 
characteristic indicators to obtain perfect evaluation results. How to effectively integrate multiple characteristics 
is the second problem to be solved. In view of this, we established an evaluation model based on the ER rule:

where Ŵ(·) is a nonlinear function corresponding to the ER rule, z(t) is the performance evaluation result at time 
t  without perturbation, r is the indicator reliability, and ω is the indicator weight.

Problem 3: Construction of the reliability evaluation model of rolling bearing performance considering per-
turbation. During the operation of bearing, the performance reliability is closely related to internal and external 
interference factors. The influence of perturbation factors on each indicator should be fully considered. The third 
problem that needs to be solved is how to effectively characterize the influence of perturbations on evaluation 
indicators, and integrate them into the ER evaluation model to analyse the bearing’s performance reliability. In 
view of this, we established the evaluation model:

where �(·) is a nonlinear function corresponding to the model and Z(t) is the reliability evaluation result under 
perturbation at time t  . x(t) is the indicator data at time t  , ω′ is the weight of the perturbation indicator, r ′ is the 
reliability of the perturbation indicator, σ is the perturbation intensity, and �x(t) is the perturbation variable 
at time t .

Problem 4: Construction of an adaptive quantization equation considering perturbation. Rolling bearing has 
different adaptability to different interference factors. Determining the bearing’s adaptability to different pertur-
bations and adjusting their working state is essential. We established a quantification equation of adaptability:

where S(�x(t)) is the perturbation coefficient of the indicator data at time t  affected by the perturbation vari-
able �x(t) , and ε is the maximum error. The perturbation coefficient can measure the bearing’s adaptability to 
different perturbations. If the perturbation influence on the performance of bearing exceeds a certain range, the 
running environment needs to be changed. The whole evaluation process is shown in Fig. 1, which consists of 
an evaluation indicator system, ER rule and perturbation analysis.

(1)Indicator = {X1,X2, ...,Xi , ...,XI }

(2)z(t) = Ŵ[x(t),ω, r]

(3)Z(t) = �[x(t),ω
′
, r

′
, σ ,�x(t)]

(4)S(�x(t)) = �[Z(t), z(t),�x(t), ε]
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Remark 1: Traditional data-driven methods heavily rely on quantitative information, and it is difficult to use 
the subjective experience of decision makers. Knowledge-driven evaluation methods rely on expert experience, 
so it is difficult to obtain reasonable evaluation results. However, the ER rule can integrate quantitative informa-
tion and qualitative knowledge to make reasonable evaluations and flexibly deal with uncertain information, 
and the reasoning process is interpretable. Therefore, it is reasonable to construct the state assessment model of 
a bearing with the ER rule.

Construction of the models
First, the indicator evaluation system of rolling bearing is constructed. Second, the setting method of the evidence 
weight and the evidence reliability is determined, and the indicator information is converted into the form of a 
belief distribution. Third, the rolling bearing performance evaluation model based on the ER rule is described. 
Finally, a perturbation analysis model to quantify the bearing’s adaptability to perturbation is constructed in 
this section.

Determine the evaluation indicator system. The time domain and frequency domain characteris-
tics of vibration signals can show bearing’s performance, so different characteristic indicators are  extracted32. 
Considering that there are errors in using a single indicator to evaluate performance, the combined analysis of 
multiple indicators can accurately reflect the bearing’s performance. The characteristic indicators are described 
as follows.

Effective value. The effective value, also known as the root mean square value (RMS), is used to reflect the sig-
nal energy. The higher the bearing wear degree is, the higher the effective value is. The equation for calculating 
the effective value is as follows:

where y(t) is a continuous vibration signal. y(i) is a discrete-time vibration signal obtained by sampling and 
i = 1, 2, 3, ..., ns , ns is the number of vibration signals.

(5)RMS =

√

√

√

√

1

ns

ns
∑

i=1

y2(i)

Figure 1.  Evaluation of bearing performance considering perturbation.
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Peak value. It can reflect the impact force of a local fault point of bearing. The greater the impact is, the higher 
the peak value is. The peak value is often used to detect impact vibrations caused by cracks and spalling. It is 
calculated as follows:

Peak factor. Considering that the effective value cannot clearly reflect discrete defects such as local peeling, 
scratching and notching on the bearing. although the total energy of the pulse waveform generated by such dis-
crete defects is low, the peak degree of the waveform increases. It is appropriate to use the peak index to describe 
these defects. The calculation equation is as follows:

Average amplitude. The average amplitude can reflect the waveform index of rolling bearing’s vibration signal 
and can be calculated by

where y(t) is the average value of the continuous time vibration signal, and its calculation equation is as follows:

Kurtosis. Kurtosis is sensitive to impact signals and is suitable for the diagnosis of surface damage faults. Kur-
tosis is a fourth-order statistic. It is difficult to distinguish the fault signal from the noise, and kurtosis addresses 
the fourth power of amplitude. High amplitude is prominent, and low amplitude is suppressed, so that the pulse 
reflecting the fault characteristic information can be extracted from the pulse modulation signal mixed with 
noise. The kurtosis is calculated as follows:

Centroid frequency. The centroid frequency (CF) can describe the signal frequency in the spectrum, and reflect 
the distribution of the signal power spectrum. It is the weighted average of the amplitude of the power spectrum 
and can be calculated by

where f1 and f2 are the frequency domains, and P(f ) is the power spectrum of the signal obtained by the Fourier 
transform which can be calculated by

where x(n) is a discrete signal series, n is the discrete signal sampling point. j is the imaginary unit of the complex 
number, and ω is the angular frequency.

Root mean square frequency. The root mean square frequency (RMSF) is the arithmetic square root of the 
mean square frequency (MSF), and it is the weighted average of the square of the signal frequency. The RMSF is 
calculated as follows:

Considering the large difference in the dynamic range of different characteristic indicators, the maximum 
and minimum values may differ by many orders of magnitude, so the data of each indicator are converted into 
decibels (dB) to highlight the change.

(6)Yp = max(y(i)), i = 1, 2, ..., ns

(7)Cf = Yp/RMS = max(y(i))/

√

√

√

√

1

ns

ns
∑

i=1

y2(i)

(8)SY =

√

√

√

√

1

ns

ns
∑

i=1

y2(i)/y(t)

(9)y(t) =
1

ns

ns
∑

i=1

y(i)

(10)Kurtosis{y(t)} =

1
ns

∑ns
i=1 (y(i)− y(t))4

(

1
ns

∑ns
i=1 (y(i)− y(t))2

)2

(11)CF =

∑f2
f=f1

f ∗ P(f )
∑f2

f1
P(f )

(12)P(f ) =

N
∑

n=1

x(n)e−jωn

(13)RMSF =

√

√

√

√

√

∑f2
f=f1

f 2 ∗ P(f )
∑f2

f1
P(f )
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Determining evaluation indicator reliability and weight. The ER rule is used to build the perfor-
mance evaluation model of rolling bearing. Each characteristic indicator is regarded as a piece of evidence, and 
each piece of evidence has two attributes of reliability and  weight33. The distance-based method and coefficient 
of variation (COV) method are used to calculate the reliability and weight of evidence,  respectively26.

Approach for calculating the indicator reliability. The vibration signal data of the rolling bearing are monitored 
by sensors. However, the detection data may fluctuate greatly due to the influence of noise. Therefore, the reli-
ability must be considered when fusing the indicator data. Suppose there are n indicators, and the reliability of 
indicators is r1, r2, ..., rn . Obtained from the distance-based method:

where xi(k) is the monitoring data of indicator Xi at time k , xi  is the average value of all indicator data in time 
period K , and xi = 1

K

∑K
k=1 xi(k) . di,k(xi(k), xi) is the distance between xi(k) and xi  . Then the average distance 

of all test data in K time periods is as follows:

The reliability of the indicator is defined as follows:

where max(di,k(xi(k), xi)) is the maximum value of di,k(xi(k), xi),and di,k(xi(k), xi) can characterize the fluctua-
tions of each indicator. According to the analysis of bearing’s running characteristics, the larger the fluctuation 
is, the more unreliable the indicator data are. Therefore, the determination of reliability ri is reasonable.

Approach for calculating indicator weighting. The indicator weight represents the relative importance of char-
acteristic indicators in the evaluation system. The COV method determines the indicator weight by analysing 
the fluctuation degree of different indicators. Suppose there are n indicators, and the weight of indicators is 
ω1,ω2, ...,ωn . Obtained from the COV method:

where vi is the standard deviation of the evaluation indicator i and xi  is the average value of all indicator data 
in time period K . Then, the variation coefficient is normalized, and the weight of evaluation indicator i is cal-
culated by

where vi is fluctuation degree of the evaluation indicator. The fluctuation of the indicator data represents the 
ability of indicator to respond to the abnormal data. The bigger the indicator volatility is, the higher the weight is.

Remark 2: Reliability is signal-to-noise ratio, namely the proportion of noise in the information, which is 
assumed not to seriously affect the original information. Weight represents the sensitivity of information to 
system characteristics, and this information is the ideal information without noise.

Indicator data standardization. According to the analysis of the historical engineering and the understanding 
of the working principle, the indicator reference grades and reference values are determined. Then, based on 
the reference grades and reference values, the rule-based information transformation  method34 is adopted to 
transform the indicator data into the form of a belief distribution.

where hi,j(i = 1, 2, ..., I; j = 1, 2, ..., J) is the reference value of the indicator Xi , xi,j is the input data of indicator 
Xi , J is the number of reference values and hi,j+1 ≥ hi,j.

Remark 3: Before the evaluation, we interpret the sample data to judge whether the data are within a reasonable 
range. The unreasonable data are supposed to be replaced with new data. The reference values are supposed to 

(14)di,k(xi(k), xi) = |xi(k)− xi|, k = 1, 2, ...,K

(15)Di =
1

K

K
∑

k=1

di,k =
1

K

K
∑

k=1

|xi(k)− xi|

(16)ri =
Di

max(di,k(xi(k), xi))

(17)vi =

√

1
K−1

∑K
k=1 (xi(k)− xi)2

xi

(18)ωi =
vi

∑n
j=1 vj

(19)







































pi,j =
hi,j+1 − xi,j

hi,j+1 − hi,j
, hi,j ≤ xi,j ≤ hi,j+1, j = 1, ..., J − 1

pi,j+1 = 1− pi,j , hi,j ≤ xi,j ≤ hi,j+1, j = 1, ..., J − 1

pi,k = 0, k = 1, ..., J; k �= j, j + 1
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meet the fluctuation range of the sample data in the setting process, and avoid the sample data exceeding the 
range of reference values.

Evaluation model of rolling bearing performance based on the ER rule. After determining the reli-
ability and weight of evidence and standardizing the indicator data, the ER rule is used to fuse the information of 
characteristic indicators and evidence parameters. The bearing’s performance is evaluated in the form of a belief 
distribution and expected utility. Suppose that a node collects T pieces of data, and each piece of information has 
I indicators. The input indicator data are xi(i = 1, . . . , I) , which is represented as evidence ei(i = 1, . . . , I).The 
frame of discernment is composed of N evaluation levels Hn(n = 1, . . . ,N) , namely � = {H1, . . . ,HN } . After 
data standardization, the evidence can be expressed as the following form of belief distribution:

where pn,i is the belief degree of the evaluation scheme evaluated as evaluation level Hn under evidence ei , and 
� is the discernment framework including all evaluation levels. p�,i is the belief degree of indicator i relative to 
discernment framework � , namely global ignorance, and p�,i satisfies 0 ≤ pn,i ≤ 1 , 

∑N
n=1 pn,i ≤ 1 . The evidence 

reliability is ri(i = 1, . . . , I) , which satisfies 0 ≤ ri ≤ 1 . The evidence weight is ωi(i = 1, . . . , I) , which satisfies 
0 ≤ ωi ≤ 1 after normalization. The weighted belief distribution of the evidence i with reliability is:

where P(�) is a power set and m̃n,i is the mixed probability quality of indicator i under level Hn and satisfies:

where crw,i = 1
/

(1+ ωi − ri) is the regularization coefficient. mn,i is the basic probability quality of indicator i 
under level Hn , ∅ is an empty set, and mn,i = ωipn,i.

Each indicator can describe the characteristics of rolling bearing vibration signals from different angles. 
The data of each indicator are standardized and processed by Eq. (19), and its belief distribution is expressed 
by Eq. (20). For any two indicators ei and ej , if their belief distribution is expressed by Eq. (20), then their joint 
support belief degree pn,e(2) for the evaluation grade Hn is:

m̂n,e(2) is the unnormalized combination probability quality assigned to the evaluation grade Hn after combining 
ei and ej . m̂D,e(2) is the unnormalized combination probability quality assigned to the evaluation grade D after 
combining ei and ej . A , B and D represent subsets of the whole set.

The combined belief pn,e(I) of Hn is determined by the following formula for I pieces of evidence:

(20)ei = {(Hn, pn,i), n = 1, . . . ,N; (�, p�,i)}

(21)mi = {(Hn, m̃n,i),∀θ ⊆ �; (p(�), m̃p(�),i)}

(22)m̃n,i =







0, Hn = ∅

crw,imn,i , Hn ⊆ �,Hn �= ∅

crw,i(1− ri), Hn = P(�)

(23)
N
∑

n=1

m̃n,i + m̃P(�),i = 1

(24)
m̂n,e(2) =

[

(1− ri)mn,j + (1− rj)mn,i

]

+
∑

A∩B=Hn
A,B⊆�

mA,imB,j

(25)pn,e(2) =











0, Hn = ∅

m̂n,e(2)
�

D⊆� m̂D,e(2)

, Hn ⊆ �, Hn �= ∅

(26)
m̂n,e(k) =

[

(1− rk)mn,e(k−1) +mp(�),e(k−1)mn,k

]

+
∑

A∩B=Hn
mA,e(k−1)mB,k

(27)m̂p(�),e(k) = (1− rk)mp(�),e(k−1)

(28)mn,e(k) =











0, Hn = ∅

m̂n,e(k)
�

D⊆� m̂D,e(k) + m̂P(�),e(k)
,Hn �= ∅

(29)pn,e(k) =











0, Hn = ∅

m̂n,e(k)
�

D⊆� m̂D,e(k)

,Hn ⊆ �,Hn �= ∅
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Among them, k = 3, 4, . . . , I , mn,e(k−1) and mA,e(k−1) are the normalized combination probability qualities 
assigned to grade Hn and grade A after the combination of the first k − 1 indicators. m̂p(�),e(k) is the unnormal-
ized probability mass assigned to the power set after the fusion of the first k indicators, and mp(�),e(k−1) is the 
normalized probability mass assigned to the power set after the fusion of the first k − 1 indicators. m̂n,e(k) and 
m̂D,e(k) are the unnormalized combination probability qualities assigned to grades Hn and D after the combination 
of the first k indicators, respectively. pn,e(k) is the belief degree of the first k indicators to the evaluation level Hn 
after fusion which meets the requirements of mn,e(1) = mn,1 and mp(�),e(1) = mp(�),1 . Through the above iterative 
algorithm, the comprehensive evaluation results are obtained:

Suppose the utility of the reference level Hn is u(Hn) . The expected utility of the evaluation results can be 
obtained according to the utility calculation method proposed in  reference32:

where u is the expected utility of the evaluation, which can be used to evaluate the performance of the rolling 
bearing. Equation (31) is Ŵ(·) as shown in Eq. (2).

Performance reliability evaluation model of rolling bearing considering perturbation. In prac-
tical engineering, rolling bearing will be affected by sealing damage, heavy loads, cracks and other interference 
factors, resulting in reliability reduction. To further analyse the rolling bearing’s adaptability to interference fac-
tors during operation, the perturbation analysis method is used to simulate interference environment, as shown 
in Fig. 2.

As shown in Fig. 2, the upper part is a nominal sample trajectory of performance evaluation, corresponding 
to two pieces of evidence ei and ej , xi is the input parameter, and the output utility PM(xi) is generated under 
the combination of the ER rule, namely, the performance evaluation results. The lower part is a trajectory of the 
perturbation sample. Based on the nominal trajectory, the input parameter of evidence ei is changed to xi + σ�xi ; 
then, the output utility PM(xi + σ�xi) of the two pieces of evidence is generated under the combination of 
the ER rule, namely, the performance reliability evaluation result considering the perturbation. PM(xi) and 
PM(xi + σ�xi) are the same as the expected utility u in Eq. (31).

Suppose the identification framework of the evaluation model is � = {H1, . . . ,HN } and the evaluation 
indicator is ei(i = 1, . . . , I) , the corresponding reliability and weight of each evidence are {r ′1, r

′

2, . . . , r
′

I } and 
{ω

′

1,ω
′

2, ...,ω
′

I } respectively, and the reference value is hi,j(i = 1, 2, . . . , I; j = 1, 2, . . . , J) . The belief distribution 
of indicator evidence ei under perturbation condition is calculated by Eq. (19):

where k ∈ [1,N] , k  = l, l + 1 , h1 and hI correspond to the maximum and minimum reference values respectively, 
hl+1 ≤ xi ≤ hl . The rule-based information transformation method is used to transform it into the belief distri-
bution form, the ER rule is used to fuse all indicators, and then the bearing’s performance reliability evaluation 
results can be obtained. To quantify the adaptability of different perturbations, the perturbation coefficient is 
proposed as follows:

(30)e(I) = {(Hn, pn,e(I)), n = 1, . . . ,N , (�, p�,e(I))}

(31)u(e(I)) =

N
∑

n=1

u(Hn)pn,e(I) + u(�)p�,e(I)

(32)ei =

{(

Hl ,
xi + σi�xi − hl+1

hl − hl+1

)

,

(

Hl+1,
hl − xi − σi�xi

hl − hl+1

)

, (Hk , 0)

}

(33)Si =
PM(xi + σ�xi)− PM(xi)

�xi

Figure 2.  Rolling bearing performance reliability model considering perturbation.
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If Si ≤ |ε| , ε is the maximum error of the perturbation coefficient, it can be considered that the influence of 
perturbation on the performance reliability of rolling bearing is acceptable. Otherwise, the rolling bearing must 
be changed or adjusted.

Inference process of the performance reliability of rolling bearing considering perturba-
tion. The bearing’s performance model and performance reliability model are established in   “Evaluation 
model of rolling bearing performance based on the ER rule” and “Performance reliability evaluation model of 
rolling bearing considering perturbation”, respectively. In this section, a general method of the model is analysed.

Suppose there are I pieces of independent evidence {e1, e2, . . . , eI } and M(M ≤ I) pieces of independent evi-
dence. Since it has been demonstrated that the fusion results by the ER rule cannot be influenced by the order 
of evidence  combination21, I pieces of evidence are reordered as {e1, . . . , ei , . . . , eM , eM+1, . . . , ej , . . . , eI } . Based 
on this feature, the implementation of ER rule-PA is divided into four steps, as shown in Fig. 3. The generalized 
method of ER rule-PA is concluded as follows:

Step 1: Combine (I −M) pieces of normal evidence based on the ER rule as Eqs. (19)–(31), and e(I −M) is 
calculated by Eq. (30).

Step 2: Combine the previously combined assessment result e(I −M) with the first piece of perturbed evidence 
based on the ER rule to obtain e(I −M + 1) . Then, the expected utility u(x1 + σ�x1) under perturbation and 
the expected utility u(x1) without perturbation are calculated by Eq. (31).

Step 3: Perform a perturbation analysis on the result of step 2, and the perturbation coefficient S(�x1) is 
calculated by Eq. (33).

Step 4: Combine e(I −M + 1) in step 2 with the remaining (M − 1) pieces of evidence by recursively applying 
the ER rule as step 1. Then, perform a perturbation analysis as step 3 successively.

Remark 4: The offline data of rolling bearing vibration signals are used to construct the ER evaluation model, 
which can monitor the bearing system in real time. We replace the overall time period K in Eqs. (14)–(18) with 
its sub-time period ki and then iteratively calculate the reliabilities and weights in real time to achieve online 
evaluation.

Case study
To demonstrate the validity of the established model, the performance and performance reliability of rolling 
bearing are evaluated based on the indicator evaluation system established in  “Determine the evaluation indica-
tor system”. The performance evaluation model established in “Problem definition”. The heavy load strength and 
sealing of rolling bearing are taken as the sources of perturbation. Different characteristic indicators are selected 
for evaluation in “Study background” and “Experiment 1”.

Figure 3.  The overall process of ER rule-PA.
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Study background. The experimental data are a rolling bearing life-cycle public data set prepared by the 
NSF I/UCR Intelligent Maintenance System Center of the University of Cincinnati. In the test platform, the AC 
motor rotates at a constant speed of 2000 RPM and is connected to the shaft through a friction belt. The vibration 
signals are collected at an interval of 10 min for one second, and the number of points is 20,480. The sampling 
frequency of signals is 20 kHz. In this article, the data collected in channel 1 are selected as experimental data. 
Due to the aggravation of rolling bearing wear in the later period, the data have become invalid, so the first 948 
groups of 982 vibration signals are selected as experimental data, and the test time is 158 h.

Experiment 1. Indicator data analysis. Bearing’s vibration signal should fluctuate steadily within a small 
range. If the fluctuation range exceeds a specific threshold value, it indicates that the performance of the rolling 
bearing deteriorates and the probability of failure increases. The distribution of vibration signals is shown in 
Fig. 4. The group 1 and group 984 vibration signals are selected for display.

As shown in Fig. 4, the vibration signal fluctuation of group 948 is significantly higher than that of group 1, 
indicating that the wear is aggravated. To describe the changing state of the vibration signal, the RMS, peak value, 
average amplitude, peak factor and kurtosis feature are extracted and analysed, as shown in Fig. 5.

As shown in Fig. 5, the RMS, peak value, kurtosis and average amplitude have obvious variation trends. The 
performance of the rolling bearing is good for the first 80 h, but the bearing wears slightly after 80 h, the wear 
becomes worse after 116 h, and the characteristic indicators show an irregular change trend. Three characteristic 
indicators of RMS, peak value and kurtosis are selected for analysis in this section.

Performance evaluation of rolling bearing based on the ER rule. The evaluation model proposed “Problem defini-
tion” is used to evaluate the rolling bearing’s performance, and the rule-based input information transformation 

Figure 4.  Vibration signal distribution.

Figure 5.  The trend of characteristic indicators.
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method is adopted to unify the data of each indicator into the form of a belief distribution. The evaluation level 
is set as high, medium and low, namely, the identification frame is � = {(H1, high), (H2,medium), (H3, low)} . 
According to expert knowledge, the reference level and reference value of each evaluation indicator are divided 
as shown in Table 1. The “high” and “low” reference values of RMS, peak value and kurtosis are the minimum 
value and maximum value of indicator data, respectively, and since the bearing wear is aggravated at 80–116 h, 
the “medium” reference value is the denser point of data distribution between 80 and 116 h.

In the performance evaluation model, the indicator data are normalized and transformed by the rule-based 
method according to Eq. (19), and the belief distribution results shown in Eq. (20) are obtained. The following 
is an example of a belief conversion: suppose the kurtosis indicator of vibration signal is 1.30 at time t  , then 
p1,2(t) =

1.30−1.151
1.368−1.151

= 0.687 , p1,1(t) = 1− 1.30−1.151
1.368−1.151

= 0.313 , p1,3(t) = 0 . The belief distribution form of this 
indicator can be expressed as:

The data of other indicators are also converted by this method. Suppose the reliability of the RMS, peak 
value and kurtosis are r1 , r2 and r3 respectively, and the weights are ω1 , ω2 and ω3 , respectively. The distance-
based method is used to calculate the indicator reliability according to Eqs. (14)–(16), which are r1 = 0.2254 , 
r2 = 0.3012 and r3 = 0.2414 , respectively. The COV method is used to calculate indicator weights according 
to Eqs. (17)–(18), which are ω1 = 0.1992 , ω2 = 0.6135 and ω3 = 0.1873 , respectively. The ER rule is used to 
fuse the above indicator information according to Eqs. (19)–(30), and the evaluation results of rolling bearing 
performance are obtained as shown in Fig. 6.

As shown in Fig. 6, the performance evaluation results are mostly concentrated around the “high” belief 
degree, followed by the “medium” belief degree, and a few evaluation results are in the “low” belief degree, 
mainly distributed after 116 h, which conforms to the real operation situation of rolling bearing. Before 116 h, 
the bearing’s performance is good, and after 116 h, the bearing wear is serious, resulting in poor performance.

Suppose the utility of the reference grade is u(H1) = 1 , u(H2) = 0.5 and u(H3) = 0 , and the expected utility 
of performance can be calculated by Eq. (31), as shown in Fig. 7.

According to Fig. 7, the expected utility of bearing is distributed between 0.5 and 1 before 116 h, and the wear 
is aggravated between 80 and 116 h, but the overall performance is good. After 116 h, the expected utility drops 
sharply and fluctuates sharply between 120 and 158 h, with the overall distribution below 0.5, indicating that 
bearing wear is serious after 116 h and the performance is unreliable. This is consistent with the results shown in 
Fig. 6, indicating that the evaluation model is effective. To further demonstrate the effectiveness of this method, 
local images with drastic changes in utility are selected for comparison with Fig. 5, as shown in Figs. 8, 9 and 10.

(34)e1(t) = {(H1, 0.313), (H2, 0.687), (H3, 0)}

Table 1.  Indicator evaluation level and reference value.

H1 H2 H3

RMS − 2.604 − 2.234 − 1.325

Peak value − 1.228 − 0.622 0.156

Kurtosis 1.151 1.368 1.789

Figure 6.  Performance evaluation results of rolling bearing.
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The comparison between the indicator data and the utility of the rolling bearing under normal operation is 
shown in Fig. 8. The peak value and kurtosis value rise slightly at 39 h, and the utility shows a downtrend, indi-
cating that the performance is reduced, but it still fluctuates within a normal range. The comparison between 
the indicator data and the utility of the abnormal operation is shown in Figs. 9 and 10. The RMS and peak value 
increase sharply at 116 h, indicating that the bearing’s performance decreases sharply. The peak value and kur-
tosis value decreased slightly at 148 h, indicating that the performance improved slightly, and the utility also 
shows an uptrend at 148 h. Therefore, the evaluation results of the model are consistent with the actual situation.

Performance reliability analysis of rolling bearing considering perturbation. Bearings will be affected by various 
disturbance factors, so the reliability evaluation model considering perturbation is used to evaluate the perfor-
mance reliability. Four types of perturbation environments are simulated, namely, low load and high sealing, low 
load and low sealing, high load and high sealing, high load and low sealing. The corresponding perturbation 
intensities are 0.0015, 0.0030, 0.0045 and 0.0060, respectively. The perturbation variable represents the variable 
of the actual indicator data in operation with respect to the perceived information without perturbation. It has 
the following characteristics:

1. The generation of perturbation is irregular and random.

Figure 7.  Expected utility of rolling bearing performance.

Figure 8.  Local indicators and utility comparisons.
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2. The generation of perturbation variables accords with the characteristics of normal distribution.

The distribution of perturbation variable �x is shown in Fig. 11. After the addition of perturbation, the data 
of each characteristic indicator changed. The distribution of indicator data under different perturbation intensi-
ties is listed in Fig. 12.

At present, the perturbation intensity mainly depends on the expert knowledge. More scientific calculation 
methods will be used in the future to improve the rationality of perturbation intensity. Since the rolling bearing is 
affected by perturbation, each indicator should be recalculated. In addition, the stability of each indicator in the 
disturbance environment is different, and the reliability and weight of each indicator also change. The reliability 
and weight of each indicator under different perturbation intensities are calculated according to Eqs. (14)–(18), 
as shown in Tables 2 and 3.

Through the ER rule fusion and utility calculation, the expected utility under perturbation is obtained, as 
shown in Fig. 13.

According to Fig. 13, there are slight deviations in the evaluation results under different perturbations, but 
the overall evaluation result is similar to the utility without perturbation. The model can still accurately evalu-
ate the performance under perturbations, which has a certain robustness. However, considering that different 

Figure 9.  Local indicators and utility comparisons.

Figure 10.  Local indicators and utility comparisons.
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Figure 11.  Perturbation variable distribution.

Figure 12.  The characteristic indicators under different perturbation intensities.

Table 2.  Indicator reliability under different perturbation intensities.

r σ = 0.0015 σ = 0.0030 σ = 0.0045 σ = 0.0060

RMS 0.2251 0.2247 0.2244 0.2241

Peak value 0.3016 0.3027 0.3038 0.3050

Kurtosis 0.2446 0.2466 0.2488 0.2513

Table 3.  Indicator weight under different perturbation intensities.

ω σ = 0.0015 σ = 0.0030 σ = 0.0045 σ = 0.0060

RMS 0.1991 0.1991 0.1990 0.1988

Peak value 0.6134 0.6131 0.6128 0.6123

Kurtosis 0.1875 0.1878 0.1882 0.1889
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perturbation intensities will lead to different evaluation results, it is essential to verify the performance reliability 
of rolling bearing under different perturbation intensities.

The perturbation coefficients under different perturbation intensities are calculated by Eq. (33) and their 
absolute values are shown in Fig. 14. The perturbation coefficient refers to the change in the expected utility 
under perturbation compared with the expected utility without perturbation, which is used to measure the per-
formance reliability of rolling bearing against different perturbation conditions. The smaller the perturbation 
coefficient is, the stronger the ability to resist the perturbation condition. Otherwise, the bearing is damaged 
and must to be repaired or replaced.

According to Fig. 14, the absolute value of the perturbation coefficient increases with increasing perturbation 
intensity, which is consistent with the negative impact of perturbation on rolling bearing. Moreover, the belief 
distribution of rolling bearing performance grade “low” under different perturbation intensities is compared in 

Figure 13.  Expected utility of rolling bearing performance under different perturbation intensities.

Figure 14.  Perturbation coefficients under different perturbation intensities.
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Fig. 15. When the performance evaluation has a low belief degree and the expected utility fluctuates consider-
ably, the perturbation coefficient is more likely to increase. This phenomenon indicates that when the indicator 
data fluctuate violently, it is more susceptible to the influence of perturbation conditions. Therefore, the rolling 
bearing should be adjusted or maintained to ensure its normal operation. Suppose that the maximum error of 
the perturbation coefficient is ε = 0.4 . Obviously, when the perturbation intensity is 0.0015, 0.0030 and 0.0045, 
|Si| ≤ ε is constant, indicating that the rolling bearing has good adaptability to perturbation conditions. When the 
perturbation intensity is 0.0060, |S4| ≤ ε does not hold, indicating that the performance reliability of the rolling 
bearing is low and cannot work normally. At this time, the rolling bearing needs to be adjusted or maintained.

Experiment 2. To further demonstrate the validity of the proposed method, we have added the frequency-
domain indicators to the model.

Indicator data analysis. The RMS, peak value, kurtosis, centroid frequency (CF) and root mean square fre-
quency (RMSF) are extracted for analysis, as shown in Fig. 16.

As shown in Fig. 16, the RMS, peak value and kurtosis have obvious variation trends, the trend of centroid 
frequency and RMSF is not obvious. Therefore, the indicators of RMS, kurtosis and RMSF are selected for 
analysis in this section.

Performance evaluation of rolling bearing based on the ER rule. As in “Performance evaluation of rolling bear-
ing based on the ER rule”, the identification frame is � = {(H1, high), (H2,medium), (H3, low)} . The reference 
values are shown in Table 4.

Suppose the reliability of the RMS, kurtosis and RMSF are r1 , r2 and r3 respectively, and the weights are ω1 , 
ω2 and ω3 , respectively. According to Eqs. (14)–(16), the evidence reliabilities are r1 = 0.2254 , r2 = 0.2414 and 
r3 = 0.2414 , respectively. According to Eqs. (17)–(18), the evidence weights are ω1 = 0.3471 , ω2 = 0.3265 and 
ω3 = 0.3265 , respectively. The ER rule is used to fuse the above indicator information according to Eqs. (19)–(30), 
and the evaluation results of rolling bearing performance are obtained as shown in Fig. 17.

As shown in Fig. 17, the evaluation results are mostly concentrated around the “high” belief degree, followed 
by the “medium” belief degree, and a few evaluation results are in the “low” belief degree, mainly distributed 
after 116 h, which is similar to Fig. 6. Before 80 h, the performance of the rolling bearing is good, and after 116 h, 
the bearing wear is serious.

Suppose the utility of the reference grade is u(H1) = 1 , u(H2) = 0.5 and u(H3) = 0 , and the expected utility 
is calculated by Eq. (31), as shown in Fig. 18.

According to Fig. 18, the expected utility is distributed between 0.5 and 1 before 116 h, and the wear is aggra-
vated between 80 and 116 h. After 116 h, the expected utility drops sharply and fluctuates sharply between 120 
and 158 h, indicating that bearing wear is serious after 116 h. This is consistent with the results shown in Fig. 7, 
indicating that the model is still valid with different characteristic indicators.

Figure 15.  Low belief degree distribution of performance evaluation results under different perturbation 
intensities.
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The comparison between the indicator data and the utility of the bearing under normal operation is shown 
in Fig. 19. The RMS and kurtosis values rise slightly at 31 h, and the utility shows a downtrend at this time, 
indicating that the stability of the performance is reduced. The comparisons between the indicator data and the 
utility of the abnormal operation are shown in Figs. 20 and 21. The RMS and kurtosis values increase sharply at 
116 h, indicating that the stability of the rolling bearing performance decreases sharply. The RMSF and kurtosis 
value decrease slightly at 157 h 10 min, the bearing obtains some compensation which leads to an increase in 

Figure 16.  The trend of characteristic indicators.

Table 4.  Indicator evaluation level and reference value.

H1 H2 H3

RMS − 2.604 − 2.234 − 1.325

Kurtosis 1.151 1.368 1.790

RMSF 0.576 0.612 0.895

Figure 17.  Performance evaluation results of rolling bearing.
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its stability at this time, and the utility also shows an uptrend at 157 h 10 min. Therefore, the evaluation results 
of the model are valid.

Performance reliability analysis of rolling bearing considering perturbation. Suppose the four perturbation envi-
ronments are still low load and high sealing, low load and low sealing, high load and high sealing, high load and 
low sealing. The corresponding perturbation intensities are 0.0015, 0.0030, 0.0045 and 0.0060. The perturbation 
variable �x is shown in Fig. 11. After the addition of perturbation, each characteristic indicator data is changed. 
The distribution of indicator data under different perturbation intensities are listed in Fig. 22.

The reliability and weight of each indicator under different perturbation intensities are calculated according 
to Eqs. (14)–(18), as shown in Tables 5 and 6.

Through utility calculation, the expected utility of rolling bearing performance reliability evaluation results 
under perturbation are as shown in Fig. 23.

According to Fig. 23, the evaluation results are similar to Fig. 13. The performance of the rolling bearing 
is good before 116 h, and the performance decreases after 116 h. This is consistent with the actual situation, 
indicating that the model can still accurately evaluate the performance of rolling bearing under perturbation.

Figure 18.  Expected utility of rolling bearing performance.
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The difference comparison of characteristic indicators and utility. To demonstrate the advantages 
of using the ER rule to build the performance evaluation model, different characteristic indicators and expected 
utility are shown in this section.

According to Fig. 24, the peak value is used in Experiment 1, and its change trend is similar to RMS, with 
the indicator value increasing significantly between 150 and 158 h. The higher the indicator value is, the worse 
the bearing performance is, and the expected utility value is low. In experiment 2, the trend of RMSF is more 
gradual than that of RMS, and its indicator value is smaller between 150 and 158 h. When the bearing is worn 
to a certain extent, the abrasion is compensated in some ways to improve its performance. From 150 to 158 h, 
the expected utility is significantly larger than the expected utility in Experiment 1, which indicates that the 
evaluation result of the ER rule will be associated with the indicator trend. Therefore, the performance evalua-
tion model of rolling bearing based on the ER rule is valid. In practical engineering, there are many monitoring 
indicators of complex systems with different characteristics. If only a single characteristic indicator is analysed, 
its health state cannot be comprehensively reflected. Therefore, selecting appropriate indicators is an important 
prerequisite for the evaluation of the ER rule.
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Figure 20.  Local indicators and utility comparisons.
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Comparative studies. The ER rule is essentially a kind of expert system. The expert experience and the 
objective data of actual engineering are effectively combined by the ER rule, and the evaluation results that con-
sider both qualitative and quantitative aspects are obtained, which effectively reduces the subjectivity of expert 
experience and the objectivity of engineering data. To demonstrate the advantage of the ER rule, the analytic 
hierarchy process (AHP) and fuzzy expert system are used as comparative methods to compare with the ER 
model in this article.

AHP method. First, the discriminant matrix is established. The indicator system contains three indicators: 
effective value, peak value and kurtosis. The pairwise comparison method and 1 ∼ 9 comparison method are 
 adopted35, and the third-order discriminant matrix A is given according to expert weighting:

(35)A=
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Figure 22.  The characteristic indicators under different perturbation intensities.

Table 5.  Indicator reliability under different perturbation intensities.

r σ = 0.0015 σ = 0.0030 σ = 0.0045 σ = 0.0060

RMS 0.2251 0.2247 0.2244 0.2241

Kurtosis 0.2419 0.2423 0.2428 0.2433

RMSF 0.2423 0.2433 0.2443 0.2454

Table 6.  Indicator weight under different perturbation intensities.

ω σ = 0.0015 σ = 0.0030 σ = 0.0045 σ = 0.0060

RMS 0.3471 0.3471 0.3470 0.3469

Kurtosis 0.3265 0.3264 0.3264 0.3263

RMSF 0.3264 0.3265 0.3266 0.3268
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To verify the rationality of the judgment matrix, it is necessary to conduct a consistency check on matrix A . 
Through eigenvalue calculation, it can be concluded that the maximum eigenvalue of A is �max = 3.0012 , so the 
consistency test indicators are as follows:

where n′ is the order of the discriminant matrix A . As seen from the table, when the order is 3, the average random 
consistency index RI = 0.58 ; then, the consistency ratio of matrix A is as follows:

(36)CI =
�max − n

′

n
′
− 1

=
3.0012− 3

3− 1
≈ 0.000617

Figure 23.  Expected utility of rolling bearing performance under different perturbation intensities.

Figure 24.  Comparison of characteristic indicators and expected utility.
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Obviously, CR < 0.10 , so the discriminant matrix A is reasonable. Then, the geometric average method is 
used to calculate the weight matrix of the  index35, and the equation is as follows:

w is the row matrix of row 1 and n′ columns composed of wi , wij is the element in the discriminant matrix A , and 
i, j = 1, 2, 3 . The weight matrix W is obtained by Eqs. (38) and (39):

According to the indicator reference grade and reference value shown in Table 1, the membership degree of 
each indicator to the evaluation grade set is transformed into a fuzzy relation  matrix36:

where mij is the membership degree of evaluation indicator ei relative to evaluation grade Hij . By normalizing 
the reference values shown in Table 1, the fuzzy relation matrix can be obtained:

According to Eqs. (40) and (42), the evaluation results of rolling bearing performance can be obtained as 
follows:

According to Eq. (43), the belief degree of the rolling bearing performance evaluated by AHP with respect 
to the “high”, “medium” and “low” grades are 0.4492, 0.3486 and 0.2022, respectively. The belief degree of the 
indicator data shown in Fig. 6 is mostly distributed in the “high” grade, and the result of the AHP method is 
also the largest value of the “high” grade, which indicates that AHP method is feasible in evaluating the perfor-
mance of rolling bearing. However, the AHP method can only evaluate in general and cannot describe when the 
bearing’s performance deteriorates and changes, so the evaluation results cannot effectively describe the actual 
situation. In addition, when the AHP method is used to perform performance, the parameter matrix set will be 
affected by the subjective uncertainty of experts, and the evaluation results cannot objectively describe the data.

Fuzzy expert system. A fuzzy expert system is a knowledge-driven method that expresses knowledge by rules. 
It can effectively deal with uncertain  data37. According to expert knowledge, nine kinds of performance state 
grades of the rolling bearing are set, and the performance state of the rolling bearing is evaluated by calculating 
the membership degree of each grade. The evaluation results are shown in Fig. 25.

As shown in Fig. 25, compared with the AHP method, the fuzzy expert system can evaluate the performance 
state of rolling bearing in real time. However, the wear of rolling bearing increased between 80 and 116 h, and 
the evaluation result showed an uptrend, which is inconsistent with the actual situation. In essence, the fuzzy 
expert system relies on expert knowledge to set evaluation rules, which is too subjective. If the rules are not set 
reasonably, the evaluation result will be biased, so the method cannot effectively evaluate the performance of 
the rolling bearing.

In conclusion, the AHP method cannot evaluate performance in real time. A fuzzy expert system relies on 
expert knowledge, if the expert knowledge is unreasonable, the evaluation result will be unreasonable. Therefore, 
the ER evaluation model proposed in this article fully considers expert knowledge and engineering data, reflect-
ing the advantages of the ER rule in dealing with uncertainty, so the performance evaluation model constructed 
in this article is reasonable.

Application of the evaluation model to XJTU-SY bearing data set. To demonstrate the universal-
ity of the proposed evaluation models, we applied the models to the rolling bearing data set of Xi’an Jiaotong 
University. This data set is provided by the Institute of Design Science and Basic Component at Xi’an Jiaotong 
University (XJTU), and the Changxing Sumyoung (SY)  Technology38.

Data analysis. In the test platform, the AC motor rotates at a constant speed of 2250 RPM and is connected to 
the shaft through a friction belt. Five rolling bearings are installed on the shaft. The vibration signal data were 
collected sampling frequency is 25.6 kHz and are collected at an interval of 1 min for one second, and a total 

(37)CR =
CI

RI
=

0.000617

0.58
≈ 0.0011

(38)W =
w

∑n
′

i=1 wi

, n
′
= 3

(39)wi =
n
′

√

√

√

√

√

n
′

∏

j=1

wij

(40)W = [0.4045, 0.2604, 0.3352]

(41)M =

[

m11 m12 m13

m21 m22 m23

m31 m32 m33

]

(42)M =

[

0.4225 0.3625 0.2150

0.7249 0.3672 −0.0921

0.2672 0.3175 0.4153

]

(43)P = WM = [0.4492, 0.3486, 0.2022]
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of 32,768 points are collected. The data collected in bearing 5 are used as experimental data, and test time is 
339 min.

Based on Eqs. (5), (6) and (11), the characteristic indicators of RMS, peak value and CF are shown in Fig. 26.
As shown in Fig. 26, as the operation time increases, the RMS and the peak value indicator gradually increase, 

and the CF indicator fluctuates irregularly. At 120 min, the RMS and the Peak value gradually increase and reach 
the peak at 205 min. After 205 min, the RMS and the Peak value generally show an uptrend with fluctuations, 
and the CF shows an irregular fluctuation trend. This indicates that the bearing’s performance decreases as time 
goes. Moreover, to ensure that the indicator value is greater than 0, all the indicator values are increased by 0.2.

Performance evaluation of the XJTU‑SY bearing based on the ER rule. Suppose the identification frame is 
� = {(H1, high), (H2,medium), (H3, low)} . The reference values are shown in Table 7. The “high” and “low” ref-

Figure 25.  Evaluation result of the fuzzy expert system.

Figure 26.  Characteristic indicators of XJTU-SY bearing.
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erence values of RMS, peak value and CF are the minimum value and maximum value of indicator data, respec-
tively, and since the bearing wear is aggravated at 200–250 min, the “medium” reference value is the denser point 
of data distribution between 200 and 250 min.

Based on Eqs. (14)–(16), the evidence reliabilities are r1 = 0.5275 , r2 = 0.4804 and r3 = 0.2949 , respectively. 
Based on Eqs. (17)–(18), the evidence weights are ω1 = 0.7200 , ω2 = 0.2633 and ω3 = 0.0167 , respectively. The 
ER rule is used to fuse this information by Eqs. (19)–(30), and the performance evaluation results are obtained 
in Fig. 27.

According to Fig. 27, the “high” belief degree plays a more significant role before 120 min, the “medium” 
belief degree reaches its peak around 190 min, and the “low” belief degree shows an uptrend after 250 min. This 
indicates that with the increase of operation time, the bearing wear is aggravated, which is consistent with the 
variation trend of bearing capacity in Fig. 26.

Suppose the utility of the reference grade is u(H1) = 1 , u(H2) = 0.5 and u(H3) = 0 , and the expected utility 
of performance is calculated by Eq. (31), as shown in Fig. 28.

According to Fig. 28, the change in bearing’s performance shows a downtrend after 120 min, but there are 
some brief uptrends in the middle. After 205 min, the expected utility begins to increase greatly, indicating that 
the bearing’s performance begins to rise due to some compensation. This is consistent with the indicator trend 
in Fig. 26.

Performance reliability analysis of XJTU‑SY bearing considering perturbation. Suppose perturbation intensi-
ties are 0.0015, 0.0030, 0.0045 and 0.0060. The distribution of perturbation variable �x is shown in Fig. 29. The 
indicator data under different perturbation intensities are listed in Fig. 30.

Due to the perturbation has little influence on the indicator data, and the weight change of the indicator 
can be ignored. Therefore, based on the Eqs. (17) and (18), the bearing weights are ω1 = 0.7200 , ω2 = 0.2633 
and ω3 = 0.0167 , respectively. The bearing reliability under different perturbation intensities are calculated by 
Eqs. (14)–(16), as shown in Tables 8.

The expected utility of XJTU-SY bearing performance reliability evaluation results under perturbation are 
shown in Fig. 31.

According to Fig. 31, there are slight deviations in the performance under different perturbations, but the 
overall evaluation result is similar to the utility without perturbation. The model can effectively evaluate bear-
ing performance under perturbation. The perturbation coefficients under different perturbation intensities are 
shown in Fig. 32.

Table 7.  Indicator evaluation level and reference value.

H1 H2 H3

RMS 0.090 1.598 2.488

Peak value 1.551 2.837 3.850

CF 7.544 8.093 8.257

Figure 27.  Performance evaluation results of XJTU-SY bearing.
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According to Fig. 32, with the increase in perturbation intensity, the perturbation coefficient also increases, 
which is consistent with the negative influence of perturbation on the bearing. When the utility has a large fluc-
tuation, the perturbation coefficient also increases. After 205 min and 281 min, the bearing performance fluctu-
ates seriously, and the perturbation coefficient increases sharply. This indicates that when bearing performance 
is unstable, it is more susceptible to perturbation. Therefore, it is essential to adjust or maintain the bearing to 
ensure its operation. Suppose that the maximum error of the perturbation coefficient is ε = 0.008 . When the 
perturbation intensity is 0.0015, 0.0030 and 0.0045, |Si| ≤ ε is constant, indicating that the bearing has good 
adaptability to perturbation. When the perturbation intensity is 0.0060, |S4| ≤ ε does not hold, indicating that 
the performance reliability of the bearing is low and cannot work normally. At this time, the bearing needs to 
be adjusted or maintained.

Figure 28.  Expected utility of XJTU-SY bearing performance.

Figure 29.  Perturbation variable distribution.
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Figure 30.  The characteristic indicators of XJTU-SY bearing under different perturbation intensities.

Table 8.  Reliability under different perturbation intensities.

r σ = 0.0015 σ = 0.0030 σ = 0.0045 σ = 0.0060

RMS 0.5262 0.5248 0.5234 0.5220

Peak value 0.4805 0.4807 0.4808 0.4809

CF 0.2951 0.2953 0.2955 0.2957

Figure 31.  Expected utility of XJTU-SY bearing performance under different perturbation intensities.
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Conclusion
Based on analysing the characteristics of rolling bearing, the indicator evaluation system based on vibration signal 
is innovatively used, and a performance evaluation model of rolling bearing based on the ER rule is proposed. 
This is used to evaluate the bearing performance under ideal working conditions. Then, a performance reli-
ability evaluation model considering perturbation is established, by adding a perturbation analysis to simulate 
the influence of different perturbations on rolling bearing. The time domain indicators and frequency domain 
indicators are used to construct the evaluation system. The utility-based method is used to unify the indicator 
information into the form of a belief distribution, which improves the expression ability. The distance-based 
method and COV method are used to determine the reliability and weight of indicators, which overcome the 
subjectivity of expert knowledge weighting and improve the reliability of performance evaluation results. Finally, 
the rolling bearing adaptability to the perturbations is quantified by using the perturbation coefficient and the 
maximum error. The experimental results show that the model has a good effect on the performance and reli-
ability analysis of rolling bearing. Moreover, the models are applied to the performance evaluation of XJTU-SY 
bearing, and obtain effective results.

The main work in the future will include the following aspects: (1) When setting the reference values, if the 
input data exceed the evidence range, then the adaptive method is supposed to be used to determine the reference 
values. Therefore, building an adaptive method will be the focus of future work. (2) The evaluation model based 
on the ER rule can be used to discuss the performance of rocket structures, high bridges, and other complex 
systems. Because this system may often face perturbations, the ER rule can also be extended to other fields for 
evaluation and decision-making.

Data availability
The experimental data in this article come from the bearing datasets of the Kaggle platform and Google drive. 
For the source URL of the bearing data set of the University of Cincinnati, please visit: https:// www. kaggle. com/ 
datas ets/ vinay ak123 tyagi/ beari ng- datas et. For the source URL of the XJTU-SY bearing data set, please visit: 
https:// drive. google. com/ drive/ folde rs/ 1ueg6 7JZcI oAM6K iOz1a 4XDkh 6lh2Y 8Ii.
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