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Abstract

Recent work has identified brain areas that are engaged when people predict

how the physical behaviour of the world will unfold—an ability termed

intuitive physics. Among the many unanswered questions about the neural

mechanisms of intuitive physics is where the key inputs come from: Which

brain regions connect up with intuitive physics processes to regulate when and

how they are engaged in service of our goals? In the present work, we targeted

the dorsal anterior cingulate cortex (dACC) for study based on characteristics

that make it well-positioned to regulate intuitive physics processes. The dACC

is richly interconnected with frontoparietal regions and is implicated in map-

ping contexts to actions, a process that would benefit from physical predictions

to indicate which action(s) would produce the desired physical outcomes. We

collected resting state functional magnetic resonance imaging (MRI) data in

17 participants and used independent task-related runs to find the pattern of

activity during a physical inference task in each individual participant. We

found that the strongest resting state functional connections of the dACC not

only aligned well with physical inference-related activity at the group level, it

also mirrored individual differences in the positioning of physics-related

activity across participants. Our results suggest that the dACC might be a key

structure for regulating the engagement of intuitive physics processes in the

brain.
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1 | BACKGROUND

People can form rapid and accurate intuitions about the
physical structure of everyday scenes and the way their
physical dynamics will play out in the immediate future.
For example, we can use estimates of the weight of a
water pitcher, the volume of the water inside and the

Abbreviation list: ACC, anterior cingulate cortex; dACC, dorsal
anterior cingulate cortex; fMRI, functional magnetic resonance imaging;
FWHM, full width at half maximum; MD, multiple demand; MNI,
Montreal Neurological Institute; MVPA, multivariate pattern analysis;
ROI, region of interest.
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three-dimensional shapes of the water pitcher and glass
to rapidly and implicitly predict how the water will flow
when the pitcher is tipped, adjusting our actions to pour
a glass of water without spilling a drop. Our intuitive
understanding of how the physical dynamics will play
out in such scenarios is termed intuitive physics
(Fischer, 2020; Kubricht et al., 2017). Recent work inves-
tigating the brain regions recruited for intuitive physics
uncovered areas in dorsal parietal and frontal cortex that
are engaged more during physical prediction than other
difficulty-matched tasks (Figure 1a; Fischer
et al., 2016)—specifically, bilateral dorsal premotor cortex
(PMd)/supplementary motor area (SMA), bilateral post-
central sulcus (PoCS)/anterior intraparietal sulcus (aIPS),
and the left supramarginal gyrus (SMG). Additional work
has shown that the same regions are recruited when
inferring latent physical properties from observed events
(Schwettmann et al., 2019), and damage within these
areas can yield impairments in mechanical reasoning
alongside the movement difficulties characteristic of
motor apraxia (Goldenberg & Hagmann, 1998;
Goldenberg & Spatt, 2009). Thus, these regions may be
the neural locus of operations supporting intuitive
physics.

At the same time, the brain regions recruited for
physical prediction show notable overlap with other
established networks in the dorsal stream (Fischer
et al., 2016). In particular, there is a close apparent align-
ment with networks associated with tool use and action
planning (Gallivan & Culham, 2015), as well as the mul-
tiple demand (MD) network which comprises a set of
flexible resources that can be deployed across a broad
array of tasks (Duncan, 2010; Duncan & Owen, 2000).
Unlike some functional modules that exhibit a high
degree of domain-specificity (Kanwisher, 2010), the neu-
ral machinery of intuitive physics appears to be

embedded within a broader landscape of cognitive
processes supporting executive function and action prep-
aration. With the study of the neural mechanisms of intu-
itive physics still nascent, there is a long way to go to
understand the interplay among these co-localized sys-
tems, and this work proceeds in parallel with behavioural
studies on the separability of intuitive physics from other
facets of cognition (Fischer, 2020; Mitko & Fischer, 2020).
One possibility is that physical prediction draws at least
in part on flexible multiple demand resources. While the
activity of the MD network as a whole scales with diffi-
culty on a wide variety of tasks, there is also heterogene-
ity within the network with different tasks eliciting
reliably different patterns of response (Stiers et al., 2010).
Studies of functional connectivity have also revealed sub-
networks within the MD system (Camilleri et al., 2018;
Stiers et al., 2010). Subregions of the MD network (partic-
ularly those associated with action planning) may carry
out computations that are particularly well-suited to the
structured ruleset and online dynamics of physical
scenarios. Still, it is worth noting that the brain regions
recruited for physical inference do not overlap perfectly
with the MD network, as shown by split-half correlation
analyses (Fischer et al., 2016). This underscores the need
for further work to more thoroughly characterize the
neural substrates of intuitive physics, including their
functional connections.

An important clue to understanding how intuitive
physics fits within the family of functions associated
with dorsal frontoparietal cortex will come from investi-
gations of functional connectivity, uncovering the brain
areas that reliably co-activate with those recruited for
physical prediction. We approached the present study
with an eye towards the kinds of information that
would be important for physical prediction in everyday
environments. Visuospatial areas no doubt provide

F I GURE 1 Brain regions engaged by physical prediction tasks (panel a) and the anterior cingulate cortex (ACC; panel b). Both the

physical prediction-related activity and the ACC are shown here on a single hemisphere but are present bilaterally
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critical inputs to intuitive physics mechanisms—
information about objects’ geometry, surface properties
and velocities, to name a few. Beyond these inputs
providing a spatial scene description, there should also
be mechanisms for regulating the deployment of
physical prediction to specific elements of a scene. In
everyday scenes, we are constantly surrounded by a
multitude of physical interactions happening simulta-
neously. For example, our dog could be about to knock
over a valuable object while we are trying to pour a
glass of water. If we cannot analyse all physical interac-
tions in a complex environment at once, we must have
a mechanism that dictates the current focus of physical
prediction according to our goals, expertise and
motivations, as well as the novelty and salience of the
physical content in the world. What brain structures
might mediate this selection process? Based on two
complementary lines of evidence, we see the anterior
cingulate cortex (ACC; Figure 1b) as a prime candidate
for directing physical prediction processes towards goal-
relevant scene contents. The first line of evidence comes
from the putative function of the ACC in linking
context-sensitive goals to appropriate actions, and the
second line of evidence comes from the established
functional connectivity of the anterior cingulate with
areas nearby or overlapping those recruited for physical
inference.

First, a theory of ACC function holds that it operates
as a switchboard for linking contexts to strategies
(Heilbronner & Hayden, 2016) or translating intentions
to actions (Paus, 2001). For example, the dorsal anterior
cingulate (dACC) would represent contexts and task vari-
ables relevant for behaviour and link those with the
appropriate strategies for action (Heilbronner &
Hayden, 2016). In that sense, the dACC would be more
active in situations in which the appropriate behaviours
in a specific context are not known or rehearsed and
willed control of action is required (Paus, 2001). In line
with this notion, based on evidence from task- and rest-
based functional connectivity, Camilleri et al. (2018)
proposed that the pre-SMA/medial cingulate cortex node
of the multiple demand network might orchestrate the
engagement of other multiple demand regions (such as
those found in physical prediction tasks) based on task
demands. This function is crucial in the context of physi-
cal prediction. In a soccer game, for example, the strategy
or action of a goalkeeper will involve coordinated move-
ments of the arms, hands and other body parts to impede
the opposing team’s attempt to score. To act as a switch-
board, the ACC would connect various inputs (i.e., a ball
approaching) to outputs (i.e., use of different body parts),
and these links between input and output would be mod-
ulated by internal factors such as motivation and goals

(i.e., different goals and motivations of a goalkeeper and
a striker).

Second, a number of prior functional connectivity
studies have established that the dorsal ACC co-activates
with regions nearby or overlapping the ones recruited for
intuitive physics during tasks and at rest. For example,
studies with rhesus monkeys have shown that the dorsal
ACC projects to premotor cortex (Pandya et al., 1981)
and receives input from posterior parietal lobe among
other regions (Vogt & Pandya, 1987). Additionally,
functional connectivity studies in humans have shown
that the activity of the dorsal ACC correlates with
sensorimotor areas (Habas, 2010; Margulies et al., 2007;
Yu et al., 2011).

Additionally, functional specialization has been
described within the ACC, with the rostral-ventral
aspects of the ACC being associated with tasks that
involve social cognition and dorsal aspects associated
with tasks that require spatial cognition (Bush
et al., 2000; Mao et al., 2017; Palomero-Gallagher
et al., 2019; Somerville et al., 2006; Vogt et al., 1992).
Patterns of connectivity from the ACC mirror this organi-
zation; for example, whereas rostral-ventral parts of the
ACC are connected to areas important for social cogni-
tion, the dACC is well-connected—both anatomically
and functionally—to regions of the frontal and parietal
cortex that are important for spatial cognition (Devinsky
et al., 1995; Habas, 2010; Margulies et al., 2007; Yu
et al., 2011). Based on these functional characteristics,
the dACC would be ideally suited for routing selected
scene contents to physical prediction mechanisms based
on the context, goals and motivations.

The above findings notwithstanding, there has yet to
be a direct test of the functional coupling between the
ACC and brain regions recruited for physical prediction,
especially in the fine-grained way afforded by running
functional localizers in individual participants. Here, we
tested the functional connectivity of the ACC using an
individual differences approach inspired by recent find-
ings showing that an individual’s functional connectivity
‘fingerprint’ can be used to predict the patterns of activity
that will be observed during tasks (Tavor et al., 2016;
Tobyne et al., 2017, 2018). These studies, along with
others investigating anatomical connections with
diffusion-weighted imaging (Saygin et al., 2012, 2016),
have shown that individual differences in the pattern of
task-related brain activity reflect underlying patterns of
connectivity intrinsic to the individual. We reasoned that
if we found reliable individual differences in the pattern
of activity observed during a physical prediction task, we
could leverage those individual differences to test
whether the functional connections of the dACC pre-
cisely track with the brain areas recruited for physical
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prediction or whether the dACC simply connects in a
non-specific way with the same general neighbourhood
of the multiple demand network. Analysing the spatial
correlation between ACC connectivity and task-related
fMRI responses, we found that an individual’s own pat-
tern of dACC functional connectivity best predicted their
task-related activity. This finding further advances the
dACC as a candidate for orchestrating the deployment of
physical prediction processes.

2 | METHODS

2.1 | Subjects

Seventeen subjects participated in an functional magnetic
resonance imaging (fMRI) experiment that lasted around
90 min total. All subjects gave written informed consent
in accordance with the Institutional Review Board at
Johns Hopkins University. They were right-handed,
English native speakers, and none of them had a history
of neurological or psychiatric illnesses. Ages ranged from
18 to 35 years. Gender information was only recorded for
9 of the 17 participants (6 of these 9 were female). All
subjects were compensated for their participation.
Subjects started by completing a series of screening
questionnaires. After that, the participants went through
a maximum of 16 scans: Two of them were resting state
scans, and the remaining functional runs contained a
variety of tasks, most of which are not reported on here.
An intuitive physics task (described below) and the rest-
ing state scans are the focus of the present study. From
the initial 17 subjects, 1 subject was not included because
an anatomical lesion was detected.

2.2 | MRI acquisition

Structural and functional MRI data of the whole brain
were collected on a 3 Tesla Phillips scanner. A T1-
weighted high-resolution (1 � 1 � 1 mm) anatomical
image (MPRAGE) was collected for each subject.
Functional data were collected using a T2*-weighted echo
planar imaging pulse sequence (TR = 2 s; matrix
size = 80 � 80; voxel size = 3 � 3 � 3.5 mm).

2.3 | Resting state scans

During each of the 5-min resting state scans, the lights in
the scanning room were dimmed, and participants were
shown a blank black screen. They were instructed to
keep their eyes open during the scan and look at the

screen but were otherwise given no instructions on what
to think about during the scan. One resting state run was
collected near the beginning of the scanning session, and
the other was collected at the end. Two participants did
not have time to complete any resting state scans, and
two additional subjects were excluded of the resting state
connectivity analyses due to excessive movement during
the resting state scanners. Four of the participants
included in the analyses only had time for one resting
state scan of 5 min.

2.4 | Task

The task (Figure 2) used here to localize regions recruited
for physical prediction is identical to the one in Fischer
et al. (2016). Participants viewed videos of unstable block
towers and were asked to judge either where the blocks
would land if the tower tumbled (physical judgement) or
whether the tower contained more blue or yellow blocks
(colour judgement). The stimuli presented for the two
tasks (physical and colour judgments) were visually
identical, and the tasks were matched on difficulty. Each
participant completed two runs of this task. Stimuli
were based on those used by Battaglia et al. (2013) and
were created in Blender 2.70 (Blender Foundation;
https://www.blender.org).

Each fMRI scanning run consisted of 23 blocks of 18 s
each: 10 blocks of the physical judgement task, 10 blocks
of the colour judgement task and 3 rest blocks, which
consisted of only a blank black screen. Each nonrest
block began with a text cue, displayed for 1 s, which read
either ‘more blue or yellow?’ (colour task) or ‘where will
it fall?’ (physical task). The cue was followed by a 6-s
movie clip of a block tower, with the camera panning to
show the tower from all sides. Each movie clip was
followed by a black screen during a 2-s response period.
This sequence was repeated twice within a block, with
the same task being cued for both movie presentations
within a block. Rest blocks occurred in blocks 1, 12 and
23, and the nonrest blocks were arranged in a pseudoran-
dom palindromic order, so that the pairwise ordering
between block types was balanced across a run. A scan-
ning run lasted for 414 s (207 volumes with a 2-s TR).

2.5 | Resting state image processing and
connectivity analysis

Preprocessing of resting state fMRI data was performed
using the AFNI software package (http://afni.nimh.nih.
gov). Standard preprocessing procedures were used
(afni_proc.py) including despiking, slice-time correction
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and coregistration. Images were smoothed with a 4-mm
full width at half maximum (FWHM) Gaussian kernel
and warped to standardized Talaraich space. TRs with
greater than 2 mm of movement were censored and
removed. Data were band-pass filtered using standard
cut-offs (0.009 < f < 0.08; i.e., Kayser et al., 2012). Motion
parameters and their derivatives (roll, pitch, yaw, dS, dP,
dL) as well as white matter and ventricular timeseries
were included as regressors of no interest.

Our analyses focused primarily on dACC regions of
interest (ROIs) in the left and right hemisphere, obtained

from the human Brainnetome atlas, a connectivity-based
parcellation that provides a functional subdivision of the
human brain (Fan et al., 2016). This posterior part of the
ACC is also referred to as the midcingulate cortex
(Margulies & Uddin, 2019; Procyk et al., 2016; Shackman
et al., 2011; Shenhav et al., 2016; Vogt, 2016; Vogt
et al., 2003). We also conducted connectivity analyses in
6 additional ROIs (3 in the left hemisphere and 3 in the
right) that covered the remaining extent of the ACC (ros-
tral-ventral and caudal-dorsal), for the sake of compari-
son with the dACC. We used FreeSurfer (https://surfer.
nmr.mgh.harvard.edu/) to map the Brainnetome atlas to
each individual subject. The time series of all the ROIs’
common variance was regressed out from the
preprocessed data in order to ensure that the connectivity
for each parcel reflected its unique variance. While
regressing out mean signal can introduce spurious rela-
tionships in resting state data in certain circumstances
(Murphy et al., 2009), our interest here was specifically in
the spatial distribution of dACC functional connectivity
and its overlap with intuitive physics regions. Regressing
out common variance among the subregions of the ACC
in this case allowed us to examine the precise targets of
dACC functional connections separately from the general
connectivity of the ACC (Margulies et al., 2007). We per-
formed a correlation analysis using AFNI to calculate the
functional connectivity between each of these brain
regions and all other brain voxels. Correlation values
were z-transformed, and we performed a one sample
t test against zero on the z scores. Corrections for multi-
ple comparisons were carried out by applying a cluster-
size correction derived from the AFNI programs
3dFWHMz (using a mixed model) and 3dClustsim on
data thresholded at a value of p < 0.001.

Next, we calculated the overlap between the active
regions from the physical prediction task and the voxels
whose activity correlated positively with the ACC ROIs.
For the intuitive physics areas, we used a group of
masks from Fischer et al. (2016) that were shown to be
selectively engaged when people predicted the unfolding
of physical events. These ROIs are cortical parcels,
defined to include the extent of cortex in standardized
space over which the majority of individual subjects’
peak activations would be expected to fall (Julian
et al., 2012). They cover larger extents of cortex than any
one individual’s intuitive physics regions would, but they
are ideally suited as ROIs for the purposes of this present
study. We first used these parcels to evaluate whether
the strongest functional connections of the dACC fall
within the expected neighbourhood of the regions
engaged by the physical prediction task (described below
in Section 2.6). We then used these parcels to constrain
our multivariate pattern analyses, allowing for individual

F I GURE 2 Example of the experimental task: Physical versus

colour judgements with identical stimuli. After the text cue

indicating the type of judgement to perform (physical or colour),

participants viewed a video of the tower rotating in 360� that
allowed them to see the arrangement from all sides. Each video was

followed by a 2-s response period
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subjects’ physics-related responses, which varied in their
cortical location, to fall within the regions of cortex used
for the correlation analyses (described below in
Section 2.8).

2.6 | Group-level analysis (resting state
connectivity)

To compute the general overlap of the peak dACC func-
tional connectivity with the regions active during physi-
cal inference at the group level, we first applied an
increasingly stringent threshold on the ACC correlation
results and created a group of 20 datasets with the
highest percentile values, starting at the 99th percentile
and ending at the 100th percentile at steps of 0.05. For
each of these 20 datasets, we calculated the percentage of
voxels that overlapped with significant voxels from the
physical prediction task within a mask from the
Talairach Daemon atlas that covered frontal and parietal
lobes.

2.7 | Intuitive physics task preprocessing
and analysis

Data preprocessing was conducted using afni_proc.py
and consisted of despiking, slice-time correction, cor-
egistration, smoothing and warped to standardized
Talairach space. TRs with greater than 3 mm of move-
ment were excluded from analysis. Data were band-pass
filtered (0.009 < f < 0.08). Motion parameters and their
derivatives (roll, pitch, yaw, dS, dP, dL) were included as
regressors of no interest. We used the cue phases of the
task for the two different conditions (towers’ physics and
towers’ colour) as separate regressors. Regressors were
convolved with a gamma haemodynamic response func-
tion peaking at 4.7 s. One participant with an anatomical
lesion and another participant with excessive movement
during the task were not included in the analysis.

2.8 | Correlation-based subject
specificity analysis

To analyse whether the connectivity of the dACC could
predict individual differences in the pattern of activity
during physical prediction, we calculated the spatial cor-
relation (correlation across voxels) for each individual
between the resting state connectivity of the dACC and
that individual’s physics–colour contrast. Correlation
analyses were conducted within functionally defined
physics’ ROIs, obtained from the significant activity

during the physical prediction task, as described below.
For each individual, we also calculated the average of the
correlations between their resting state connectivity of
the dACC and the physics–colour contrast for all the
other participants. We then conducted an analysis of vari-
ance (ANOVA) on the correlation values to test for a
main effect of within- versus between-subject correla-
tions, which would indicate that dACC connectivity
tracks individual differences in physics-related activity.

An independent test was performed to analyse
whether we could expect to have sufficient power to find
reliable individual differences in the pattern of dACC
functional connectivity within our sample of participants
in the main study. For this purpose, we used a non-
published sample of 10 subjects with 5 min of resting-
state fMRI data collected at the University of California,
Berkeley. Data were preprocessed using the same steps
described above for the resting-state analyses of the pre-
sent study. The preprocessed resting-state data were
divided into two halves, and the connectivity of the left
and right dACC and the regions engaged in physical
inferences was calculated for each half. After converting
the connectivity results to z values, we calculated the cor-
relation across voxels (spatial correlation) of the first half
with the second half. We then converted these within-
subject correlations (first half correlated with second
half) to z values and compared them with the between-
subject spatial correlations (first half of one individual
correlated with the average of the first half of all other
individuals). A repeated-measures ANOVA revealed sig-
nificant differences between within- and between-subject
correlations; F1,9 = 51.9, p = 0.000051, with significantly
higher within-subject spatial correlations and overall
higher spatial correlations in the left hemisphere
(F1,9 = 6.82, p = 0.028). The interaction between these
two factors was not significant (p = 0.077). These results
revealed statistically reliable individual differences in the
pattern of dACC functional connectivity with the dorsal
frontoparietal cortex. This result gave us confidence that
our main study had sufficient power to characterize indi-
vidual differences in dACC functional connectivity and
find a link with intuitive physics task-related activity, if
one exists.

2.9 | Physics versus colour contrast

After excluding one subject due to excessive movement
during the physics task, 15 participant-specific contrast
(physics–colour) images for the right and left dACC were
entered into one sample t tests. Corrections for multiple
comparisons were carried out by applying a cluster-size
correction derived from the AFNI programs 3dFWHMz
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(using a mixed model) and 3dClustsim on data
thresholded at a value of p < 0.001 (uncorrected).

3 | RESULTS

Prior studies have reported that the dACC shares func-
tional connectivity with portions of the frontal and parie-
tal cortex (Margulies et al., 2007; Yu et al., 2011), with
networks important for attention allocation, implementa-
tion of task-sets and motor planning, among other
(Amodio & Frith, 2006; Beckmann et al., 2009; Hutchison
et al., 2012; Margulies & Uddin, 2019; Neubert
et al., 2015; Torta & Cauda, 2011). We first sought to test,
at the group level, the degree to which these connections
actually overlap with previously reported locations active
during intuitive physics tasks (Fischer et al., 2016). We
conducted a functional connectivity analysis using four
parcels of the ACC in each hemisphere from the
Brainnetome atlas as ROIs. Our interest was in whether
the general pattern of dACC functional connectivity in
fronto-parietal cortex matched what had been previously

reported as the intuitive physics network (Fischer
et al., 2016), and the remaining parcels of the ACC served
as comparison cases to confirm that their functional con-
nections are concentrated elsewhere. Figure 3 shows the
patterns of functional connectivity for the dACC
(Figure 3a) and the remaining subdivisions of the ACC
(Figure 3b). In line with prior findings (Margulies
et al., 2007), the dACC showed robust connectivity with
regions of frontal and parietal cortex in the vicinity of the
regions engaged in physical inferences, setting the stage
for a quantitative assessment of how closely these func-
tional connections align with task-defined intuitive phys-
ics regions.

To quantify the overlap between the peak locations of
dACC connectivity (Table 1) and the areas engaged in
physical inferences, we first performed a group-level
analysis, comparing the functional connectivity with the
published locations of these regions active during intui-
tive physics tasks (Fischer et al., 2016). Figure 4 shows
the proportion of the most strongly dACC-connected
voxels that fall within the expected location of the regions
engaged in physical inferences. We found that when

F I GURE 3 Group-level

resting state functional

connectivity maps (12 subjects).

(a) Functional connectivity of

the dorsal anterior cingulate

cortex (ACC), our primary

target for investigation.

Significant positive resting

correlations are shown in red

(p < 0.001, cluster-corrected),

and significant negative resting

correlations are shown in blue

(p < 0.001, cluster-corrected).

(b) Functional connectivity for

three additional subdivisions of

the ACC, shown here for

comparison with the dorsal

anterior cingulate cortex

(dACC). Colour coding

thresholds are the same as in

(a)
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examining the top 1% of voxels showing the strongest
resting correlations with the dACC, 50–60% of the voxels
fell within the physics regions. As we applied successively
more stringent thresholds on the functional connectivity
map, the degree of overlap with the physics regions rose
more or less monotonically, up to 100% overlap at the
most stringent thresholds. This pattern of results indi-
cates that at least at the group level, the voxels with the
very strongest functional connections with the dACC fall
within the regions engaged in physical inferences.

If the peak functional connections of the dACC spe-
cifically target the most active areas from the physical
prediction task as suggested by the group-level analysis,
then we should observe that the best-connected voxels
align with physical prediction task-related activity on an
individual subject basis. To test this hypothesis, we con-
ducted a correlation-based multivariate pattern analysis

(MVPA), computing the spatial correlation for each indi-
vidual between the resting state connectivity of the dACC
and the physics–colour contrast (within-subject correla-
tion). We compared the within-subject correlation to a
between-subject correlation, comparing each subject’s
pattern of dACC functional connectivity with each of the
remaining individual subject’s physics-related activity.
The between-subject correlation for a particular partici-
pant was taken as the average of the z-scored correlations
for that participant’s connectivity map with each of the
remaining individual task-related maps. This analysis
tested whether an individual’s pattern of dACC connec-
tivity better predicted their own physics-related responses
than the physics-related activity of others in the group—
if dACC functional connections simply land in the
neighbourhood of the regions important for physical
intuition but do not directly target them, then we would

F I GURE 4 Overlap between regions identified with the intuitive physics localizer and the voxels whose activity correlates positively

with the dorsal anterior cingulate cortex (dACC). The proportion of voxels falling within the intuitive physics parcels is plotted as a function

of the threshold applied to the functional connectivity maps, with increasingly stringent thresholds plotted as one moves rightward along the

abscissa. The degree of overlap increased with successively stringent thresholds, ultimately reaching 100% overlap for the functional

connectivity of both the left- and right-hemisphere dACC. The intuitive physics parcels are outlined in white on the functional connectivity

maps below, which show all significant (p < 0.001, cluster-corrected) positive correlations

TAB L E 1 MNI coordinates of clusters most significantly correlated with right and left dorsal ACC in parietal areas

MNI coordinates

X Y Z p value, uncorrected

Right ACC connectivity �46 �42 52 <0.0001

Left ACC connectivity 12 �57 64 <0.0001

Note: The coordinates represent the maximum value within the cluster.
Abbreviations: ACC, anterior cingulate cortex; MNI, Montreal Neurological Institute.
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not expect the spatial pattern of dACC connectivity to
reliably correlate better with an individual’s own task-
related activity than with other subjects’ task-related
activity. Figure 5 shows the within- versus between-
subject correlations for four ROIs (frontal and parietal
regions in both the left and right hemisphere) engaged in
physical intuition. Within-subject correlations were reli-
ably higher than between-subject correlations, as rev-
ealed by an ANOVA (a significant main effect of within-
vs. between-subject; F4,8 = 14.82, p = 0.0078, with no sig-
nificant main effect of region [p = 0.50] and no signifi-
cant interaction [p = 0.63]). This correlation-based
pattern analysis established that the pattern of the
dACC’s resting-state connectivity reliably predicted an
individual subject’s pattern of task-related activity when
making physical predictions. Additionally, prior work
has shown that motion in the scanner can produce

spurious functional connectivity despite regression of
motion parameters (Power et al., 2012). For this reason,
we tested the possibility that the spatial correlation
effects between dACC connectivity and physics activity
were correlated with the amount of motion in the scan-
ner. The correlation across-subjects was found to be not
significant (Pearson’s r = 0.19).

Lastly, we considered the possibility that dACC func-
tional connections actually target the brain regions asso-
ciated with other aspects of cognition such as action
planning or spatial attention, which engage brain net-
works that at least partially overlap with the regions
engaged in physical inferences (Fischer et al., 2016).
While we did not localize action planning or spatial
attention-related brain regions in our participants, the
physical prediction task that we used was controlled for
attentional demands and did not explicitly require any
action planning (besides button presses, which were mat-
ched across conditions). Thus, activity in our dACC, ROI
during the physical prediction task would point to an
engagement in intuitive physics over and above these
other cognitive functions. To test this possibility, we eval-
uated the physics colour contrast within the dACC ROI
in the left and right hemispheres. For the contrast, we
used the 3dttest++ AFNI function. A statistical threshold
of t = 3.3 was employed, corresponding to a corrected
p < 0.005. Five voxels survived that threshold and clus-
tering in the left dACC ROI and 34 voxels were signifi-
cant in the right dACC. The significant response in the
dACC during physical prediction relative to a well-
matched control condition points to its engagement with
the intuitive physics system rather than adjacent and
overlapping attention and action systems. Note that this
does not imply, nor do we mean to suggest, that the
dACC is part of a network engaged in physical intuition
or directly involved in intuitive physics computations.
Rather, we take these data to align with existing ideas
about ACC function—when a person’s current goals
require physical inferences about some scene elements,
the dACC engages the areas engaged in intuitive physics
on those scene elements, providing an interface between
intentions and the processes needed to advance them.
The dACC responds during physical prediction, engaging
the regions necessary for physical intuition, and other
subregions of the ACC engage other cognitive systems
during the non-physics control condition.

Lastly, in agreement with previous data (Margulies
et al., 2007), the connectivity analyses show that the
dACC has negative correlations with medial prefrontal
areas and posterior cingulate cortex (PCC), which are
regions involved in social reasoning. These regions have
been reported to have a mutually inhibitory relationship
with the intuitive physics system in the brain (Jack

F I GURE 5 Within and between-subject spatial correlations

(correlations across voxels) between the resting state connectivity of

the dorsal anterior cingulate cortex (ACC) and the physics–colour
contrast. The connected points on each plot show a participants

‘within’ correlation (the pattern of their dorsal anterior cingulate

cortex (dACC) connectivity compared with their own pattern of

task-related activity) and their corresponding ‘between’ correlation
(the same participants dACC connectivity compared with the task-

related activity of other participants). We entered the full set of

these correlation values into an analysis of variance (ANOVA)

analysis to test for a main effect of within- versus between-subject

correlations
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et al., 2013). On the other hand, the activity of the most
rostral-ventral part of the ACC analysed (ROI #4;
Figure 3) correlates with medial prefrontal areas and
PCC among others and shows negative correlations with
the dorsal ACC, operculum as well as parietal and frontal
areas previously shown to activate during intuitive phys-
ics tasks (Fischer et al., 2016). We interpret these negative
correlations with caution, because mean signal regression
can introduce apparent anti-correlations between net-
works (Murphy et al., 2009). The raw dACC signal may
not be anti-correlated with the resting state activity social
brain regions, but the key point here is that the dACC
resting signal is less correlated with social regions than
with the rest of the brain, and likewise, rostral-ventral
ACC signal is less correlated with brain regions engaged
in physical than with much of the rest of the brain. These
results suggest that the rostral-ventral ACC may play a
complementary role to the dACC, engaging social pro-
cesses in a goal-directed fashion (see Section 4).

4 | DISCUSSION

We spend much of our daily life making predictions
about the interaction of objects in our environment. For
example, we are constantly calculating the speed of mov-
ing things, the distance to obstacles or the strength we
need to apply to open, close or lift an object. All of these
computations happen automatically and without appar-
ent mental effort. Recent studies have identified a set of
frontal and parietal brain regions that are engaged when
people predict the unfolding of physical events. Here, we
show that the functional connections of the dACC pre-
cisely target these regions recruited for physical infer-
ences, tracking individual differences in the location of
the voxels that are most engaged during physical predic-
tion. This link between the dACC and the intuitive phys-
ics system in the brain fills in a missing piece of the
puzzle in understanding the function of these brain areas.
The ACC, for example, is believed to be an interface
between goals and actions, engaging behaviours that best
suit the current context (Heilbronner & Hayden, 2016).
But what specific actions would help achieve the current
goals? If I want to move a stack of items from one table
to another, what specific actions should I take? Intuitive
physics provides the answer, serving as a means of evalu-
ating the likely physical outcomes of possible actions.
The intuitive physics system might say that the stack is
too unstable to move all at once, so the appropriate
action under physical constraints is to divide the stack in
two and move each separately. Without an assessment of
stability, the appropriate action might seem to be lifting
the entire stack at once. In this light, our findings here

augment the current understanding of both the intuitive
physics system and the anterior cingulate, establishing
the dACC as a strong candidate for regulating the
engagement of mental physics.

As discussed in Fischer et al. (2016), the frontal and
parietal brain areas engaged when people make physical
inferences overlap with the multiple-demand network
(MDN; Duncan, 2010), especially with those parts rele-
vant for action planning. The nature of the interaction
among these overlapping systems remains to be charac-
terized, and the answer could take the form of a
completely unified account (e.g., physical predictions
being accomplished by a subset of the flexible resources
within the MDN), a multiplexing of independent systems
within common cortical real estate or an intermediate
case that affords some degree of interaction between dis-
tinct systems by virtue of their co-localization. The latter
account has some appeal from an ecological perspective.
Nearly all actions that we take are informed by expecta-
tions about their physical outcomes, so much so that it
scarcely makes sense to have an action planning system
without accompanying physical prediction mechanisms,
whatever their format. Physical prediction might be the
‘flip side of the coin’ of action planning, representing the
physical consequences of a family of possible actions
from which an action plan samples the most desirable.
At the same time, physical prediction itself is both a
highly structured and highly variable challenge whereby
a limited set of physical principles can be applied to
understand a vast array of scenarios. Flexible mental
programmes in the MDN might help accommodate these
heterogeneous scenarios while capitalizing on the struc-
tured nature of the problem. It is notable that the ACC
has also been implicated in the MDN (Camilleri et al.,
2018; Duncan, 2010), and its activity during executive
function tasks could reflect the recruitment other regions
of the MDN when these are needed (Camirelli et al.,
2017). Our final result showed a good match between
resting state and task networks, and as previous research
has noted (Cole et al., 2014; Smith et al., 2009; Tavor
et al., 2016), this may indicate that brain areas within
functional networks are continuously interacting even
at rest.

The possible role of the dACC in intuitive physics also
accords with theories that implicate the ACC in mapping
contexts to options and strategies (Heilbronner &
Hayden, 2016; Holroyd & Yeung, 2012) or mapping
intentions to actions (Paus, 2001). In that sense, dorsal
parts of the ACC may activate specifically when, based
on the context, motivation and goals, higher attention to
certain physical properties of objects is needed as well as
the proper actions in response to those physical stimuli.
For example, when we see that a glass of water is about
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to fall from a table, the activity of the dACC would be
required to recruit the appropriate sensory and motor
areas to avoid that happening. This idea falls in line with
studies that have suggested that the extensive anatomical
connections between the cingulate gyrus and premotor
and parietal areas could provide a basis for ‘limbic’ influ-
ences on motor and spatial attention mechanisms respec-
tively (Pandya et al., 1981; Vogt & Pandya, 1987).

We have used a connectivity-based parcellation of
the ACC for our analysis in which voxels within each
parcel share similar brain connectivity. It is possible
that a different parcellation would give us different
connectivity patterns. One possibility worth testing is
that finer-scaled structure within the dACC could map
to different task properties and stimuli. For example,
different kinds of physical inferences (inferring weight
vs. predicting dynamics) might map to different parts
of the dACC and corresponding frontoparietal cortex.
Additionally, a limitation in resting-state connectivity
studies can be the effect of previous tasks (Grigg &
Grady, 2010; Hasson et al., 2009; Tambini et al., 2010;
Wang et al., 2012). As explained in Section 2, one of
the resting state scans was collected at the beginning
of the scanning session, and another was collected at
the end, after a series of intuitive physics tasks.
Although we cannot rule out the possibility that the
connectivity of the dACC was affected by the previous
intuitive physics tasks, it is important to note that this
effect cannot account for the individual differences
observed in our spatial correlation analyses.

In addition to the dACC, we analysed the connectiv-
ity of other parcels of the ACC. In agreement with previ-
ous literature (Margulies et al., 2007), the functional
connectivity of the most rostral-ventral part of the ACC
appears to overlap with brain regions that are important
for social cognition. This finding agrees with studies that
show that different parts of the ACC activate with differ-
ent types of actions (Bush et al., 2000; Mohanty
et al., 2007; Stevens et al., 2011). Specifically, the rostral-
ventral ACC and dorsal ACC seem to be involved in emo-
tional and cognitive functions, respectively (Bush
et al., 2000). Previous studies (Baron-Cohen et al., 1986,
2001) have differentiated two aspects of causal cognition:
intuitive physics, or the ability to understand and predict
the physical dynamics of our everyday environment, and
intuitive psychology, or the ability to understand and pre-
dict others’ thoughts and behaviours. Jack et al. (2013)
suggested that there is reciprocal inhibition between the
brain networks that underlie intuitive physics and intui-
tive psychology or social cognition. In their findings,
when people performed a mechanical reasoning task,
areas associated with social reasoning had reduce activ-
ity. On the other hand, when people engaged in a social

reasoning task, brain areas associated with mechanical
reasoning had reduce activity. In agreement with previ-
ous fMRI data (Margulies et al., 2007), our analyses show
opposite patterns of connectivity for the rostral-ventral
ACC and dorsal ACC. Because the ACC has been
suggested to be a task switcher (Cocuzza et al., 2020) or a
selector of appropriate actions (Heilbronner &
Hayden, 2016), depending on the goals and context, the
activation of the dorsal ACC may prioritize physics
actions over social ones, and the activity of the rostral-
ventral ACC may prioritize social actions over
physics ones.

An important note is that while intuitive physics and
social cognition engage distinct networks in the brain,
distinctness does not necessarily imply independence or
competition between these systems. Indeed, there are
many cases where physical inference rests on social per-
ception (Zhang et al., 2019) and social inferences rest on
physical understanding (Liu et al., 2017), so an interac-
tion between these systems mediated by the ACC would
not strictly be a competitive one. Rather, it would reflect
an optimizing of resources for the present goals, which
may sometimes manifest as a trade-off between systems
as in Jack et al. (2013) and sometimes as a cooperation
between systems as the situation demands.

Finally, although we have focused in this article on
the study of the most dorsal part of the ACC due its con-
nectivity to the areas engaged in physical intuition, the
functional parcellation that we used includes several
other parts of the ACC that connect to networks other
than the physics and social ones mentioned above. Previ-
ous studies offer some hints about the brain areas associ-
ated to these other parts of the ACC and their roles in
behaviour (Margulies et al., 2007). One possibility is that
the anatomy of the ACC follows a hierarchy similar to
the one studied more generally in the frontal lobe
(Badre, 2008; Badre et al., 2010; Badre &
D’Esposito, 2007, 2009; Badre & Nee, 2018), going from
concrete to abstract types of action representations as we
move from dorsal to rostral-ventral areas. Future experi-
ments may study this hierarchy specifically in the ACC
and see how this fits the cognitive/emotional dichotomy
of the ACC (Bush et al., 2000).

In sum, our findings point to the dACC as a prime
target for future study in the context of physical predic-
tion. The study of the intuitive physics system in the
brain is still in its infancy, and these results provide a
promising link to other well-studied systems for con-
necting intentions to actions.
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