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Abstract

Hierarchical linear models are widely used in many research disciplines and estimation issues for such models are generally
well addressed. Design issues are relatively much less discussed for hierarchical linear models but there is an increasing interest
as these models grow in popularity. This paper discusses the G-optimality for predicting individual parameters in such models
and establishes an equivalence theorem for confirming the G-optimality of an approximate design. Because the criterion is
non-differentiable and requires solving multiple nested optimization problems, it is much harder to find and study G-optimal
designs analytically. We propose a nature-inspired meta-heuristic algorithm called competitive swarm optimizer (CSO) to
generate G-optimal designs for linear mixed models with different means and covariance structures. We further demonstrate
that CSO is flexible and generally effective for finding the widely used locally D-optimal designs for nonlinear models with
multiple interacting factors and some of the random effects are correlated. Our numerical results for a few examples suggest
that G and D-optimal designs may be equivalent and we establish that D and G-optimal designs for hierarchical linear models
are equivalent when the models have only a random intercept only. The challenging mathematical question of whether their
equivalence applies more generally to other hierarchical models remains elusive.

Keywords Approximate design - Locally D-optimal design - Poisson regression model - Random-effects model - Prediction

1 Introduction

Hierarchical models are widely used to analyze data in
various disciplines, such as in psychology, medicine, manu-
facturing industry and education. Such models are especially
appealing for analyzing longitudinal analysis because they
allow for the presence of missing data, time-varying or
invariant covariates, and subjects measured at different time
points. In educational research, hierarchical models are com-
monly used to evaluate the effectiveness of teaching methods
using data from students nested within classrooms and class-
rooms are nested within schools that use different teaching
methods. The distinguishing feature of these models is that
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they account for both individual-level and population-level
effects. In the literature across disciplines, hierarchical mod-
els are variously referred to as multilevel models, nested data
models, mixed models, random coefficient, random-effects
models or random parameter models. In our work, we make
no distinction among them and refer to them as statistical
models with parameters that vary at one or more levels.

When the experimental settings are under the control of
the investigator, design issues arise and they must be carefully
addressed for maximal precision in the statistical inference
at a minimal cost. The basic questions to answer are given
a statistical model defined on a compact design space X, an
optimality criterion and a fixed amount of resources to take
N observations for the study, what are the optimal number
of points, where these points are and how many replicates to
take at each of these points. We denote these quantities by &,
X1,...,Xxgandny, ..., ng,respectively whereni+- - -+ny =
N. Optimal exact designs are challenging to find and study
because there are no theoretical tools for finding them in
general and in addition to depending on the design criterion
and the model, the optimal exact design also depends on the
value of N.
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An alternative option is to formulate the design problem
to find an optimal approximate design, where we determine
k,x1, ..., x; as before, and now the optimal weights defined
by w; = n;/N € [0, 1] with w; + --- + wg = 1. In prac-
tice, there are implemented by taking rounding each Nw;
to the nearest integer [Nw ] and taking [N w ] observations
atxj, j =1...,k, subjectto [Nwi]+--- + [Nwi] = N.
Approximate designs were proposed in Kiefer (1959) and
they are appealing because when the criterion is a concave
functional, there is a theoretical tool called an equivalence
theorem for confirming the optimality of an approximate
design among all designs on the given design space X'. There
are algorithms with proof of convergence for searching some
types of optimal designs and there are also tools to assess
the proximity of an approximate design from the optimum
without knowing the latter. For these reasons, we focus on
approximate designs in the rest of the paper.

A primary interest of our paper is to find G-optimal
designs for hierarchical linear models, with G standing for
global. These designs are best for estimating the overall
response surface with minimal variance across the design
space X and so protect against the worst-case scenario. This
is unlike the much simpler situation where there is inter-
est in finding an optimal design for estimating the predicted
response at a single point. G-optimality is a minimax-type
of design criterion, it is non-differentiable and requires at
least solving two nested layers of optimization problems over
different search spaces. Consequently, even for fixed-effects
models, G-optimal designs are among the most difficult to
study mathematically. Compounding the optimization prob-
lem is that current algorithms for searching optimal designs
cannot find G-optimal designs effectively, let alone one with
proof of convergence.

The main aims of this paper are to find G-optimal designs
for hierarchical linear models, propose a nature-inspired
meta-heuristic algorithm to find them and develop an equiva-
lence theorem to confirm the G-optimality of an approximate
design for hierarchical linear models. We demonstrate the
flexibility and effectiveness of the algorithm for finding G-
optimal designs when the mean response is modeled by
fractional polynomials and D-optimal designs for hierar-
chical nonlinear models with multiple interacting factors
with possibly correlated random effects. We also establish
that D and G-optimal designs for hierarchical linear models
are equivalent when the models have only a random inter-
cept only and pose the challenging mathematical question
of whether their equivalence applies more generally to other
hierarchical models.

The rest of the paper is organized as follows. Section 2
provides the background of hierarchical linear models and
recent literature on constructing D-optimal designs for such
models. Section 3 establishes an equivalence theorem for
G-optimality and Sect. 4 presents G-optimal designs for
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various types of hierarchical models for relatively simple
models. To find G-optimal designs for more complicated
models, Sect. 5 introduces a nature-inspired meta-heuristic
algorithm called competitive swarm optimizer (CSO) to find
G-optimal designs for more complicated hierarchical linear
models, such as, when the mean function is a fractional poly-
nomial and the random effects may be correlated. We further
show CSO can find locally D-optimal designs for estimat-
ing model parameters in a Poisson hierarchical model with
multiple factors defined on a user-specified design space X’
and some random effects are correlated. Section 6 concludes
with a discussion of possible equivalence between D and
G-optimal designs for linear mixed models.

2 Preliminaries and model specification

This section gives the background, a brief literature review on
constructing optimal designs for hierarchical linear models
before we describe our statistical models.

2.1 Equivalence theorem

Constructing optimal designs for a given model under a speci-
fied criterion is challenging if the model is complex, and more
so if the criterion is complicated. An analytical approach for
finding optimal designs is limiting and is possible only for
simple models with a couple of parameters, see examples in
design monographs, such as, Fedorov (1972) and Berger and
Wong (2009). A common practice is to find an optimal design
under a set of restrictive conditions and hope that the design
remains optimal under a broader setup. For instance, one may
find the best two-point optimal design for the simple logistic
model. Is the same design still optimal among all three-point
designs? Equivalence theorem provides an answer, and more
generally, is able to confirm whether the design is optimal
among all designs of interest.

Specifically, suppose the given design space X is compact
and the optimality criterion is formulated as a concave (or
convex) function of approximate designs or, equivalently, as a
function of the normalized Fisher Information matrix M (£).
The elements of this matrix are the expectation of the negative
of the second derivatives of the log-likelihood function with
respect to the parameters. As an example, suppose we have
a standard linear regression model with the mean response

Ey = fT (08,

where y is a univariate function and g is the p x 1 vector
of unknown parameters. The expectation is over the model
errors assumed to have independent normal variates with zero
means and constant variance. A direct calculation shows the
Fisher Information matrix is proportional to



G-optimal designs for hierarchical linear models: an equivalence theorem and a nature-inspired...

13551

/ F) f)TE(dx).
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A typical design goal is find a design so that the estimated 8
has a minimal covariance matrix. The most common design
criterion is D-optimality and a D-optimal design satisfies

§p = arg maxg .z In [M(§)]

over all approximate designs on X'. Here |M| is the deter-
minant of M and = is the set of all approximate designs
on X. After the D-optimal design &p is found, the worth of
another design £ in terms of D-optimality is measured by its
D-efficiency defined by

{ |M ()] }””
MEp) ]

Clearly, the above ratio is between 0 and 1 and if it is equal
to one half, the interpretation is that the design & has to be
replicated twice to do as well as the D-optimal design &p. If
&p in the denominator is replaced by another design £*, the
ratio is the D-efficiency of & relative to £*. The efficiency
or relative efficiency of a design under another criterion is
similarly defined.

The function /n |M| is concave on = and using a standard
convex analysis argument (Fedorov 1972; Pazman 1986), it
can be shown that the equivalence theorem for D-optimality
is as follows: £p is D-optimal if and only if for all x € X,

FO™MED) ™ f(x)—p <o. 4))

The function on the left-hand side of the inequality is
frequently called the sensitivity function of the design. As
an example, if f(x)7 = (1, x, x?), the design space is
X = [1, 3] and we want to estimate all the three parame-
ters as accurately as possible. A direct calculation shows the
D-optimal design &p takes equal proportion of observations
at x = 1,x = 2 and x = 3 and one can directly verify its
sensitivity function satisfies (1).

Each concave functional has a directional derivative which
is used to derive its own unique equivalence theorem; see
details in design monographs, such as Fedorov (1972) and
Berger and Wong (2005). When X is an interval or a two-
dimensional space, the optimality of a design can be readily
checked by plotting the sensitivity function on the left-hand
side of the above inequality across the design space and
visually ascertain whether the conditions in the equivalence
theorem are satisfied. Equivalence theorems are frequently
used to confirm the optimality of an approximate design, and
more importantly, to ascertain the efficiency of any approx-
imate design. An example is Wong and Cook (1993), where
they proposed an algorithm to find G-optimal designs for

fixed-effects linear models and assess the quality of the gen-
erated design using an equivalence theorem.

2.2 Brief review of optimal designs

There is a lot of work on finding optimal designs for various
models in different fields and most concerned finding D-
optimal designs for linear models; see references in Berger
and Wong (2005) and those cited below. For nonlinear
models, the information matrix depends on the unknown
parameters and nominal values are required to replace them
in the information matrix before the criterion is optimized.
Because the resulting designs depend on the nominal values,
they are called locally D-optimal designs and are the sim-
plest to construct for nonlinear models and commonly used in
practice when a single best guess for the parameters is avail-
able. However, where there are conflicting opinions from
experts or prior information from previous studies, locally
optimal designs become problematic to implement.

Two common design approaches for such a scenario are to
adopt a Bayesian paradigm or a minimax approach. The latter
design strategy was used by Berger et al. (2000) where they
searched for the best D-optimal design over a plausible set
of values for the nominal values. The minimax D-optimal
design from Berger et al. (2000) minimizes the maximum
inefficiencies that arise from misspecified values in the plau-
sible set; variations of the theme are possible; see Chen et al.
(2018). An appeal of this approach is that practitioners are
likely able to provide a set of plausible nominal values for the
model parameters than having to provide a prior distribution
to implement the Bayesian optimal design. A disadvantage
of the minimax approach is that minimax optimal designs are
both theoretically and numerically more challenging to find
than Bayesian optimal designs.

Random-effects models have more complicated equiva-
lence theorems and a limited number of them are available.
For instance, Fedorov and Hackl (1972) derived an equiv-
alence theorem to confirm the D-optimality of an approxi-
mate design for a random coefficient regression model and
Entholzner et al. (2005) obtained optimal or efficient designs
for mixed models. Schmelter (2007b) showed that the search
for an optimal design for hierarchical linear models could
be restricted to the class of group-wise identical individual
designs and Schmelter (2007a) noted that optimal designs
found in the class of single-group designs remain optimal
in a larger class having more group designs. Entholzner
et al. (2005), Schmelter (2007a) and Schmelter (2007b)
investigated optimal designs under random intercept models,
random slope models and random coefficient cubic regres-
sion models, respectively. Debusho and Haines (2008) and
Debusho and Haines (2011) constructed V- and D-optimal
population designs for linear and quadratic regression mod-
els with a random intercept term. More recently, Prus and
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Schwabe (2016b) constructed optimal designs for predicting
individual parameters in hierarchical models and called them
D-optimal designs. They also extended their work to find
interpolation and extrapolation optimal designs for random
coefficient regression models in Prus and Schwabe (2016a).
Further, Prus (2019) proposed a design criterion called G-
optimality for predicting the response surface in hierarchical
models and noted technical difficulties in finding such an
optimal design, analytically or numerically, for more com-
plicated models.

2.3 Statistical models

Throughout, we denote the jth response from the ith subject
by y;;. The hierarchical model is defined on a user-defined
compact design space X’ and given by

vij = fT@xi))B; + &ij. )
j=1....m;; i=1,...,n,

where the jth observation from individual i is taken at the
experimental setting x;; € X, n is the number of individ-
uals, m; is the number of observations from individual i,
f=Ui..., fp)T is the vector of known regression func-
tions, and 8; = (Bi1, - - -, ,Bip)T is the individual parameter
vector specifying the individual response. The observa-
tional errors ¢;; are assumed to be centred with zero mean
and homoscedastic and uncorrelated with common variance
var(g;j) = o2. We assume that EB,)=B = (B1,.-., ,B,,)T
and Cov(ﬂi):ozD (i =1,...,n), where D is known, and
all B;’s are uncorrelated with all &;;’s. We note that the p x p
matrix D can be singular, which happens when some of the
individual parameters are non-random.

In practice, experiments are usually conducted with iden-
tical regimes for all individuals, i.e., all individuals i have
the same number m; = m of observations at the same values
xjj = x; of the experimental settings. Such designs are pop-
ular because they are simple to implement and analyze (Prus
and Schwabe 2016b). In what is to follow, we assume such
a setting.

LetY; = (Y;iq,...,Y;u)T be the vector of observations
from individual i, let ¥ = % Y ! Y; be the average response
across all individuals and let F = (f(x1), ..., f(xn)T be
the individual m x p common design matrix for all individ-
uals. Prus and Schwabe (2016b) showed that the best linear
unbiased estimator B of the population parameter 8 is

B=F'F)FTy, 3)

and the best linear unbiased predictor ﬁi of the individual
parameter f8; is a weighted average of the individualized esti-
mate B;.,q = (FTF)~'FTY, based on the observations of
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subject i only and the estimator 3 for the population param-
eter. Specifically, we have

B:=D(FTF)™' + D) ' Biing

. 4
+(FTP)~Y(FTF)~' + D)7 8). @

The quality of the prediction in (4) for § = (B IT, e, ﬁ,{ I
may be measured by the mean squared error matrix of § =

Br.. BT

MSE = Cov(d — )
=02, ® (FTF)™!

+ (1, - lJn) ® (D — D(FTF)~! ©)

n

+0)7' D).

Here I, is the n x n identity matrix, J, is the n x n matrix
with all entries equal to 1 and “®” denotes the Kronecker
product of matrices.

3 An equivalence theorem for G-optimality

3.1 G-optimality for predicting individual
parameters

The G-optimality criterion was proposed for prediction of
the individual parameters in Prus (2019) and a G-optimal
design minimizes the maximal prediction mean squared error
over the experimental region. The standardized information
matrix of an approximate design & for the above model with-
out individual effects is

k
1
M) = E %f(m)fT(xz) = n—iFTF 6)
[

The matrix M (&) stands for the information obtained per
observation and m M (§) corresponds to the information con-
tributed by the observations at the experimental settings per
individual. In this paper, we are only concerned with approx-
imate designs on X with non-singular information matrices
and denote this set by 5. If £ € Z, its MSE-matrix in (5) is

o2 (1 ]
MSE(&):;{;JMX)M &)

+ (1. - %1) ®A-AM®+ A7),
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where A = mD. When D is non-singular, this expression
simplifies to

o1 1
MSEE®) = "~ {-J, @ M~'®)

m ln

1
+ (=) e M@ + 477,
For predicting purposes, Prus (2019) used model (2) and

proposed the G-criterion as the maximal sum of the expected
squared differences of the predicted and real response across

all individuals with respect to all possible observational set-
tings:

red . ~
YoeE) = max ;E{(fT(X)(ﬂ,- - B ©)

This criterion can be rewritten as

Yl = max ¢ (x. £), (8)
where

p(x, &) = fTeOM™E) f(x)
+ (=D fT(x)(A - AM ™) )
+A)7A) fF ).

In the appendix, we show that the criterion is a convex
function on & and a design that minimizes the G-criterion
wged@) over all designs £ € & is G-optimal. The next
two analytical results give a lower bound for the function
wged (&) for any design and an equivalence theorem to con-
firm the optimality of a design. The technical arguments are
deferred to the appendix.

Theorem 1 For any design & € Z, we have

max ¢(x, §) = p + (n - Der{(M~1 (&) + A1 A} > 0.
(10)

An implication of the above theorem is that a design &*
is G-optimal for model (2) if it satisfies (10) with equality at
the support points. In what is to follow, we establish below
an equivalence theorem for G-optimality to characterize G-
optimal designs.

Theorem 2 For model (2), let £ € E, let A = mD, let
NE A =A—-AM &)+ A) A, and let

b6 (x, &) = fTOM N EM AWM () f (x)
+(n—DfT)NE AM AN E, A) f(x),

where |L is a probability measure on A(§) defined by
A@) = {x € X‘fb(x, £) = ¢(&) = maxex ¢(z, é)}

with Ma() = [ 4 )T ()d .
A design £* on X is G-optimal if and only if there exists
a probability measure u* on A(E*) such that for all x € X

b6 (x, £%) — tr{M 4 (WM~ E) + (n — 1)
MEYNE*, AM 4(W*)N(E*, A)} < 0.

Similar to (1), the function on the left hand side of
the inequality is the sensitivity function of the design &*.
The equivalence theorem is more complex than the one
for D-optimality because the G-optimality criterion is not
differentiable. The theorem has a form similar to those
for confirming G-optimal designs for heteroscedastic linear
models in Wong and Cook (1993).

In Theorem 2, the probability measure u* exists only if
the design under investigation is G-optimal, whereupon the
inequality becomes an equality at all design points of the
optimal design &*. This follows because if there is a support
point x of £* such that the inequality in Theorem 2 is strict,
then integrating both sides with respect to £*, we have

| dot.enae
X
= /X (T OM T EOMA@HMT E)f ()
+ 1= DfT@NE AMARINE . A)f () de”
= /X (M7 EOMAGOM T E) FOOfT ()
+(1 = DNE, AMAGONE, A F @) 7 () dg”
(1)
=t (M7 EHMACMT €
+(n = DNE* AMAWINE", A)) /X f(x)fT(x)dé*)

= (M7 EMAEHM €

+(n— DNE AM AN E*, A) MED)
=t [ MM )
+(n— DMEINE, AMAWINE, D)),

implying 0 < 0, which is impossible. It follows that all sup-
port points of £* are roots of the sensitivity function. In the
next section, we show how this information is used to gener-
ate the G-optimal design.
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4 G-optimal designs

We now provide examples of G-optimal designs for several
types of linear mixed models and use Theorem 2 to con-
firm their optimality. Here and in the rest of the paper, to fix
ideas, we assume that n = 10, m = 5 but other values for n
and m can be similarly used. The first example is relatively
simple and a formula for the G-optimal is available. When
the model is slightly generalized to two additive factors with
uncorrelated random factors and no intercept term, an analyt-
ical description for the G-optimal design for two-parameter
models is no longer possible and numerical methods must be
used. The implication is that G-optimal designs are difficult
to find and they have to be found numerically. This moti-
vates us to use competitive swarm optimizer (CSO) to find
G-optimal designs and note that some of the results in this
section are found by CSO.

4.1 Examples

4.1.1 G-optimal design for the simple linear model with a
random slope

Suppose we wish to find the G-optimal design for model (2)
with p = 2 and f(x) = (1, x)” on the experimental region
X = [0, 1]. The model is

yij = B1 + Biaxj + &ij (12)

and we assume that the slope parameter §;, is random with
mean S, and the dispersion matrix is diagonal and equal to
02D = diag (0, do?).

Let 6 = md and let £ be the two-point design supported
at 0 and 1 with weight at 1 equal to w*. A direct application
of Theorem 2 shows that the G-optimal design for model
(12) has

. V82445 +44n8 -2

13
28(n+1) (13
and for the design £, (9) becomes
1 sn—1)\ , 2
: (14)
w* —1°

This maximum of this function is attainedat x = Qandx = 1
and so A(&) = {0, 1}. Let u* be the two-point probability
measure defined on A(&r) supported at 0 and 1 and its weight
at 1is

@ Springer

wy = (8w 4 28w* + w*) /[(n + 1)8*w™
+ (48 — 2n8H)w™ + (2 — 48

+n8H)w*? +2(8 — Hw* + 1].

The sensitivity function of the design &5 in terms of w,, and
w* is
w*? — 2wrw, 4+ wy
w*Z(w* _ 1)2
2w, — 1)
X
@ =07 " @ =1y

N 82wy, (n — 1)> 2

¢G(xa§w) = ( (Sw* + 1)2

(15)

with a maximum value of (1 — w,)/(w* — D2atx = 0and
x = 1. This value can be shown to equal to

| MaHM™ &)
+ (= 1DMEDNES, AM AN (Ey, A)}
and so by Theorem 2, the design & is G-optimal.

4.1.2 G-optimal designs for a two additive factor model
without an intercept

Regression models with no intercept are quite common and
they either arise naturally or from constraints imposed on the
variables, see for example, Huang et al. (1995). For such a
model with two additive random factors, we have

yij = Birtx1j + Biaxaj + €ij, (16)

where (x1;,x2;) € & = [0, 1]2. The dispersion matrix
of B, = (ﬁil,ﬂiz)T is diagonal and equal to o’D =
diag (d0?, d»o?). To find G-optimal designs, first consider
designs of the form

s_{(1,0) ©.1) (1,1

with  wi + wy + w3 =1,
wi w2 w3

and let u,, be the associated probability measure on A (&)
defined by

_{(1,0) 0,1 (1,1)

w =
Wil W2 Wp3

Wyl +wyo +wyz = 1.

} with

The table below shows the optimal weights £ and the
weights of the measure 7 for model (16) for selected val-
ues of d; and dp. These designs have been verified to be
numerically G-optimal by Theorem 2.
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* * * * *

dy d» wi wj wj why wio Wiy
1 1 02788 02788 0.4423 0.3272 0.3272 0.3456
5 0.2312 03674 0.4014 0.3268 0.3355 0.3377
10 02251 03789 0.3960 0.3269 0.3361 0.3371
5 1 0.3674 0.2312 0.4014 0.3355 0.3268 0.3377
5 0.3215 0.3215 03569 0.3331 0.3331 0.3337
10 0.3156 0.3333 0.3511 0.3331 0.3333 0.3336
10 1 0.3789 0.2251 0.3960 0.3361 0.3269 0.3371
5 0.3333  0.3156 0.3511 0.3333 0.3331 0.3336
10 0.3274 0.3274 0.3452 0.3333 0.3333 0.3334

4.1.3 G-optimal designs for quadratic and fractional
polynomial mixed models

We show here that even for a relatively simple mixed model,
an analytic description of the G-optimal design can be
problematic. We consider two linear mixed models with inde-
pendent errors €;; having zero means and common variance.
These two models are

Yij = Bio + Binxj + Biax; + €ij,

a7)
j=1....m,i=1,...,n,
and
1/2 2
yij = Bio + Birx;" " + Biax; + Bisxj + €ij, (18)

j=1....m, i=1,...,n.

Model (17) is quadratic and model (18) is an example
of a fractional polynomial, which is increasingly used in
the biomedical sciences to model a univariate continuous
response. Fractional polynomial models were proposed by
Royston and Altman (1994) who showed that they are more
effective for modeling a continuous outcome than using
polynomials (Royston et al. 1999; Royston and Sauerbrei
2008). We recall a fractional polynomial (FP) is given
by ¢m(x;,p) = oo + Y j_  «jHj(x), where «; are the
real-valued coefficients and H;(x) are defined sequentially,
Hi(x) = x(pl)’

x(pj),
Hj_1(x)In[x],

if pj # pj—1,

Hj (0 = { if pj =pj-1,

forj=2,...,t.
The powers are given by the Box-Tidwell transformation
with x(P)) = xPi if p; # 0, otherwise x© = In[x] and for
practical applications, ‘powers’ in a FP are selected from the
set P ={-2,—1,-0.5,0,0.5, 1,2, ..., max(3, )} (Roys-
ton and Altman 1994). Many software statistical packages
now provide an option for fitting FP models, suggesting that
FP models are gaining recognition as a modelling tool in
statistics. Interestingly, optimal designs for FP models have
never been reported in the literature.

There are no closed-form descriptions for the optimal
designs for these two relatively simple models with random
effects. A practical way is to find them using an algorithm.
There are many traditional algorithms for generating many
types of optimal designs and our experience is that many of
them do not work well in such a setting where the criterion
is not differentiable and the optimization problem has two
levels. To this end, we use a meta-heuristic algorithm called
competitive swarm optimizer to find the optimal designs.

5 Competitive swarm optimizer

An analytical approach is generally unable to determine a G-
optimal design and we need an effective algorithm to generate
a G-optimal design, or search for a design with sufficiently
high G-efficiency for practical applications. The last few G-
optimal designs in Sect. 4 were found by an algorithm that
we now describe.

Nature-inspired meta-heuristic algorithms are commonly
used in engineering and computer science to tackle hard-
to-solve optimization problems (Yang 2010). Examples are
particle swarm optimization (PSO), differential evolution-
ary (DE), cuckoo search (CS) and imperialist competitive
algorithm (ICA). Their main appeal is that they are general
purpose optimization tools, they tend to be assumptions-free,
easy to implement and use and frequently able to find high-
quality solutions quickly. Their meteoric rise in popularity
is well documented in Whitacre (2011a,b) with reasons.
Recently, Chen et al. (2018), Phoa et al. (2016), Kim and
Wong (2018), Masoudi et al. (2019), and Storn and Price
(1997) used meta-heuristic algorithms to tackle different
types of optimal design problems. For example, Chen et al.
(2018) applied a version of PSO to find standardized maximin
optimal designs for several enzyme-kinetic inhibition mod-
els by solving multilevel nested optimization problems over
different types of search spaces, and Kim and Wong (2018)
likewise applied PSO and solved an adaptive clinical trial
design problem by solving a complex discrete optimization
problem by determining the optimal choice of ten integers
with multiple constraints.

Evolutionary algorithms are continuously evolving and
nature-inspired meta-heuristic algorithms are a major com-
ponent of evolutionary algorithms. Competitive swarm opti-
mizer (CSO) is popular because many simulation results in
the literature show that it either outperforms or is compet-
itive with several state-of-the-art evolutionary algorithms.
This conclusion was arrived at after comparing CSO’s perfor-
mance with several state-of-the-art evolutionary algorithms
using a variety of benchmark functions with dimensions
up to 5000 (Cheng and Jin 2014; Zhou et al. 2016; Sun
et al. 2018; Mohapatra et al. 2017; Zhang et al. 2016). They
showed that CSO was frequently not only the winner but also
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required significantly less run time. CSO has also been suc-
cessfully applied to solve many different types of complex
optimization problems; see, for example, Gu et al. (2018),
Kumarappan and Arulraj (2016) and Xiong and Shi (2018).
CSO was initially proposed by Cheng and Jin (2014) to
tackle the premature convergence issue met by many evolu-
tionary algorithms. CSO first generates a swarm of n particles
at positions X, . . ., X, with random velocities vy, ..., v, in
£2.In each iteration, we randomly divide them into | § | pairs
and compare their objective function values. If we have a
minimization problem, at iteration ¢, we compare each pair
of particles x! and x'; and identify x! as the winner and X;
as the loser if the objective function has a smaller value at
xf than at x’.. Winner retains status quo and the loser learns
from the winner. The two defining equations for CSO are

ViT=RI®Vi + R ® (%] — X)) + yR3 ® (& —x))

and x;“ = x; + V?H,

where Ry, Ry, Rz are all random vectors whose elements are
drawn from U (0, 1); operation ® also represents element-
wise multiplication; vector X is simply the swarm center at
iteration ¢; social factor y controls the influence of the neigh-
boring particles to the loser and a large value is helpful for
enhancing the swarm diversity (but possibly impacts conver-
gence rate). This process iterates until some stopping criteria
are met. Algorithm 1 displays a pseudo code of CSO.

Algorithm 1 The Pseudo Code for CSO

A swarm of n particles.
x < Randomly assign initial positions in space to particles.
v < Randomly assign initial velocities to particles.
while not stopping criteria do
Randomly divide the swarm into L%J pairs.
for each pair do
Compare their objective function values and decide the group
of winners and the group of losers.
Update loser particles by following the updating rule.
end for
end while

The tuning parameters we used in the CSO algorithm for
finding the optimal designs are similar to those suggested by
Cheng and Jin (2014). For example, because the optimiza-
tion problems we have dimensions fewer than 100, we set
y = 0 and used 128 particles in the search. This is because
the examples to follow have about 100 variables or fewer to
optimize. The maximum number of iterations for each search
was set to be 350. For our examples, the algorithm typically
converges in 200 or fewer iterations or less than 1 second
of CPU time. The hardware we used is a Windows PC with
3.20GHz Intel i7-8700 CPU, 32GB DDR4 2666MHz mem-
ory and 512G SSD storage. Here convergence means that

@ Springer

successive values of the objective function do not differ by
less than 10~° in absolute value. On average, we observe that
each search usually converged in 200 or fewer iterations.

5.1 Application of CSO to find G-optimal designs

To search for a G-optimal design, we set up a two-layer
optimization structure for min-max the objective function.
The inner optimization step is a low-dimensional maximiza-
tion problem represented in formula (9) and the outer loop
is to minimize formula (8), which, in our cases, is a multi-
dimensional function with less than 100, or more specifically,
around 10-20 variables to optimize. Accordingly, we set
y = 0, 32 particles, 128 iterations for the inner optimiza-
tion and y = 0, 128 particles and 200 iterations for the
outer optimization task. During the search, the target matrix
may sometimes become singular or close to being singu-
lar and affect the floating-point calculation accuracy. We
found adding a diagonal matrix with very small positive
diagonal elements to the original matrix can make invert-
ing an ill-conditioned matrix more stable. In our work, we
set M* = M + 0.0000001 x I.

After finding a design £*, we determine its answering set
A(E*) and the probability measure p* that meet the con-
ditions in the equivalence theorem. To efficiently find all
x’s that maximize ¢ (x, £*), we suggest to split the design
space into two or more subspaces and then run CSO on each
subspace to search for all x’s that maximize ¢ (x, £*). For
instance, if the design space X = [0, 1], we may split the
search space into [0, 0.5] and [0.5, 1]. There are no firm rules
for the number of subspaces and our suggestion is to first try
with two subspaces, then aggregate all such points to obtain
A(E*). We then sequentially increase the number of sub-
spaces and stop the process when splitting the design space
into more subspace does not enlarge the size of A(£™).

To find the probability measure p* that meets the condi-
tions in the equivalence theorem, we proceed iteratively as
follows. For each generated design & from the algorithm, we
first determine elements aj, as, ..., ar in A(§) and find a
candidate p for u* among probability measures supported
at the k points. There are 2k variables in the pairs (a;, w;),
where w; is the weight of u at a;,i = 1, ..., k. Since the
support points of u* must be roots of the sensitivity func-
tion when £ is optimal, one may apply CSO to minimize the
following function with respect to the variable weights w;:

min [sup ¢ (x, §) — tr{M oM™ (&)

+ (n — DN, AMA(R)N(E, AT

k (19)
+ Z wilpg (xi, &) — triMA(M ™' (&)
i=1

+ (= DNE AMA)NE, AP
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Table 1 CSO-generated design and its features for model (17) for spe-
cific choices of the covariance matrix of the uncorrelated random effects,

design space and (n, m)

Table2 CSO-generated design and its features for model (17) for spe-
cific choices of the covariance matrix of the correlated random effects,

design space and (n, m)

Model vij = Bio + Bixj + ﬁi2sz- +¢€ij
D diag(0.2,0.2,0.3)

Design space [0, 2]

(n, m) (10, 5)

G-optimal design 0.146 0.140 0.714
13.480

(0.000 0.948 2.000)

(0.000 0.966 2.000)

G-criterion value

u*on A§)

Plot of ¢ (x, &)

0.231 0.175 0.595
Figure 1

We note that in (19), for each design &, we have to first
find x that maximizes ¢ (x, £). This can be done by calling
CSO again to tackle this optimization problem. However,
after a lot of experiments, we find that only minimizing the
second term in (19) frequently suffices to determine pu, i.e.
we suggest given a design, first find u by simply minimizing

k
min Y wilgg (i, €) — tr{Ma(w)M ™€) 20)

i=1

+ (n— DNE, AMAWN E, A

before solving the more complicated problem (19) to deter-
mine p*. We ran CSO with ¢ = 0.05, 64 particles for 1200
iterations. We stop the algorithm if and when the objective
value attains a small user pre-specified value of, say, 107>.

The CSO-generated designs for the next few examples

were found by optimizing (20) and we confirm their G-
optimality via the equivalence theorem. On average, the CPU
time required to solve (20) was about 5 seconds or less for
our examples and we expect a longer time is required to solve
(19). This suggests that if we want to find G-optimal designs
for more complicated problems, an efficient strategy to find
G-optimal designs is to first solve the simpler optimization
problem in (20) before solving (19).

The next few tables list CSO-generated designs for vari-
ous linear mixed models with different assumptions on the
covariance structure of the random effects and their G-
optimality criterion values. We display the sensitivity plot
of each CSO-generated design across the design space and it
confirms the G-optimality of the CSO-generated design. All
parameters for the design problems, such as the design space,
the elements in the covariance matrix D, n and m are chosen
randomly for illustrative purposes. The error variance o2 is
a nuisance parameter and does not affect the optimization
process, so we set 0> = 1 in all examples.

yij = Bio + Birtxj + ,Bizsz- + €ij

Model
0.80 0.30 0.10
D 0.30 0.50 0.08
0.10 0.08 0.40
Design space [0, 3]
(n, m) (11, 4)

G-optimal design
G-criterion value
w* on A(§)

Plot of ¢ (x, £)

0.165 0.270 0.565
19.000
(0.000 1.243 3.000)

(0.000 1.274 3.000)

0.207 0.338 0.455
Figure 2

951 |

0

0.5

1 1.5 2

Fig. 1 Sensitivity function of the CSO-generated for model (17) with
uncorrelated random effects in Table 1
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Fig. 2 Sensitivity function of the CSO-generated for model (17) with

1.5 2

correlated random effects in Table 2
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Table3 CSO-generated design
and its features for model (18)
for specific choices of the
covariance matrix of the
uncorrelated random effects,
design space and (n, m)

Table4 CSO-generated design
and its features for model (18)
for specific choices of the
covariance matrix of the
correlated random effects,
design space and (n, m)

Model
D
Design space

(n, m)

G-optimal design
G-criterion value
u*on A(§)

Plot of ¢g(x, &)

yij = Bio + ﬂilx}/z + Binxj + ﬂi3x12- + €ij
diag(0.3,0.5,0.8,0.2)
[1,3]

(10, 5)

1.000 1.440 2.342 3.000
0.186 0.190 0.120 0.504

17.939

1.000 1.431 2.338 3.000
0.233 0.224 0.100 0.443

Figure 3

Model

D

Design space

(n, m)

G-optimal design
G-criterion value
w*on A(§)

Plot of ¢G(x, &)

12
Yij = Bio +ﬂi1xj/ + Bioxj + Bisx] +€ij

0.80 0.30 0.10 0.05
0.30 0.50 0.08 0.04
0.10 0.08 0.40 0.02
0.05 0.04 0.02 0.30

[L,3]
8.4

1.000 1.419 2.372 3.000
0.230 0.186 0.122 0.462

15.546

1.000 1.410 2.360 3.000
0.274 0.198 0.106 0.422

Figure 4

L

2 25

Fig.3 Sensitivity function of the CSO-generated design for model (18)
with uncorrelated random effects in Table 3

5.2 CSO-generated locally D-optimal designs for
Poisson models with mixed factors

This subsection demonstrates the utility and flexibility of
CSO to find other types of optimal designs, such as locally
D-optimal designs for estimating parameters in a Poisson

@ Springer
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Fig.4 Sensitivity function of the CSO-generated design for model (18)
with correlated random effects in Table 4

regression model with possibly interacting factors and some

factors are random.
Poisson models are commonly used to study count data

in a regression setting even though they have restrictive
assumptions, such as, requiring the mean and variance of the
response to be equal. Negative binomial regression models
extend Poisson models when the variance is larger or smaller
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than the mean response. These models are frequently used in
clinical trials when the primary outcome is a count variable,
such as the number of falls by an elderly patient, or number
of CT scans received in the last three months or modeling the

0.056 —0250 0474 0723 0369 —0.313
0.025 0726 0.893 —0.658 —0.504 0.533
g =] -1.000 0379 —0.305 —0.263 —0.182 —0.214
1.000  0.789 0229  0.176 —1.000 —1.000
0261 0.049 0.013 0047 0.048  0.079
—0.021 0510 —0.021 0519 —0.021 0.238
1.000  1.000 1.000 —0.514 1.000 —0.428
s | —1.000 —0299 —1.000 0341 —1.000 —0.546
=1 21000 —1.000 1.000 —1.000 —1.000 —1.000
0.589 —1.000 —1.000 —1.000 —1.000 —1.000
0224  0.058 0208 0.022 0091 0.016

their sensitivity plots and they confirm the CSO-generated
designs are locally D-optimal. Interestingly, the results show
different design spaces can produce D-optimal designs that
are not minimally supported.

—-0.322 0362 —-0.220 0.003 0.321  -0.279
—0.491  0.501 0.042 —-0.003 0.422 0.847
—-0.298 —-0.014 —1.000 —1.000 —0.195 —0.455
—1.000  1.000 1.000  —1.000 —1.000 0.407
0.096 0.048 0.106 0.138 0.096 0.019
—1.000 —1.000 -0.910 0.510 —0.141  0.020
0.625 0.690 —0.176  1.000 0.534 0.375
0.333 —-0.485 —-0.410 —-0.299 -0.566 0.360
-1.000 -1.000 —-1.000 —1.000 —1.000 —1.000
-1.000 -1.000 —-1.000 0.389 —1.000 —1.000
0.063 0.016 0.062 0.208 0.009 0.024

numbers of insurance claims and results. Walters (2007a, b)
used a negative binomial regression model to account for the
number of aggressive incident reports in the following 12
months after subjects were put in an institutional correction
center. Like all meta-heuristic algorithms, they can be mod-
ified to search for an optimum more effectively for specific
problems. An enhanced version of CSO algorithm is avail-
able to find various types of optimal designs for the negative
binomial regression models (Zhang et al. 2020).

Locally D-optimal designs for two-factor mixed Pois-
son models with an intercept term have been reported for
two models, one with and the other without an interac-
tion term. By using the quasi-information matrix defined in
Niaparast and Schwabe (2013) and assuming that the ran-
dom effects are uncorrelated, i.e., the covariance matrix is
diagonal, Naderi et al. (2018) provided theoretical details
for finding minimally supported D-optimal designs, includ-
ing an equivalence theorem to confirm the D-optimality of
an approximate design. We recall that minimally supported
designs have the number of support points equal to the num-
ber of parameters in the mean function and so cannot be used
to perform a lack of fit test to check model adequacy. Thus
their approach can be restrictive in practice and it is also not
clear whether their numerical procedure works for finding D-
optimal designs when the model has more interacting factors
with random effects or under another design criterion.

We applied CSO and found the same locally D-optimal
designs in Tables 1, 2 and 3 of Naderi et al. (2018) for dif-
ferent models with various numbers of uncorrelated random
coefficients. The next two sets of results in Tables 5 and 6
show that CSO-generated designs for a model with two inter-
acting factors when the random effects are uncorrelated or
correlated. The accompanying plots in Figs. 5 and 6 display

The usefulness of the CSO algorithm can also be seen
when we applied it find D-optimal designs for mixed models
when some random coefficients are correlated and able to find
D-optimal designs that may not be minimally supported. We
demonstrate using two Poisson models,one with four and the
other with five mixed factors and both have some interaction
terms. This is helpful because the bulk of theoretical optimal
designs in the literature for nonlinear models have only a
couple of additive factors and numerical results for models
with interaction terms are also very limited.

For the model with four factors, we assume that

Yij ~ P(Aij),

Aij = exp(Boi + Prixij,1 + Baixij 2 + B3iXij 3
+ BaiXija + Bsixij1xij,2 + BeiXij1%ij 4
+ Brixij 2Xij.4),

the covariance matrix is D = diag(0.5,2.2,1,1,0,0, 1.3,
0.7) and the coefficients in the linear predictor function
is g = (1,2,3,-3,—1,-2,1,3). The 12-point CSO-
generated design &% is shown below and criterion value is
—4.300. Here and elsewhere, the last row in the design for a
multi-factor model shows the mass of the design point above
1t.

The second example concerns a Poisson regression model
with five factors (xi, ..., x5) and three interaction terms
(x1x2, x1x3, x3x5) defined on [—1, 17°. As an illustrative
example, suppose the covariance matrix is

D = Blockdiagonal(D1, D5),
1.3 0.6 0.1
Di=|06 10 04],
0.1 04 12

D, =diag(1.0,0.0,0.0,0.3,0.5,0.0)
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Table5 A locally D-optimal
design for a mixed Poisson
model with an interaction term
and uncorrelated random effects

Model
Covariance matrix D
Coefficient mean B

Design space

D-optimal design

log [M(§)]

Yij ~ P(Xij), Aij = exp(Boi + Brixij1 + Baixij2 + Po3xij1Xij.2)
diag(0.3,0.2,0.5,0.6)

[—0.5,0.2, —0.3,0.4]

[-0.5,1.7] x [—1.0,0.6]

—0.500 —0.500 1.218 1.700 1.700
—1.000 0.600 —1.000 —0.578 0.600
0.263 0.382 0.052 0.144 0.159

—2.660

Table 6 A locally D-optimal
design for a mixed Poisson
model with an interaction term
and correlated random effects

Model

Covariance matrix D

Coefficient mean S

Design space

D-optimal design

log [M(§)]

Yij ~ P(Aij), Aij = exp(Boi + Brixij.1 + Baixij2 + Bo3xij1Xij.2)
0.30 0.02 0.10 0.00
0.02 1.10 0.60 0.00
0.10 0.60 1.20 0.00
0.00 0.00 0.00 0.00

[-0.9,1.0,1.2, -1.5]
[-0.8,1.4] x [-1.3,0.5]

—0.800 0.528 0.701 1.179 1.400 1.400
0.500 —1.300 0.500 —0.280 —1.300 0.500
0.365 0.320 0.135 0.095 0.075 0.010

—4.211

(D

o JH)
SO
Hu//////
N'I/////// T
o ////////5/%/,

1

Fig.5 The sensitivity function of the CSO-generated design under the
D-optimality criterion for the two-factor Poisson model with an inter-
action term and uncorrelated random effects shown in Table 5

and the nominal coefficients in the linear predictor function
B = (1.0,2.0,3.0,-3.0, —1.0, —2.0, 0.2, 0.5, —0.5). The
criterion value of the 12-point CSO-generated is —13.640
and the design & is shown below. This is a more complicated
model and as expected, CSO, like other meta-heuristic algo-
rithms, can also encounter problems when the optimization
problem becomes more complex. Convergence and numer-
ical stability issues can arise and repeated reruns of the
algorithm with different tuning parameters and swarm size
did not produce an optimal design, which is the case here.

@ Springer

, I
Y0007,
',':'l/'l/'l:,lo/:,
w:," i

0 ;' [ ' l/, e 5555
i il I//l" 7
i[ ,;///I////

Fig.6 The sensitivity function of the CSO-generated design under the
D-optimality criterion for a two-factor Poisson model with an interac-
tion term and correlated random effects shown in Table 6

A common strategy to try to overcome the above problem
is to hybridize the algorithm with another algorithm, such
that the hybridized version performs better than either of the
algorithms. Another option is to use the equivalence theorem
to derive an efficiency lower bound for the generated approx-
imate design without knowing the optimum (Pazman 1986).
For D-efficiency, the lower bound depends on the maximum
value of the sensitivity function of the design. Since CSO
is a stochastic algorithm and depends on the initial design
and choice of tuning parameters, we ran the algorithm mul-
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tiple times and reported the minimum of the D-efficiency of
the generated design. For this example, the CSO generated
design is &3 and its computed minimum D-efficiency is 88%,
which may suffice in practice.

For models with three or more factors, like in the last
two examples, the CSO-generated designs appear to be D-
optimal or highly D-efficient. Unlike previous examples, the
sensitivity functions are now high dimensional and so it is
difficult to plot them and visually appreciate their features.
One can discretize the design space using a fine grid evaluate
the values of their sensitivity function at every grid point
but this can be time-consuming. Another way is to apply
CSO to optimize the multi-dimensional sensitivity function
and confirm all peaks occur at the design points of the CSO-
generated design. We chose the latter option and have verified
that the CSO-generated design £* is numerically optimal and
£ is not.

5.3 Are D and G-optimal designs equivalent for
hierarchical linear models?

Itis well known that for regression models with homoscedas-
tic errors, the D and G-optimal approximate designs are
equivalent (Kiefer and Wolfowitz 1960). The two optimality
criteria look different and have different purposes and so it is
an intriguing result. Does the equivalence of the two types of
designs apply when we have linear mixed regression models?

Let J, be the n-dimensional square matrix whose ele-
ments are all ones, let A = mD, and let ® denote the
Kronecker product. D-optimal design for model (2) mini-
mizes the log [IMSE(§)| where

o2 (1 .
MSE(E):;{;L;@M &)

(1 - %1) ®(4—AM@) + 474,

Tables 7 and 8 display CSO-generated designs for the D
and G-optimality criteria on different settings for the mixed
quadratic model with random components having various
covariance matrices. Tables 9 and 10 show corresponding
results for a fractional polynomial model with random com-
ponents having various covariance matrices. The numerical
results suggest that D and G-optimal designs for these mod-
els are almost equivalent since their D and G-efficiencies
relative to the other are all very close to 1. Additional numer-
ical results not shown here for space consideration, for other
models we have investigated with more polynomial or frac-
tional polynomial terms and different types of covariance
structures also show that the two types of optimal designs
have relative efficiencies very close to 1.

Our numerical results in the tables suggest that the cele-
brated theorem of Kiefer and Wolfowitz may also apply to

Table 7 D and G-optimal designs for a quadratic mixed model with
uncorrelated random effects

Model Yij = Bio + Bi1xj + Biox; + i)
D diag(0.2,0.2,0.3)
Design space [0, 2]
(n, m) (10, 5)
G-optimal design (0.000 0.966 2.000)
0.146 0.140 0.714

G-criterion value 13.480
D-efficiency 99%

D-optimal desi 0.000 0.946 2.000

-optimat desigh 0.157 0.140 0.703
D-criterion value —4.666
G-efficiency 99%

hierarchical linear models, but a general proof is elusive at
this time. However, we are able to show the equivalence of
the two types of designs holds for hierarchical linear models
when they contain only a random intercept. To see this, we
recall D-optimality discussed in Prus and Schwabe (2016b)
for the hierarchical linear model (2). Assuming that the dis-
persion matrix D has rank ¢, the D-criterion for prediction
is the logarithm of the product of the (n — 1)g + p largest
eigenvalues of the MSE-matrix:

q
Yh() = In[det{M ' (E)}] + (1 — 1) In [ [Tue. A)}’

=1

where A1(§, A), ..., A,(§, A) are the g largest eigenvalues
of N6, A) = A — AMM~' () + A~ A. Corollary 6 of
Prus and Schwabe (2016b) used this definition and gave
an equivalence theorem for D-optimality, and showed that
the D-optimal design in the fixed-effects model is also D-
optimal for prediction in the random intercept model.

We next consider using the G-optimal design for predic-
tion in a hierarchical linear model with a random intercept.
Assume f1(x) = 1 in model (2). The dispersion matrix D
can be written as D = delelT, where e; = (1,0, ..., O)T
denotes the first unit vector in R”. For an approximate design
& € &, the MSE-matrix for prediction in this random-
intercepts model is

a1 1
MSE(S):;{;J;MX);M (&)
d 1 ’
+1—+8(1n—51n)®(3131)},

where § = md as defined in (13).
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Table 8 D and G-optimal designs for a quadratic mixed model with
correlated random effects

Model

D

Design space

(n, m)

G-optimal design

G-criterion value

D-efficiency
D-optimal design

D-criterion value

G-efficiency

Yij = Bio + Bi1xj + Biox] +€ij
0.80 0.30 0.10

0.30 0.50 0.08
0.10 0.08 0.40

[0, 3]
(11,4

0.000 1.274 3.000
0.165 0.270 0.565

19.000
99%

0.000 1.239 3.000
0.163 0.272 0.565

—8.798
99%

Table 9 D and G-optimal designs for a fractional polynomial mixed
model with uncorrelated random effects

Model

D

Design space

(n, m)

G-optimal design
G-criterion value
D-efficiency
D-optimal design

D-criterion value

G-efficiency

yij = Bio + ﬁi]le/z + Bioxj + ﬁi3x]2- + €ij
diag(0.3,0.5,0.8,0.2)

[1,3]

(10, 5)

1.000 1.440 2.342 3.000
0.186 0.190 0.120 0.504

17.939
99%

1.000 1.412 2.361 3.000
0.230 0.186 0.122 0.462

—-2.116
99%

Table 10 D and G-optimal designs for a fractional polynomial mixed
model with correlated random effects

Model

D

Design space

(n, m)
G-optimal design

G-criterion value

D-efficiency
D-optimal design

D-criterion value

G-efficiency

yij = Bio + /3i1x;/2 + Biox)j + Bisx] +€ij
0.800 0.300 0.100 0.050
0.300 0.500 0.080 0.040
0.100 0.080 0.400 0.020
0.050 0.040 0.020 0.300

[1,4]
(10, 5)

1.000 1.602 2.914 4.000
0.206 0.218 0.109 0.467

20.271
99%

1.000 1.599 2.884 4.000
0.205 0.217 0.110 0.468

—89.985
99%
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It follows that the lower bound in (10) is

P+ — DM€ + A A
=p+n—Dsel (M1(&) + serel) e

SM(§)eie] M(§)
p+(n—1)de (M(E) 1+ el M(&)e; ) )

1)
= —1—’
p+ @ )1+6

which does not depend on &. If £* is D-optimal for the fixed-
effects model, we have

)
*
9 = _1 _’
xe%{’(qj(x §)=pt )1+5

and it follows that the design £* is G-optimal for prediction
of individual parameters. Therefore, the D-optimal and G-
optimal designs are equivalent for prediction in the random-
intercept model.

6 Conclusions

G-optimal designs are challenging to determine and study
because the criterion is not differentiable and they require
solving two or more layers of nested optimization problems
over different spaces. However, the criterion is compelling
and should appeal to researchers interested to design an
experiment to estimate the overall response surface. To facili-
tate greater use of such designs for linear models with random
effects, we proposed an effective meta-heuristic algorithm
call CSO to find G-optimal designs and developed an equiv-
alence theorem to confirm whether a design is G-optimal.

Additionally, we showed CSO is flexible and can also
search for locally D-optimal designs for Poisson mixed
regression models with several interacting factors, where
some random effects may be correlated. We also provide
R-codes freely and the interested reader can request them
from the third author.
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Appendix

In this appendix, we show that the G-optimality criterion is
a convex function and provide proofs for Theorems 1 and 2.
To show the G-optimality criterion is convex, we first let
£y =af + (1 —a)&,0 < a < 1, where £ and £ are any two
approximate designs in & and « € [0, 1]. Then we have

M (&) <aM (&) + (1 — )M (E),
and

A—AM &) +A4)7'A
=M 'E)M ' (E) +A)7'A
=[(M~'(£) + AME)] ' A
=[l, + AM(&,)]'A
=[a(l, + AM©&) + (1 — o) (I, + AM(E)]'A
<all, + AME)]'A+ (1 —)ll, + AM®)]'A.

It follows that

¢ (x, &)

=fT@OIM &)+ 0 —1D(A—AM (&)
+4)7' A f(x)

< fT@laM '@+ 0 —aM ' (E)
+(n— ) (all, + AM#)]'A
+ (=), + AME)] ' A1 f (%)

<af TM ™ E) + (n— DU, + AME)] ' A) f(x)
+A—a)f )M E)
+ (=D, + AME)] ' A) f(x)

= agp(x,£) + (1 —a)p(x, ),

which implies that

Yl e) = max ¢ (x. &)
< max(ag(x. §) + (1 - )¢ (x, £))
< amax ¢ (x,§) + (1 —a>§13)§¢(xv5>

= ayPE) + (1 — )y 2 E).

This completes the argument that the G-optimality crite-
rion is a convex functional.

Proof of Theorem 1 For any design & € &, from (9), we have

fX ¢ (x, £)dE
- /X alfT @M@ £ ()
+ =D fT (A — AMT'E) + )7 A) f(x)]dE
= fX M~ E) f ) fT (x)
+n—DA—AM @) + AT A) f ) T (x)]dE

=tr{[M (&)
+(n—1D(A—-AME) + A A)]

f FO) £ (x)de)
X
=tuf[M (&

+ - DM EMTE) + AT AIME))
=p+mn—Du{(M ')+ A7 A).

Consequently,

/ ¢ (x,§)dé 5/ maX¢(x,§)dS=maX¢(x,§)/ dg
X X xeX xeX X

= fcnea);w(x,é),

which proves Theorem 1. O

Proof of Theorem 2 For the G-optimal criterion in (9), let
Vo (x, &) be the p x p matrix with elements given by

dp(x,§)

(Vo (x,8)}ij = i,j=1,2,...,p.

dM(©);;"
A direct calculation shows that

(Vo (x,8)}ij
T, dM )
=f (x)—dM(S)ij Sx)
d[A — AM &)+ A)1A]

dM (&);;

+m—1Df(x) £
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dM(§)

_ T —1 —1
= oM 6 S M 6 1w
di(M~! Al
— =T adl dﬂfg_ " are
ij

=—fTOM ' ©E;M (&) f(x)
+n—DfT @AM E + A
Xd[M—l@ + A]

dM (&);;

=—fTOM ' EE;M ' ¢) f(x)

—m=DfTOAM T E + A M @)

amé) - ~1
XW“E)U’M EM E)+A) Af(x)

=—fTOM ' ©E;M &) f(x)
—(n—=Df @AM E) +ATMT(E)
XE;iM~ &M &) + A7 Af(x)
=—fTOM ' ©E;M (&) f(x)
—(n=Df T WA-AM @) + A TTAIM T ¢)
XEiiM~ ' (&)[A — AM ™' (&) + AT ALf (x)
— fTOM ' EE;M ™) f(x)
—(n—DfT@)NE AE;NE, A) f(x)
—FTOOM ™ ©eie] M (&) f (x)
— (=D f X)NE Aeie] N, A) f(x)
=—e, M ' EFEfT M e
—(n—1De] NE A ) fTINE, Ae;
— (MO OMTE)
+(n—DNE A F@fTENE Ai,

M)+ A)TAf(x)

where Ej;; is the matrix with 1 in the (i, j)th position and
zeros elsewhere and e is the jth standard basis for R”. It
follows that

Vo(x,&) = -M '@ f) fTOM ()
—(n—DNE, A f) fTONE, A),

and
tr{ f () f T (x) / Ve (z, &)dp)
AE)

=t{f ) f T O[-M ' EMAWM ™ ()
—(n = DNE, AM 4N E, A)])
=—fTOM ' EMAWM ™) f(x)
—(n—DfT@ONE AMAWNE, A) f(x),
tr{M (&) / Vo (z, &)du}
A€)

= —tr{MA(W)M ' (€) + (n — HM(E)N (£, A)
M 4 ()N (&, A)}. 0
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