
Incorporating Data Citation in a Biomedical Repository:
An Implementation Use Case

Snehil Gupta, BSc1, Connie Zabarovskaya, MBA1, Brian Romine, BA1, Daniel A. Vianello,
MSEE1, Cynthia Hudson Vitale, MLIS1, Leslie D. McIntosh, PhD, MPH1

1Washington University in St. Louis, USA
Abstract

Research data is a dynamic and evolving entity and the ability to cite such data depends on recreating the same
datasets utilized in the original research. Despite the availability of several existing technologies, most data
repositories lack the necessary setup to recreate a point-in-time snapshot of data, let alone long-term sustainability
of dynamic data without restoring an entire database. Through this project, we adopted a subset of the Research
Data Alliance data citation working group recommendations to establish a robust informatics system supporting
dynamic data and its use for reproducible research within our evolving clinical data repository. We implemented
key recommendations: data versioning, times-stamping, query storing, query time-stamping, query PID, and data
citation in one data repository, implemented entirely at the database level, and were able to successfully reproduce
a previous dataset as it existed at a specific point-in-time using only the PID as provided in a citation.

Introduction

Clinical health recommendations are highly dependent upon rigorous research and quality data1-2. Progressing the
scientific method and improving health outcomes, practices and processes for true reproducibility extends beyond
the methods section of a journal article and into the availability and sharing of specific time-stamped data , executed
database queries, research protocols, software code, versioning information, datasets, metadata, and more3. Given
the protected and sensitive nature of much biomedical research, sharing in this domain is complicated, yet still
necessary to treat and solve real-world health issues.

The success of clinical care and trials is heavily dependent upon the validity and verifiability of previous research4,
but few tools and protocols for accessing or citing biomedical data (or metadata) have been integrated into existing
biomedical informatics technology systems. Though there are many components and software systems that comprise
the electronic biomedical informatics infrastructure, electronic patient health record (EHR) systems are one of the
most heavily used by investigators. Research outcomes by investigators from Washington University in St. Louis
(WU) using EHR data have included a variety of research claims for potential clinical and policy recommendations,
with an average of 115 research studies per year. The EHR is also a complex data system given the fact that medical
record data is large, evolving, and highly variable.

Problem Addressed

Given the data complexities and the potential impact research in this domain can have, the citation of queries made
against EHR data is essential to verify claims, support data sharing, and improve the reproducibility of biomedical
research. Though tools exist such as Informatics for Integrating Biology and the Bedside5 (i2b2) with many features
and functions to facilitate the reuse and discoverability of EHR datasets, the significant issue of citing the evolving
data needs to be addressed.

The Research Data Alliance6 (RDA), an international group of individuals working towards facilitating data-driven
research, had a working group on Data Citation7 (RDA-DC) to address the aforementioned challenge by identifying
the key requirements for enabling research-reproducibility within an evolving database (Table 1). They offer
recommendations enabling researchers and data centers to identify and cite data used in experiments and studies and
support a dynamic, query-centric view of datasets. These recommendations equip data repositories with the ability to
precisely identify and retrieve the exact data previously accessed – supporting reproducible processes for sharing
and reuse of data.

131

Table 1: Research Data Alliance (RDA) working group on data citation recommendations for citing data in evolving
datasets*
 Concept Description
R1 Data Versioning Apply versioning to ensure retrieval of earlier states of datasets.
R2 Time-stamping Ensure that operations on data are timestamped.
R3 Query Store Store the queries used to select data and associated metadata.
R4 Query Uniqueness Rewrite the query to a normalized form so that identical queries can be detected.
R5 Stable Sorting Ensure an unambiguous sorting of the records in the data set.
R6 Result Set

Verification
Compute a checksum of the query result set to enable verification of the
correctness of a result upon re-execution.

R7 Query
Time-stamping

Assign a timestamp to the query based on the last update to the entire database (or
the last update to the selection of data affected by the query or the query execution
time).

R8 Query PID Assign a new persistent identifier (PID) or reuse prior PID to the query.
R9 Store Query Store query and metadata in the query store.
R10 Citation Text Provide a recommended citation text and the PID to the user.
R11 Landing Page Make the PIDs resolve to a human readable landing page.
*Bold items are ones included in this paper.

The overarching aim for this project was to determine what, if any, RDA-DC recommendations could be
implemented within our biomedical data repository. Through this effort, we aimed to establish a robust informatics
system supporting evolving data and its use for research and reproducibility of research processes within our clinical
data repository.

Methods

As described in the following sections, to complete this pilot project we: assessed the CBMI data infrastructure;
conducted a gap analysis of the infrastructure with the RDA-DC recommendations; defined our local requirements;
and evaluated our approach for the implementation.

Infrastructure

The WU Center for Biomedical Informatics (CBMI) supports a number of research data resources as part of the core
of a learning health system (LHS). The CMBI Research Data Core (RDC) is at the heart of the LHS and is a
confederation of data resources, comprised of multiple database instances used to collect and store data from patient
EHRs generated during routine patient care, and a variety of web applications that interact with one or more of these
databases. The databases conform to varying data models and are built primarily using PostgreSQL database
management system.

As depicted in Figure 1, we currently have an identified data repository. All downstream databases are limited
datasets, and along with the identified data repository, are or will be updated through a nightly incremental extract-
transform-load (ETL) process.

132

Figure 1: A simplified diagram of the data flow from the clinical data source to researchers. The highlighted
portions represent the focus (green solid line) and future expansions (green dotted line) of this project.

Gap Analysis

We performed a gap analysis comparing multiple data locations (i.e., i2b2, i2b2i-SCILHS, PopMedNet) with the
RDA recommendations to understand the deficiencies in our existing RDC infrastructure as compared with the
RDA-DC recommendations. The results are summarized in Table 2.

Table 2: Gap Analysis Summary
Database Data

Versioning
(R1)

Data
Timestamp
(R2)

Query Store
(R3/R9)

Query
Timestamp
(R7)

Query PID
(R8)

Citation
Text
(R10)

Identified Data
Repository

Yes
(default)

Yes
(default)

No No No No

i2b2 (Local) No No Yes
(i2b2 default)

Yes
(i2b2 default)

Yes
(i2b2 default)

No

i2b2 (SCILHS) No No Yes
(i2b2 default)

Yes
(i2b2 default)

Yes
(i2b2 default)

No

PopMedNet No No No No No No

Requirements

Using the information gathered through the gap analysis, we identified key requirements for research reproducibility
implementation in our local environment (WU RDC). These include following RDA recommendations: Data
Versioning (R1), Data Timestamping (R2), Query Store (R3/R9), Query Timestamping (R7), Query PID (R8) and
Query Citation (R10). Additionally, we identified the following infrastructure and design requirements for long-term
sustainability:

133

1. The implementation must be able to handle large volume of data efficiently and relatively fast, because
versioning requires storing the history of changes to data, as well as scanning and updating large amounts
of data.

2. Software tools used to enable data versioning or query auditing must have regular updates and maintenance
support from community or reliable commercial source. Otherwise, in-house developers should understand
the software tools used, so the local team can provide support and updates, if no other source is available.

3. It must be relatively easy to implement to allow for easy maintenance and upkeep.
4. It must be relatively easy to use for data brokers, as they will need to run queries and access query audit

tables without requiring the involvement of a database administrator for this task.
5. Must be compatible with PostgreSQL, the primary database management system (DBMS) used for EHR

data repositories in RDC.

Approach

We considered several methods for fulfilling this project's technical requirements while making our implementation
fully compliant with the RDA recommendations. After assessing other tools, we decided to work entirely at the
database level rather than the application level and thus employed the changes below rather than adopting an
existing tool.

Data Versioning and Time-stamping (R1/R2)

We evaluated the existing versioning and time-stamping methods in the identified data repository. The original
method stored all data versions in the same table; the older versions of data were labeled with inactive status as
opposed to active status for current version of data. During incremental data loads, each update to a record would
de-activate the existing record and insert the new record as active. This method is cumbersome and inefficient,
because storing all versions of data in the same table increased the overhead during scanning of the table both for
ETL processes and for data broker queries over the data. The original design also does not allow for efficient data
reproducibility for data brokers.

As of PostgreSQL 9.5, there is not yet a default implementation of the temporal features of the SQL:2011 standard.
To address this constraint, we considered several extensions currently available for PostgreSQL to provide more
functionality than the existing design such as: pgMemento, TableLog, Table_Version, and temporal_tables. More
information about each PostgreSQL extension is available in the appendix (https://osf.io/bzvst/). After reviewing the
capacity of each of the extensions to satisfy our technical requirements, we ultimately settled on temporal_tables.
The temporal_tables extension allows for storing historical versions of records in a separate history table. Full
tuples are stored along with their respective validity intervals, which allows for simple querying but increases the
size footprint of the database. Interval ranges and the moving of data from a given table to its paired history table is
all performed by triggers, which simplifies the ETL processes.

We implemented the following design using temporal_tables:

1) Each live data table that needs versioning is given an additional column named ‘sys_period’ which holds a
timestamp range value identifying the start timestamp, end timestamp, and boundary condition of when the
record is or was valid. The name ‘sys_period’ is chosen to be consistent with the temporal_tables
documentation.

2) For each live data table, a corresponding ‘history’ table is created to hold historical data. These history
tables have the same structure as the live data tables but without the same primary keys or unique
constraints, and they are used for storing only historical versions of the data, which are not valid at the
moment. For consistency, all history tables are given the ‘hist_’ prefix then the same name as the table
being versioned.

3) The trigger provided by the temporal_tables extension is added to each live data table to be called before
insert, update, or delete transactions. Before an update or delete transaction, the trigger inserts a copy of the
existing row from the live data table into the history table with the timestamp range modified to show the
current date as the upper bound of the validity interval.

4) Views are created for each table, named with the suffix ‘_with_history’. These will allow a user to query all
live and historical records in a given table or tables as they are now or as they were at any given point in
time.

134

5) A new limited access schema, named ‘databroker’ is created with views pointing to each ‘_with_history’
view. These views are defined to automatically limit the results to a certain timestamp. This avoids two
possible user errors: either in neglecting to add the required WHERE clause, or by specifying an incorrect
timestamp. For example: for a new query in these views results would be limited automatically to a
timestamp value as of when the query is run (i.e., ‘now()’ or ‘current_timestamp()’). Similarly, for a query
that is re-run, results would be limited automatically to the timestamp that the initial query ran. As a result,
the data broker can query these views without having to specify time ranges for when the data is or was
valid.

Query Store, Time-stamping and PID (R3/R7/R8/R9)

Because query store, time-stamping or PID features did not exist in the identified data repository, we needed a
method of logging queries that have been run by data brokers and make them uniquely identifiable as well. We
implemented a function named ‘databroker.query_tracking()’, which serves three purposes: i) To ensure the
currently executing query has been logged; ii) To return a date and time value to use in querying data; and iii) To
return a pre-formatted citation text. In this process, a unique query_id is assigned to each new query, stored in the
database, and is included in the citation text (see also the next section). This function is never called directly by an
end user but instead is included in the WHERE clause of the definition of views setup for use by data brokers.

The function will attempt to add the user if it is a new user/session, add the query if it is a new query, and check to
see if the user had requested for the data to be re-run as of a specific date. If a re-run of data was requested, then the
returned timestamp will match the original transaction timestamp. If a re-run of the query was not explicitly
requested then the query will be treated as a new query and returned value will be the current timestamp at the time
of running. A more detailed explanation is included in the appendix8.

Query Citations (R10)

Query citation was another feature that did not exist in the identified data repository, so it has been implemented as a
functionality within data broker views. Whenever a new query is run using these views, the data broker will get two
values returned: i) the dataset for the query; and ii) a pre-formatted citation line to provide to researchers. The
citation is designed to both be easy to collect and to use in publications as well as allowing the format to be
consistent across projects. The citation text includes the unique persistent identifier (PID) of the query and is the
only item needed to rerun a query with guaranteed data replicability at a later time. This feature was added to
facilitate citing data in scientific communication by providing the pre-formatted citation, requiring only ‘copy and
paste’, thus potentially reducing the possibility that data will be used without citation. It also can provide sufficient
information for a future researcher to request the same dataset.

Data Reproducibility Workflow

Beyond the ‘databroker.query_tracking()’ function listed above, two other helper functions were created for use by
the data brokers. In order to reproduce data, returned as part of a query run in the past, the researcher will provide
the query PID to the data broker. The data broker will be able to re-run the query by executing the
‘databroker.rerun_historical_query()’ function. This function will take two arguments: a desired name for an output
cursor and the query PID provided by the researcher. This is described in more detail in the appendix. The final
function, ‘databroker.has_my_data_changed()’, takes the same two arguments as the
‘databroker.rerun_historical_query()’ function, and will run the identified query twice, once as of the current date
and time and again as of the original query date and time. It will then compare the results of both queries looking
for any differences. The result of that comparison (boolean true or false) is provided to the data broker. If the result
is true, a temporary table with the data differences is also created. In all cases, the data broker need only to use any
existing database query and administration tool, such as pgAdmin3, that can run queries and display system
messages.

Results

From the gap analysis (Table 1), we identified that a few RDA recommendations were already fulfilled by some of
the data repositories in RDC while others were not. The features involved in data versioning and query auditing
lacked in the majority of the systems and needed to be developed in a manner that renders easy querying by data
brokers and researchers in any of the systems. With this knowledge, we drew the initial scope of work. We had

135

several repositories to work with and in which to implement the requirements. Noting that each database would need
to be approached individually, we broke down the scope of implementation into phases. In this phase, we worked
only with identified data repository of RDC which does not have any application interface and is expected to be
directly accessed by local data brokers for providing data - either aggregate, identified, limited, or de-identified
datasets as required and approved for various research projects.

During the design phase we discerned that existing data versioning and timestamping implementation in the
identified data repository was cumbersome and inefficient. The original design also did not allow for efficient data
reproducibility for data brokers. This led us to evaluate a number of other methods (pgMemento, TableLog,
Table_Version, and temporal_tables) for fulfilling these requirements, ultimately deciding to use the
temporal_tables extension in PostgreSQL. The ease of access on the part of our data brokers was key to this
decision.

We implemented the RDA recommendations of Data Versioning (R1), Data Time-stamping (R2), Query Store
(R3/R9), Query Time-stamping (R7), Query PID (R8) and Query Citation (R10) in the identified data repository
following the approach outlined earlier in this paper.

We ran validation test cases and successfully demonstrated the reproduction of a dataset from a specific point-in-
time in an evolving data environment. Validation was performed as follows:

1. A snapshot of identified data repository was instantiated where all reproducibility requirements of this
phase were implemented

2. A sample research query SQL was executed in this repository snapshot
3. Some of the data presented in query results was manually altered to simulate a dynamic data environment
4. The above sample research query SQL was executed again, this time using the PID generated from initial

run passed to the ‘databroker.rerun_historical_query()’ function described above
5. Two query results were compared

In both query execution instances, the exact dataset was
produced, attesting to a successful pilot research data
reproducibility workflow. Details of validation test cases can be
found in the appendix.

An additional feature was also developed in the process to allow
data brokers to check for any records that changed since the first
time a query was run, by using the function
‘databroker.has_my_data_changed()’. This function can identify
differences in data by re-running the query for the timestamp it
was originally run, and comparing the results to the results of
running the same query using the current timestamp (Figure 2).

As a result of implementing requirements originating from the RDA recommendations, the data brokers can now
support EHR data citation and reproducibility for WU researchers utilizing the identified data repository of RDC as
a data source.

Discussion

By providing better mechanisms for citing evolving data, the rigor of research, meta-analysis, and reproducibility of
EHR data will be more feasible, verifiable, and efficient for investigators. Currently we have implemented and
tested the enhancements in a partial snapshot of our biomedical research repository by querying data and rerunning
the same queries using only its PID to deliver the same results as the original query after controlled updates were
made.

Further testing will involve testing queries against changes derived from our incremental load ETLs which, as of the
the date of this paper submission, are undergoing simultaneous testing and development efforts. This
implementation was met with a favorable response by existing WU CBMI data brokers. A specific feature that
make this implementation particularly easy to train are the DDL changes are transparent to the data brokers. Hence,
the data brokers do not need to know the specific database features such as the sys_period column, nor the tables

IFF (A ⋃ B) - (A ∩ B) ≠ {∅}
THEN C = (A ⋃ B) - (A ∩ B)

Figure 2. Formula for finding changes in
data between historical and current version.
Historical dataset is ‘A’, the current dataset is
‘B’, and ‘C’ is the differences between the
two data sets showing only the changes in
data.

136

with historical records, nor how to specify any temporal SQL syntax; all of that is hidden within the definition of the
views queries by the data brokers. Instead, they need to learn only about two new functions that allow them to re-
run queries and look for changes to re-run a query.

Limitations

This work is limited due to only implementing it in one location (WU CBMI) with one type of database,
PostgreSQL. This work was primarily completed with only two groups - the WU CBMI team and the RDA-DC
team. Thus, there may be solutions we did not consider due to the limited number of groups involved in the work.
Also, with other databases being more frequently employed (i.e., Oracle, MySQL), this limits the number of other
institutions that could replicate this with the code only. However, this is offset by the descriptions of the workflow
and implementation, which could be used at other institutions using their own implementation of triggers to move
data into historical tables and their own views to handle temporal SQL syntax as implemented in their relational
database management system.

Another limitation exists if the queries by the data brokers contain functions that calculate values based on the
current date. For example, if a query included a function to calculate the age of a patient as of today, that function
will be re-evaluated whenever the query is re-run. Training mitigates this limitation to some extent, but the
limitation still exists in the current implementation.

Future Directions

On a broad scale, we will continue to better understand how to make biomedical informatics research reproducible,
including: i) testing and expanding needed components to ensure a study using EHR data can be reproduced9 (e.g.,
database citation, query access); ii) testing the replicability of past EHR studies within WU and other institutions;
and, iii) defining needed workflows for biomedical data brokers for improved research reproducibility.

For the next phase of this research project, we will extend the implementation of RDA-DC requirements to each
component within the RDC (e.g., i2b2, PopMedNet) as well as to turn on access to the new schema to the data
brokers. The i2b2 database has an application interface through which only aggregate data can be obtained. While
PopMedNet database is much like the identified data repository within the WU RDC, it does not have an application
interface and is expected to be directly used by data brokers for providing either aggregate data or limited or de-
identified dataset for approved research projects.

We would also like to explore scalability and performance improvement opportunities. Some of the
recommendations that were not included in this phase may be considered next, such as storing the original and
normalized query (R4), as well as generating and storing result set hashes (R6). We may also develop an automated
method to generate a query PID from these systems that are globally unique within our environments as well as
create a landing page (R11) for these to resolve to for all systems. While technically not complex to implement, we
are establishing the guidelines to balance the needs for maximizing the amount of information publicly presented
with the privacy of necessary components. Creating and sharing the query PID’s will allow researchers, data
brokers, and other stakeholders a method to access research components while minimizing the involvement of the
original researchers.

Conclusion

While some would consider this parasitic research10, implementing data citation into the biomedical pipeline can be
seen as a method to reduce the bottleneck of reproducibility by eliminating the time constraint of communication.
Through this study, we implemented the key recommendations of data versioning, times-tamping and, query
storing, query time-stamping, query PID, and data citation in one WU data repository, and we were able to
successfully demonstrate the ability to reproduce a dataset from a specific point-in-time using only the PID as
provided in a citation.

137

References

1. Landis, S. C. et al. A call for transparent reporting to optimize the predictive value of preclinical research.

Nature 490, 187–191 (2012).
2. Freedman, L. P. & Inglese, J. The increasing urgency for standards in basic biologic research. Cancer Res. 74,

4024–4029 (2014).
3. Khoury, M. J. et al. Transforming epidemiology for 21st century medicine and public health. Cancer

Epidemiology Biomarkers & Prevention 22, 508–516 (2013).
4. Laine, C., Goodman, S. N., Griswold, M. E. & Sox, H. C. Reproducible research: moving toward research the

public can really trust. Ann Intern Med 146, 450–453 (2007).
5. i2b2. https://www.i2b2.org/
6. Research data alliance https://rd-alliance.org/
7. Rauber, Andreas, Ari Asmi, Dieter van Uytvanck, and Stefan Proell. ‘Data citation of evolving data-

recommendations of the working group on data citation.’ (2015).
8. Appendix: https://osf.io/bzvst/
9. https://github.com/CBMIWU/Research_Reproducibility
10. Longo, Dan L., and Jeffrey M. Drazen. ‘Data sharing.’ New England Journal of Medicine 374, no. 3 (2016):

276-277.

138

