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Abstract: In a conventional solar cell, the energy of an absorbed photon in excess of  

the band gap is rapidly lost as heat, and this is one of the main reasons that the  

theoretical efficiency is limited to ~33%. However, an alternative process, multiple exciton 

generation (MEG), can occur in colloidal quantum dots. Here, some or all of the excess 

energy is instead used to promote one or more additional electrons to the conduction band, 

potentially increasing the photocurrent of a solar cell and thereby its output efficiency. This 

review will describe the development of this field over the decade since the first 

experimental demonstration of multiple exciton generation, including the controversies 

over experimental artefacts, comparison with similar effects in bulk materials, and the 

underlying mechanisms. We will also describe the current state-of-the-art and outline 

promising directions for further development. 

Keywords: multiple exciton generation; carrier multiplication; nanocrystals; quantum dots; 
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1. Introduction 

In a conventional solar cell much of the energy absorbed from the sun is lost as heat within the first 

few picoseconds. The solar spectrum is very broad, stretching from the ultraviolet to the infra-red,  

and so on absorption in a semiconductor most solar photons produce “hot” carriers with energies 

significantly in excess of the band edge. In bulk semiconductors this excess energy is lost within the 

first few picoseconds as the carriers cool to the band edge, largely by phonon scattering and emission, 

becoming waste heat [1]. Carrier cooling is responsible for most of the energy losses in a conventional 
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cell; for instance, in an ideal single-junction cell made from bulk silicon 47% of the incident energy is 

lost in this way [2]. One strategy to significantly improve the efficiency of a solar cell is to seek ways 

in which this initial energy loss can be prevented or reduced, and the energy that would otherwise be 

wasted as heat instead used to increase the output of the cell. 

Impact ionization is a process by which all or some of the excess energy of the hot carriers goes to 

generate additional electron-hole pairs. (Note that this requires the excess energy to be at least equal to 

the band gap, Eg). These extra carriers can be extracted from the cell to enhance the photocurrent and 

thus the overall photovoltaic efficiency. However, it has been long established that impact ionization in 

bulk semiconductors only becomes a significant process for photon energies much greater than Eg [3–5], 

and thus does not appreciably improve the efficiency of conventional solar cells. The interest in impact 

ionization has been revived in recent years with the introduction of colloidal nanocrystals (NCs), 

semiconductor crystals of sub-micron size. The nano-scale dimensions of NCs can confine the 

wavefunctions of free electrons and holes such that the conduction and valance bands become 

discretized into distinct energy levels, in which case they are termed quantum dots (QDs). Moreover, 

the separation between energy levels increases as the QD size decreases and can become greater  

than the phonon energy; in this case, cooling by phonon emission must proceed by a much less likely 

multi-phonon process. It was thus predicted that as the rate of phonon-mediated cooling reduced with 

decreasing QD size then it would become less dominant and consequently the efficiency of competing 

processes, such as impact ionization, would improve [6]. (However, later work suggests that at the 

high energies relevant to multiple exciton generation (MEG) confinement-induced discretization is not 

important [7], and hence it is not the basis for slowed cooling. The current theoretical understanding of 

why MEG is enhanced in NCs is discussed in Section 4). Figure 1 compares the photogeneration of 

charge carriers in a bulk semiconductor and in colloidal NCs. 

Figure 1. Photogeneration of charges in a (A) bulk semiconductor and (B) a nanocrystal 

quantum dot. In (B) quantum confinement effects increase the separation between energy 

levels, inhibiting phonon cooling, enhancing the multiple exciton generation (MEG) 

process and reducing waste heat. 

 

The first demonstration of impact ionization in QDs, which became known as multiple exciton 

generation (MEG) or carrier multiplication (CM), was reported in 2004 [8]. A significant number of 

further studies of MEG, both experimental and theoretical, have been undertaken in the decade since 
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and these are the subject of this review. In particular, the experimental techniques used to measure 

MEG will be discussed, including the artefacts that confused early results; the results of experimental 

studies of the dependence of MEG on QD material composition, structure and surface quality will be 

detailed; and the phenomenological and theoretical descriptions used to understand MEG will also be 

described. Finally, the direction of future research will be discussed. 

2. Measuring MEG 

MEG can only occur if the photon energy is above a threshold value, hvth. Above this energy at 

least one of the charge carriers created by the absorption of a photon has sufficient energy to promote 

another electron across the band gap, creating a second exciton. The efficiency of this process 

determines the quantum yield (QY) at a particular photon energy, defined as the average number of 

excitons created in a QD per photon absorbed; QY > 100% indicates the onset of MEG. MEG is 

characterized by measuring QY as a function of photon energy normalized to Eg; this relationship is 

usually well-described by a threshold, hvth, and a linear rise of gradient η above this threshold. 

2.1. Ultrafast Spectroscopy 

The first challenge in measuring the QY lies in the timescale of the MEG process. Whilst single 

excitons in QDs have lifetimes of the order 10–100 ns, a multi-exciton can undergo rapid Auger 

recombination and consequently has a lifetime of the order 10–100 ps. (The Auger recombination 

process is limited to species containing more than two charge carriers because an additional charge 

carrier is required to accept the energy liberated from recombination.) QY must thus be measured 

before the MEG-created excitons can undergo this rapid recombination, necessitating the use of 

ultrafast techniques. The second challenge lies in the requirement to use low excitation fluences. 

Multi-excitons can also form when a single QD is successively excited by two or more photons within 

the lifetime of a single exciton. In order to prevent multi-excitons forming in this way, very low 

excitation fluences must be used such that the average number of photons absorbed per QD per 

excitation pulse is much less than unity. The signature of MEG is thus the observation of multi-exciton 

recombination at low pump fluence. This appears as a sub-nanosecond decay in signal down to a 

constant level, corresponding to the single-exciton states that remain after multi-exciton recombination 

is complete and which do not recombine significantly on this timescale. Sensitive detection techniques 

are consequently required to detect the weak signals resulting from such low excitation. Fortunately, 

there are a number of spectroscopic techniques available which combine the required sensitivity and 

ultrafast time-resolution. 

2.1.1. Transient Absorption 

Ultrafast transient absorption (UTA) is a pump-probe technique which was first used to measure 

MEG in 2004 [8]. Sub-picosecond, low fluence pulses of high energy pump photons create initially  

hot single exciton states. The subsequent population of band-edge excitons, produced either by the 

dissipative cooling of the hot excitons or by MEG, is then monitored by measuring the absorption of a 

probe beam tuned to specific electronic transitions within the QD. Band-edge excitons fill the available 
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states, resulting in either an absorption bleach or a photo-induced increase in absorption depending on 

the transition probed. Varying the delay between the arrival of the pump and probe pulses enables the 

growth and decay of this band-edge exciton population to be measured. A typical set-up for UTA is 

shown in Figure 2. 

Figure 2. Schematic of a typical ultrafast transient absorption (UTA) experiment for 

measuring MEG. A Ti:Sapphire regenerative amplifier seeded by a Ti:Sapphire oscillator 

produces a pulsed beam at 800 nm, with 100 fs pulse width, ~1 mJ pulse energy and 1 kHz 

repetition rate (red line). Using a beam splitter 95% of this beam is passed to an optical 

parametric amplifier (OPA) with harmonic generating (HG) crystals to produce a pump 

beam that is tunable from the infra-red to the ultra-violet (blue line). The pump beam is 

passed through a mechanical chopper to improve the signal-to-noise ratio and then focused 

onto the sample. The remaining 5% of the beam from the amplifier is directed through a 

delay stage to vary the arrival time difference between pump and probe pulses at the 

sample. This beam is then passed through a sapphire plate to produce a white light 

continuum, which is split to form the probe and reference beams (yellow line). After the 

sample, the probe and reference beams are balanced using a neutral density (ND) filter (in 

the absence of the pump), passed through a spectrometer, then onto separate 

photodetectors. Small differences in probe and reference are detected using a lock-in 

amplifier synchronised to the chopper. 
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Several variants of UTA have been developed based on the different electronic transitions probed. 

Interband UTA is the most common technique. Here the probe beam is tuned to the lowest energy 

absorption maximum (LEAM), which corresponds to a transition from a state just below the valance 

band maximum (VBM) to the conduction band minimum (CBM). (The VBM to CBM transition is 

typically optically very weak in QDs and thus not well suited to UTA measurements). The absorption 

of probe photons at the LEAM is dependent on the number of empty states in the CBM, therefore if 

MEG occurs absorption will decrease and there will be an increase in probe transmittance through the 
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sample. A similar technique is intraband-UTA, where the probe photons are tuned to a transition from the 

CBM to a higher state; in this case the presence of additional electrons in the CBM results in an absorption 

increase [9]. Thirdly, THz-UTA probes the frequency-dependent complex conductivity of the sample, from 

which the exciton populations can be determined through the Drude model of free carriers [10]. 

2.1.2. Photoluminescence 

Photoluminescence (PL) measurements have also been used to determine MEG, and several 

variants have been developed. One method utilises the time-correlated single-photon counting technique 

to measure the components of the PL decay transient associated with single and multi-exciton 

recombination [11]. This method benefits from the time-resolution and sensitivity of the micro-channel 

plates (MCPs) used, which allows biexciton decay to be resolved and the weak signals resulting from the 

low excitation rates needed for MEG measurements to be readily detected. However, the spectral range 

of MCPs limits their use to QDs with band gaps larger than ~1.5 eV, i.e., greater than the ideal value 

for the exploitation of the solar spectrum. Similarly, MEG has also been measured by detecting the PL 

decay with a streak camera [12]. The PL signal detected following quasi-continuous wave excitation has 

also been used, benefiting from the sensitivity of a photo-multiplier tube (PMT) used as a detector [13]. 

However, this method does not reveal the details of the multi-exciton recombination dynamics and the 

PMT response limits the range of emission wavelengths that can be detected. Ultrafast PL up-conversion 

(UPLU) circumvents the spectral limitations of sensitive PMTs by sum-frequency mixing the PL 

photons with an ultrafast laser pulse in a non-linear crystal [14,15]. The output is thus a blue-shifted 

signal with an amplitude proportional to the PL intensity. By controlling the laser pulse wavelength, 

the exact wavelength of the blue-shifted signal can be adjusted to be within the spectral range of the 

detectors. Moreover, since up-conversion only occurs whilst the laser pulse is co-incident with the PL 

in the nonlinear crystal, varying the arrival time of the laser pulse enables the PL decay to be resolved 

down to the laser pulse duration, typically ~0.1 ps. Finally, PL quantum yield measurements have been 

used to deduce the existence of a novel variant on the MEG process in close-packed arrays of Si  

QDs [16], as described in Section 3. In this case, the additional excitons are generated not in the same 

QD that absorbed the photon, but rather in a neighbouring QD. This separation enables the extra 

excitons to survive long enough to make a significant contribution to PL emission. 

2.1.3. Transfer to Molecular Complexes 

Implementation of MEG in practical devices requires efficient extraction of MEG charges before 

their ultrafast recombination. This has led to the study of exciton dissociation by charge transfer to 

electron- or hole-acceptor molecules bonded to the QD surface. Surface treatment of QDs can however 

inhibit the MEG process with some studies reporting a strong variation in MEG efficiency [17–19]. 

One group, however, has shown using UTA that in PbS QD/methylene blue complexes the number  

of dissociated excitons is equal to the number of excitons generated in free QDs under the same 

excitation conditions, with MEG and multiple exciton dissociation efficiencies of 112% [20]. 
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2.1.4. Interpreting Data 

As discussed above, the formation of multi-excitons is possible not only by MEG but also by  

the absorption of more than one photon by a QD during a pump pulse. Therefore, the observation of 

multi-exciton decay in transient absorption or PL studies can only be taken as evidence of MEG if the 

pump fluence can be confirmed to be sufficiently low as to make the chance of a QD absorbing two or 

more photons per pump pulse negligible. The probability of a QD absorbing N photons per pump 

pulse, P(N), is determined by Poisson statistics, and depends on the absorption cross section of the QD 

at the pump wavelength, σ, and the pump fluence, J (in units of photons per pulse per unit area): 

( ) exp( ) / !
N

P N N N N= −  (1)

where the average number of photons absorbed per QD, <N> = σJ. Thus, in order to calculate whether 

there is a negligible chance of this alternate multi-exciton formation process occurring, knowledge of σ 

is required. However, σ is difficult to determine accurately, and a suspected underestimation of σ, and 

thus of <N>, was one explanation suggested for the discrepancy in the early results reported by 

different groups for nominally similar QDs [21]. (Other explanations suggested at that time included 

variation in <N> due to pump beam inhomegeneities and variation in the surface chemistry between 

samples [1].) 

Consequently, an analysis method was developed that did away with the need to know σ. A typical 

pump-induced transmittance transient is shown in Figure 3a. R is the ratio of the signal maximum, 

which is proportional to the average number of excitons created per QD, and the signal at a time 

significantly greater than the biexciton lifetime but significantly less than the single exciton lifetime. 

This latter time corresponds to when all multi-excitons created by the pump pulse have decayed to 

single excitons, but the resulting single exciton population has largely yet to decay. In the limit of low 

fluence, each excited QD has absorbed only one photon and so the population of single excitons at this 

latter time is equivalent to the number of absorbed photons. Thus, in this limit, R corresponds to the 

average number of excitons created per absorbed photon, i.e., the QY. The low fluence limit of R can 

be found experimentally by measuring R for a range of pump fluences and fitting the following 

equation to the resulting data [22]: 

1( ) [1 exp( )]R J QY J J −= σ − −σ  (2)

Figure 3b shows an example of this analytical procedure for MEG in InP QDs. In this case, R has 

been plotted against the maximum value of the fractional transmittance change transient, ΔT/T|max, 

which is proportional to <N> [23]. Repeating this process for different pump wavelengths enables the 

number of additional excitons per absorbed photon, (QY − 1), to be found as a function of photon 

energy normalized to Eg, as shown in Figure 3c. From this, the values of hvth and η can be determined 

by finding the intercept and gradient of a linear fit to the data for which QY > 1. 

When analysing ultrafast PL decay, there is the added complication that the initial maximum 

intensity depends on both the biexciton recombination rate kxx and the single exciton recombination 

rate kx, whilst at the plateau only on kx. Analysis of ultrafast PL data thus requires the ratio of these 

rates to be known. The value of kxx/kx initially used by various authors ranged between 2 and 5 [11,12,14] 

and indeed the discrepancy between these values was suggested as the source of the variation in the 
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reported MEG efficiencies [14]. However, by considering that the multi-exciton recombination rate is 

equal to kx multiplied by the number of different ways a multi-exciton’s constituent electrons and holes 

can recombine with each other, a more recent work has established that for PbSe QD kxx/kx = 4 [15]. 

Figure 3. (a) A typical signal obtained from a UTA experiment showing the fractional 

transmittance change, ΔT/T, as a function of time delay between the pump and probe 

beams. R is the ratio between the peak amplitude, A, and the plateau amplitude, B, where 

enough time has passed that all bi-excitons have decayed, but before any significant decay 

of single-excitons; (b) R as a function of fractional transmittance change, ΔT/T, for InP QD 

excited at 2.6 times Eg. The line is a fit to Equation (2), data from Reference [24];  

(c) Additional excitons produced, (QY − 1), as a function of hv/Eg for InAs NQD of different 

Eg. hvth corresponds to the point where the rise in additional excitons begins, data from  

Reference [25]. Reproduced from Reference [26] by permission of the PCCP Owner Societies. 

(a) (b) 

(c) 

2.2. Artefacts 

2.2.1. Trion Recombination 

As discussed above, a signature of MEG is, at low pump fluences, a rapid signal decay on the  

sub-nanosecond time-scale corresponding to fast Auger recombination of multi-excitons, a process 

inaccessible to single-excitons. However, fast Auger recombination can also occur when a trion is 

formed within the QD, i.e., an excitation involving three charge carriers—see Figure 4. Trions can 
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form when a hole or electron is trapped on the QD surface for a time longer than the period between 

excitation pulses. Its geminate charge is thus already present within the QD when an exciton is formed 

following photon absorption during a subsequent pump pulse. The unpaired electron or hole residing 

within the QD is able to receive the energy liberated in recombination, enabling fast Auger 

recombination of the remaining electron–hole pair. This process can produce a sub-nanosecond decay 

in the signal even at low pump fluences and thus can resemble the signature of MEG. However, 

several careful [27–29] studies have shown that sufficient stirring or flowing of the sample can refresh 

the QDs within the excitation volume in between pump pulses, preventing the formation of trions and 

thus of this misleading component to the signal. 

Figure 4. Trion formation in a QD provides a charge capable of receiving and dissipating the 

energy liberated in the recombination of an exciton, resulting in an enhanced single-exciton 

recombination rate. 

 

2.2.2. Direct Surface-Trapping 

Direct surface-trapping is another process which has been shown to produce significant artifacts in 

UTA experiments that can be mistaken for MEG, including apparent MEG yields of 170% while 

below hvth [30]. The surface of QDs can mediate recombination routes for excited charges and this was 

shown to enable a rapid sub-nanosecond decay of the CBM electron population that resembles  

multi-exciton decay at low pump fluence, i.e., it mimics the signature for MEG. It was also 

demonstrated that the presence and effect of surface states is significantly increased following 

prolonged exposure to high intensity radiation. However, the presence of these surface states produces 

a characteristically broad pump-induced absorption feature at energies just below the LEAM, which 

can be used to distinguish this effect from MEG. Moreover, surface-mediated recombination results in 

a non-monoexponential form to the decay transients associated with this process, in contrast to the 

mono-exponential decay due to multi-exciton decay; this provides another way in which the two 

processes may be distinguished. It has also been demonstrated that QD surface passivation methods, 

such as surrounding a CdSe core with a ZnS shell [30], can ameliorate surface state formation and 

hence reduce or eliminate this recombination pathway. 
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3. Dependence on QD Properties 

3.1. Material Composition 

3.1.1. Pb Chalcogenide QDs 

The first demonstration of MEG was in PbSe QDs [8] and these have been the subject of more 

studies than any other QD type. QDs of PbS and PbTe have also been investigated but to a lesser 

degree [10,14,28,31–35], and there have also been some recent studies of alloyed PbSexS1−x QDs [34]. 

The reason for this focus on lead chalcogenide QDs is largely due to the small Eg of the bulk materials 

(e.g., 0.28 eV for PbSe [1]), which enables the absorption edge of the corresponding QDs to be size-tuned 

to the optimum value for exploitation of the solar spectrum. As will be discussed in Section 5, the 

greatest efficiency is achieved from a conventional solar cell for Eg~1.35 eV but this value is shifted 

further into the infrared for a cell benefiting from MEG. For all the types of Pb chalcogenide QD, 

almost all studies report a hvth value in the range 2.6–3.0 Eg that is independent of NC diameter (with 

the exception of Reference [32] which describes hvth reducing with decreasing QD diameter). 

However, two recent works [34,36] compared η for PbS, PbSe and PbSexS1−x QDs and found a 

difference in the size-dependence between PbSe and the other materials. In particular, for PbSe QDs η 

was approximately constant with QD size for the samples studied at ~0.4, whilst for PbS and alloyed 

QDs it was found to increase with decreasing diameter, for instance ranging from η~0.26 to η~0.4 as 

the diameter of a PbS QD reduced from 9.4 to 4.2 nm [34]. The authors were able to reconcile these 

results by showing that each material exhibited the same linear increase in η with decreasing size when 

the physical radius of the QD was normalized to the radius at which the confinement energy equals the 

Coulomb energy [34]. 

3.1.2. Cd Chalcogenide QDs 

The second class of QDs to be the subject of MEG studies, starting in 2005, were those composed 

of Cd chalcogenides. Cd-based QDs are not well-suited to the exploitation of MEG in photovoltaic 

applications because they have too large a Eg to effectively harvest the solar spectrum. However, the 

synthetic techniques by which they are fabricated are mature and the well-controlled samples that 

result are useful for exploring the underlying physical processes relevant to MEG. MEG was first 

reported in CdSe QDs by Schaller et al. [37] and had a threshold of 2.5Eg. This was particularly 

noteworthy because it demonstrated that thresholds lower than ~3Eg, the lowest value that at that time 

had been measured, could be achieved. As will be discussed in Section 5, a threshold close to the 

energetic limit of 2Eg is key to realizing the potential benefit of MEG to solar cell efficiency. Later 

studies on CdTe [38] and CdTe/CdSe core/shell [13] QDs also reported similar threshold values of 

~2.5Eg and 2.65Eg, respectively. However, in 2007 Nair et al. [12] found an absence of MEG in both 

CdSe and CdTe QDs, and the discrepancy between this and other reports contributed to the realization 

by the community that MEG efficiency measurements were being confused by experimental artifacts 

(as described in more detail in Section 2.2). A later theoretical study [39] showed that this discrepancy 

could plausibly be explained by the effects of photo-induced surface trapping. MEG in CdSe and CdTe 

QDs has not yet been revisited since the experimental techniques that are now used to suppress these 
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artefacts were developed and so it is not possible to quantify η with confidence in these materials. In 

contrast, the experimental technique used to monitor MEG in the CdTe/CdSe NCs does allow an upper 

limit to the efficiency of η~0.5 to be inferred [13]. 

3.1.3. InAs and InP QDs 

Interest in InAs QDs was based both on the low Eg of the bulk material, which enables size-tuning 

of the band edge to the optimum for solar cell efficiency, and on the expectation that the MEG 

threshold would be close to the energetic minimum of 2Eg. This expectation arose from an analysis  

of how the excess energy of an absorbed photon is divided between the photo-generated electron and 

hole [37] and yields the following expression: 

*

*
2 e

th g
h

m
hv E

m

 
= + 

 
 (3)

where me
* and mh

* are the effective masses of the electron and hole respectively. For InAs, me
* << mh

* and 

thus hvth ≈ 2Eg. The first study of MEG in InAs QDs appeared in 2006 in a paper by Pijpers et al. [40] and 

reported a quantum yield of 160% for a photon energy of 2.7Eg but did not measure hvth or η. A study 

by another group in the following year [25] studied how the MEG quantum yield varied with the 

energy of the absorbed photons in InAs QDs and hence could determine these quantities, reporting  

hvth ≈ 2Eg, as expected, and also η~0.35. However, Pijpers et al. [41] later retracted their results  

after failing to reproduce them. A subsequent study by some of the authors [21], which included  

new experimental procedures designed to remove the need to determine the wavelength-dependent 

absorption cross-section of the NCs, also concluded that MEG did not occur in their samples up to a 

photon energy equivalent to 3.7Eg. In 2009, modeling by Califano [42] found that trion and biexciton 

decay lifetimes, though similar, should be experimentally distinguishable in InAs NCs, suggesting that 

some other process was responsible for the discrepancies in reported MEG quantum yields. Very 

recently, a combined experimental and theoretical study [43] also found that the MEG quantum yield 

was negligible for photon energies up to at least 3.2Eg for InAs QDs with a Eg close to optimum value 

for solar cell efficiency. At low pump fluences, there was no difference found between the transients 

obtained from static and well-stirred samples, and hence the sub-nanosecond decays observed  

were attributed to surface-trapping. Furthermore, the results of the theoretical modeling found that, 

while MEG is energetically possible for photon energies similar to Eg, the efficiency of MEG only  

becomes significant close to hvth for small QDs, the Eg of which is too large to effectively exploit the 

solar spectrum. 

The large Eg values of InP QDs (~1.7–2.0 eV) [44] makes them unsuited to the enhancement of 

solar cell output by MEG. However, as for InAs, me
* << mh

* for bulk InP and so the minimum value  

of hvth was also expected for MEG in InP QDs. Considering the controversy surrounding the 

measurement on InAs QDs, an investigation of MEG in InP QDs was important in order to confirm 

that hvth ≈ 2Eg was indeed achievable, and thus that high hvth values observed for the Pb- and  

Cd-chalogenides were not universal and the full benefit of MEG to solar cell efficiency could, in 

principle, be realized. The first, and to date only, investigation of MEG in InP QDs was undertaken  

in 2009 [24], at a time when the causes of the experimental artifacts that had confused earlier 



Nanomaterials 2014, 4 29 

 

 

measurements had become apparent. Consequently, measurements were taken using well-stirred 

samples and at moderate pump fluences. The InP core of these QDs was surrounded by a ZnS inner 

shell and a ZnO outer shell; these layers of high Eg materials were designed to prevent, or at least 

reduce, the trapping of photo-generated charges. These precautions enabled values of hvth = 2.1Eg 

and η = 0.3 to be reported with confidence; this threshold is consistent with Equation (3) and  

remains the lowest reported value since the causes behind the experimental artifacts affecting MEG 

measurements were recognized. 

3.1.4. Silicon QDs 

Silicon is an abundant, low-toxicity material and its semiconductor properties have been very well 

studied, all of which make it a strong candidate for MEG-enhanced solar cells. The first demonstration [22] 

of MEG in Si utilized colloidal QDs with a diameter of 9.5 nm and Eg = 1.2 eV, and reported  

hvth = 2.4 Eg and a quantum yield of 2.6 for a pump photon energy of 3.4 Eg, which corresponds to  

η = 1.6. Note, however, that this study was undertaken in 2007 before the experimental artifacts that 

can affect MEG measurements were fully understood. 

Recent investigations of MEG in close-packed Si QDs embedded in a silica matrix have yielded 

some interesting and potential important results. First by using photoluminescence quantum yield 

measurements [16] and then subsequently ultrafast transient absorption spectroscopy [45], a group 

based at the University of Amsterdam has reported the step-like enhancement in the quantum yield of 

photo-generated charges that has been predicted for very high efficiency MEG. Intriguingly, their 

experiments also indicate that the additional excitons are being generated not in the same QD that 

absorbs the photon, as is the case for the essentially isolated QDs found in colloidal samples, but rather 

in a neighboring QD. This is an exciting result not only because it suggests that the efficiency of MEG 

in real systems can approach the ideal case, and hence the full benefit to solar cell efficiency could 

potentially be realized, but also because it indicates that some hitherto unforeseen aspect of MEG is at 

work. However, as yet, these results await confirmation by other groups and so it is too early to judge 

their full impact. 

3.1.5. Semi-Metal QDs 

A theoretical analysis of the relative performance of various QDs led Allan and Delerue to propose 

in 2011 [46] that the greatest MEG efficiency could be expected for the materials with the smallest 

bulk Eg. In effect, this corresponds to maximizing the confinement of the carriers whilst still achieving 

an absorption edge optimized for the solar spectrum. The materials with the smallest bulk Eg are  

semi-metals, i.e., materials with a zero or small negative value of Eg, and Allan and Delerue took the 

case of α-Sn QDs as an example in their study. However, the first experimental study of MEG in a 

semi-metal used instead QDs made from HgTe, which has a bulk Eg = −0.15 eV [23]. For 3.5 nm QDs 

with Eg = 1.0 eV, a quantum yield of 1.36 was measured for a photon energy equivalent to 2.9Eg; this 

compares well with Pb-chalogenide QDs which typically exhibit a quantum yield of ~1.2 for excitation 

at ~3.0Eg. HgTe QDs are also notable for their resistance to oxidation—in this case, the QDs were 

prepared in water and open to the ambient atmosphere. In contrast, Pb-chalocogenide QDs are 

susceptible to significant oxidation unless kept under an inert atmosphere [28,47]. 
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3.2. Structure 

3.2.1. Core-Shell Nanocrystals 

Several of the QDs studied to date have had a core-shell structure, where a nominally spherical QD 

of one material is surrounded by one or more layers of different semiconductor material. For instance, 

as mentioned in Section 3.1.3, the InP NCs used to demonstrate the record low MEG threshold 

consisted of an InP core surrounded by a ZnS inner shell and a ZnO outer shell. Similarly, the InAs 

QDs studied have had cores over-coated by layers of CdSe [25], ZnSe [43], or CdSe and ZnSe [21].  

In these cases, the purpose of the shell layer(s) is the same: to act as a barrier between both  

photo-generated charges (electron and hole) and the QD surface, and thereby reduce or eliminate 

surface-mediated relaxation and recombination. 

A core-shell QD is described as having a Type I heterostructure if both carriers are confined to the 

same volume, such as in the InP and InAs QDs described above. In contrast, a core-shell QD in which 

the electron localizes in the core and the hole in the shell, or vice versa, is known as a Type-II 

heterostructure. The intermediate case, in which one of the carriers is localized to either the core or the 

shell and the other de-localised over the whole QD, is called a quasi-Type II heterostructure. The rate 

of Coulombic interactions between the electron and hole, including Auger cooling, depends on the 

overlap of the wavefunctions of the two carriers and this is reduced in Type II and quasi-Type II 

heterostructures. As will be described in more detail in Section 6, Auger cooling of hot electrons is one 

of several processes that compete with MEG, and so its suppression may lead to an improved quantum 

yield. Gachet et al. investigated MEG in CdTe/CdSe/CdS/ZnS QDs, in which the inner CdTe/CdSe 

core/shell forms a Type-II heterostructure and the outer CdS and ZnS shells form a barrier between the 

photo-generated charges and the QD surface [13]. A value of hvth ≈ 2.65Eg was observed, consistent 

with other studies of Cd-based QDs (see Section 3.1.2), and an upper limit of η = 0.53 estimated, a value 

second only to that reported for Si QDs (since the identification of the misleading artefacts described  

in Section 2). Quasi-Type II PbSe/PbS and PbSe/PbSexS1−x QDs have also been investigated [36] but  

in that case no improvement in MEG efficiency was noted, which was attributed to the small reduction 

in wavefunction overlap calculated for these QDs. 

3.2.2. Nanorods 

There have been several investigations of MEG in PbSe nanorods, i.e., NCs elongated in one 

direction to, typically, a few ten seconds of nanometers. These studies were motivated by the 

expectation that MEG would be enhanced in these structures, both by an enhancement of the Coulomb 

interactions between carriers due to the quasi-one-dimensional confinement [48], and also by an 

increased density of multi-exciton states due to the reduced symmetry of the nanorod compared to a 

QD [49]. One group found that MEG measurement on nanorods with an aspect ratio (i.e., 

length/diameter) between 5 and 8 yielded hvth = 2.6Eg and η = 0.37 [49], similar to the results for PbSe 

QDs reported by the same group that year [34]. This was somewhat of an improvement on the results of 

hvth = 2.7Eg and η = 0.25 for PbSe QDs measured in the same laboratory previously [15,27], but was 

within the range of values reported elsewhere for PbSe quantum dots—see Section 3.1.1. However, a 

previous study by another group [50] reported on similar PbSe nanorods and found, after a subsequent 
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correction [51], hvth~2.5Eg and η~0.5 (note that for comparability with the other values given in this 

review the hvth value given here is estimated by linear extrapolation of the data to when the quantum 

yield reduces to unity, rather than by a fit to the phenomenological model described in Section 4.1 as 

performed by the authors of Reference [51].) 

3.3. Surface 

The primary purposes for seeking to control the surface of QDs is to ameliorate the processes 

discussed in Section 2 that inhibit accurate measurement of QY and compete with MEG, and to 

prevent the QD reacting with external agents, potentially altering its properties. Sykora et al. [47] 

investigated the absorption spectra and QY measurements of PbSe QDs exposure to air for varying 

times. They found that the QDs can lose up to 50% of their volume due to oxidation in air, resulting in 

smaller QD cores. This enhances quantum confinement and blue-shifts the absorption peak, moving it 

further from the optimum value for exploitation of the solar spectrum. However, they also showed that 

the effects of air exposure are partially suppressed in PbSe/CdSe core/shell structures, similar to the 

CdSe/ZnS structures used by Tyagi et al. [30] to ameliorate surface state formation. Similar effects of 

air exposure have also been reported for PbS QDs [28,47]. 

Typical surface passivation methods result in long-chain ligands bonded to the QD surface. In  

thin-film QD solids these long-chain ligands are replaced with shorter ones to enhance carrier 

mobility; the shorter inter-QD distances enhance carrier tunneling between QDs [52–55]. This process 

was observed to reduce MEG efficiency, but this reduction could be reversed through infilling with 

inorganic compounds [56–58]. The authors investigated MEG in 1,2-ethanedithiol-linked PbSe QDs 

infilled with Al2O3 or Al2O3/ZnO through atomic layer deposition. Through time-resolved microwave 

conductivity measurements they found MEG efficiencies for infilled films approached the intrinsic 

efficiency for isolated PbSe QDs, whereas there was negligible MEG for non-infilled films. 

4. Understanding MEG 

4.1. Phenomenology 

Beard et al. [59] have shown that the overall efficiency for the MEG process can be related 

phenomenologically to the threshold energy by: 

g
th g

E
hv E= +

η
 (4)

This relationship implies that reducing the threshold energy of the MEG process also increases η. In 

addition Beard et al. [59] (following the work of Ridley [60]) parameterised the competition between 

the possible relaxation routes of a single hot exciton by: 
s

th
EHPM cool

th

hv hv
k k P

hv

 −=  
 

 (5)

where kEHPM is the rate of cooling by electron hole pair multiplication (EHPM), i.e., MEG, kcool is the 

rate of cooling by energy dissipation, the exponent s can vary between 2 and 5, and P is the threshold 
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parameter which determines whether the MEG onset is hard (P >> 1) or soft (P < 1). An efficiency can 

then be defined based on P: 

'
1

P

P
η =

+
 (6)

which allows the parameterisation of an energy threshold for each additional EHPM event: 

( ) 1
'

m
th g

m
hv E

 = + η 
 (7)

where m is the maximum number of EHPM events possible. Through Equations (5)–(7) the onset of 

MEG and the efficiency can be modeled for varying levels of competition between EHPM and carrier 

cooling. It was shown that the onset of MEG is not as sharp as expected, and that the QY increases 

approximately quadratically below 150%, and linearly above. 

4.2. Comparison to Impact Ionization in Bulk Materials 

Interest in MEG in QDs as a source of increased efficiency in photovoltaics was fuelled by  

the expected effects of quantum confinement, namely relaxed momentum conservation, slower 

phonon-mediated cooling rates, enhanced Auger processes and reduced dielectric screening of the QD 

surface [10,59]. During the period of controversy following the emergence of the artefacts described in 

Section 2, several groups argued that for a given photon energy, carrier multiplication occurs more 

efficiently in bulk PbS and PbSe than in QDs of the same material [10,61]. It was suggested that 

surface effects in competition with impact ionization are much less prominent in bulk materials due to 

a greatly reduced surface area to volume ratio compared to a QD. Conversely, it was also argued that 

the MEG threshold in bulk materials is much higher due to parabolic energy momentum states 

demanding strict momentum conservation in exciton production. 

In order to effectively compare the performance of bulk materials and QDs, careful consideration of 

the data presentation is required. As discussed by McGuire et al. [15] arguments can be made for 

superior performance of either depending on the quantities displayed; when plotting the QY versus the 

pump photon energy, bulk PbSe was shown to outperform PbSe QDs and this was the representation 

used by authors for the notion that CM in QDs is less efficient than in bulk [10,14]. This 

representation, however, neglects the effect of the magnitude of the band gap and does not provide 

direct information about the energy efficiency, only the number of excitons produced per absorbed 

photon. Quantum confinement in QDs results in significantly higher band gaps meaning an MEG  

event corresponds to higher final energy state than an impact ionization event in bulk material.  

A representation which takes these factors into account is to plot the energy yield, QY × Eg, versus the 

photon energy. In this way PbSe QDs were shown to transfer more energy to charge carriers than bulk 

material for a given photon energy, the more important consideration for photovoltaics. 

4.3. Theoretical Models 

Several different theoretical descriptions of MEG have been studied: impact ionization, in which the 

hot exciton initially created by the absorption of a high energy photon gives its excess energy to one or 
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more valance band electrons so that they are promoted across the band gap; the generation of a 

biexciton via a virtual exciton or biexciton; and the initial photo-excitation of a superposition of 

quantum states corresponding to all possible excited states, including multi-excitons. These different 

models are illustrated in Figure 5 for the simplest case of MEG, where just one additional  

exciton is created. 

Figure 5. Models of biexciton formation from a single absorbed photon: (a) a photo-generated 

hot exciton relaxes by impact ionization, exciting another electron across the band gap; 

thereby creating a biexciton (b) the direct photogeneration of a biexciton through a virtual 

exciton or biexciton states [62]; and (c) the photo-generation, by a single photon, of a 

quantum superposition of all possible excited states, including multi-excitons. 

 

One of the earliest experimental studies of MEG [62] also first suggested that the direct 

photogeneration of biexcitons through a virtual electron channel could also contribute to the MEG 

quantum yield, in addition to the contribution from impact ionization. A subsequent work suggested 

that MEG could also proceed via a biexciton channel, further enhancing the yield and argued, based on 

estimates of the efficiency of MEG via these channels, that this was, in fact, the dominate  

process [63]. However, a more recent study incorporated selection rules and oscillator strengths into 

the same model, and concluded that that the efficiency of these channels was much weaker than 

previously estimated [64]. Moreover, another recent investigation has demonstrated that the lack  

of interference between photo-generation pathways due to the fast de-phasing brought about by  

elastic interactions with the crystal lattice further reduced the contribution of this effect to overall 

MEG yield [65]. 

The direct photo-generation of multi-exciton states as part of a coherent superposition of all 

possible excited states was first proposed in 2006 [66] as another process which contributes to the 

overall MEG yield. In this model, this direct photo-generation is made possible by the strong  

many-body interactions produced by quantum confinement. However, the rapid de-phasing of the 

constituent single and multi-exciton states within 10 fs is again brought about by interactions with the 

lattice; the multi-exciton states then subsequently, within 100 fs, fission into multiple uncorrelated 

single excitons [67]. This process is thought to be greatest for QDs with strongly correlated electrons, 

i.e., for QD radii much smaller than the exciton Bohr radius, and low dielectric constants, which 

reduces the screening of the inter-particle interactions [67]. However, recent studies which introduced 
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these de-phasing effects into the original model concluded that this process does not make a significant 

contribution to overall yield for the PbSe QDs modeled and that impact ionization is the dominant 

process [65,68]. 

MEG in QDs by impact ionization has been studied by a number of groups, using several 

approaches to the calculations. The impact ionization rate, W, is calculated using Fermi’s golden rule: 

22 ( ) /if f iW V E h= π ρ  (8)

where ρf(Ei) is the density of final states and Vif is the screened Coulomb interaction matrix element. 

Atomistic pseudo-potential calculations have been performed for PbSe QDs [69] but yielded  

hvth = 2.2Eg, somewhat lower than the experimentally observed value. Screened semi-empirical 

pseudo-potential calculations of W in CdSe and InAs QDs [70] found a decrease in MEG efficiency 

with increasing QD size, with the process becoming inefficient for diameters greater than 3 nm. Allan 

and Delerue have used a semi-empirical tight-binding model to calculate W in a range of QD types, 

including PbSe [10,61,71], PbS [10], InAs [43], Si [72], α-Sn [32], and HgTe [23]. In particular, it was 

found that while Vif increases as the QD size is reduced, due to increased Coulomb interactions 

between particles, ρf(Ei) is decreased to an even greater degree such that W is reduced overall. It was 

also found that good agreement could be found between the calculated and experimentally measured 

values of hvth and η if the rate of carrier cooling by the processes in competition with impact ionization 

was given a value of a few picoseconds, consistent with measurements [23,61,71]. 

In summary, calculations can reproduce experimental MEG results by considering only the rate of 

impact ionization relative to the rate of carrier cooling, the other process that could potentially 

contribute to MEG yield being made inefficient by the de-phasing of the corresponding coherent states 

due to interactions with the QD crystal lattice. 

5. Device 

5.1. Potential Benefit to Solar Cell Efficiency 

Theoretical efficiency limits on conventional solar cells have been explored using the “Detailed 

Balance” model [2] and modifications have been made to model the potential benefits of MEG [73–75]. 

In the ideal case, it is assumed that all photons with an energy greater than Eg are absorbed and 

produce a number of excitons dependent on hv and Eg, described by QY (hv,Eg). The photogenerated 

current density, jpg, is thus given by: 

( , ) ( ) ( )
g

pg gE
j e QY hv E hv d hv

∞
= φ  (9)

where e is the electronic charge and ϕ(hv) is the spectral photon flux density. This is offset by a loss of 

photogenerated current due to recombination. The recombination current density is given by: 
1

3 2 22 ( ) exp 1 ( )
g

r E

hv eVQY
j eh c QY hv d hv

kT

−
∞− −  −  = π −    
  (10)

where h is Planck’s constant, c is the speed of light, V is the operating voltage of the cell, k is 

Boltzmann’s constant and T is the temperature (set to 300 K here). V is assumed equal to a constant 
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quasi-Fermi level separation and is determined by finding the value which maximizes the photo-voltaic 

efficiency of the cell: 

/pv jV Iη =  (11)

where j = jpg − jr, the total current density, and I is the total solar irradiance (here set to AM1.5). An 

assumption must be made on the exact form of QY (hv,Eg). For optimized MEG a photon produces an 

additional exciton for each increase in energy of Eg, thus: 

1

( , ) ( , )
M

g g
m

QY hv E hv mE
=

= θ  (12)

where θ (hv,mEg) is the Heaviside step function (equal to 1 for hv > mEg, 0 otherwise), and M is the 

integer found from rounding down hvmax/Eg. Note that limiting m to 1, limiting QY to 1, i.e., no MEG. 

Figure 6a illustrates how, for the case of ideal MEG and for a range of Eg values, the incident solar 

energy is divided between the processes of MEG, radiative recombination and waste heat generation, 

with the balance being accounted for by photons with a wavelength too long to be absorbed. At the 

optimum Eg value of 0.7 eV, the cell efficiency is 44%; in comparison, without MEG the optimum 

efficiency is 33%, and occurs at Eg = 1.35 eV. Figure 6b compares the current density-voltage 

characteristics of a cell benefiting from ideal MEG to one for which MEG is negligible: MEG 

increases the short-circuit current density by a factor of ~3 whilst decreasing the open-circuit voltage 

by a factor of ~2. 

Alternatively, a linear increase in QY above hvth, which better corresponds to the experimental 

observations to date, can be described by: 

( , ) ( , ) ( , )( ) /g g th th gQY hv E hv E hv hv hv hv E= θ + ηθ −  (13)

Using Equation (13), Figure 6c shows how the photovoltaic efficiency varies with Eg for PbSe 

NQD with experimentally determined η and hvth values of 0.4Eg and 2.6Eg eV respectively, as 

described in Section 3. The AM1.5 solar spectrum was used with a total irradiance of 1 kW·m−2. Also 

included for comparison are the efficiencies for ideal MEG from Figure 6a, and no MEG. It is evident 

that only a marginal increase in cell efficiency is attainable at low Eg using PbSe QD. In order to 

realize significantly enhanced solar cell efficiency, QDs with Eg = 0.7–1.3 eV and a MEG threshold 

close to the minimum required by energy conservation, 2Eg, are required. 
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Figure 6. (a) Energy division in a QD sample exhibiting ideal MEG modeled using 

Equation (12) if illuminated by the AM1.5 solar spectrum. As the bandgap increases a 

larger fraction of solar photons do not have enough energy to be absorbed, indicated by the 

blue section, and for lower bandgap the threshold for MEG is lower; (b) Comparison of 

current density as a function of operating voltage for QD solar cells of optimum Eg with 

and without ideal MEG; (c) Comparison of solar cell efficiency vs. Eg simulated using 

Equation (13), for PbSe QD with experimentally derived η and hvth, to the ideal case from 

(a) and the case with no MEG. 

 
(a) (b) 

(c) 

5.2. Real Devices 

Due to the ultrashort lifetimes of bi-excitons (~10–100 ps), implementation of MEG in a real 

photovoltaic device requires charge extraction on a similar time-scale or faster. The first indication that 

this was achievable was published in 2010 [76], where it was shown that transfer from PbSe QDs to  

a TiO2 surface occurred in less than 50 fs, (and hole transfer in 4 ps to a redox species in solution 

returning the QD to its ground state). This suggested that device architectures involving QDs adsorbed 

onto TiO2 would be well-suited to the exploitation of MEG. 

The first measured photocurrent enhanced by MEG was reported shortly afterwards from a  

Grätzel-type photovoltaic device, see Figure 7a. Sambur et al. [77] deposited monolayers of 

mercaptoproprionic-coated PbS QDs of varying band gaps onto an atomically flat TiO2 surface, 

covered by a sulphide-based electrolyte. The cells were illuminated with different wavelengths of 

monochromatic light; MEG was confirmed by an absorbed photon to electron current efficiency (on a 

glass/ITO substrate) greater than 100% for photon energies greater than hvth. The power conversion 
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efficiency was very poor, however, due to low light absorption by the QD monolayer, and so this 

device did not correspond to a practical solar cell design. 

Figure 7. (a) Layer structure of a Grätzel-type photovoltaic device utilising PbSe QDs as 

the absorbing species, with charge carrier transfer illustrated [77]; (b) Layer structure of a 

depleted heterojunction design photovoltaic device utilising PbSe QDs as the absorbing 

species [78]. 

(a) (b) 

In 2011 demonstration of MEG in a realistic device was demonstrated by Semonin et al. [78] in a 

depleted heterojunction design photovoltaic device utilising PbSe QD as the absorbing species. Such a 

cell is similar to the Grätzel-type photovoltaic device but with the electrolyte replaced by additional 

layers of QDs. This design thus benefits from the replacement of a corrosive liquid component, which 

is prone to leaking, with a thick absorbing layer that also acts as the hole transfer medium. This thick 

layer of QDs was deposited onto a layer of ZnO deposited onto on a glass/ITO substrate, which acts as 

a transparent front electrode, see Figure 7c. For photon energies above 3Eg, the external quantum 

efficiency rose to 114% (corresponding to an internal quantum efficiency of 130%) with an overall 

power conversion efficiency of 4.5% under AM1.5 simulated sunlight, similar to the best efficiencies 

for QD-based devices at the time. This indicated that functional photovoltaic devices could benefit 

from a photocurrent enhanced by MEG under the right conditions. 

Future developments in functional devices will require careful examination of the MEG process  

for QDs within thin films to ensure that the quantum confinement effects which enhance MEG are  

not compromised in favour of charge mobility. Very recent work by Sandeep et al. [58] using time 

resolved microwave conductance, has investigated the variation of “multiple free charge carrier 

generation” (MFCG) as the charge mobility is varied by controlling ligand length in PbSe QD films. 

They report for carrier mobilities in excess of 1 cm2 V−1·s−1, all electrons and holes separate rapidly 

enough to escape Auger recombination and the MFCG efficiency saturates at a level that is very 

similar to the CM efficiency for colloidal QD dispersions, with a threshold of 2Eg. This low threshold 

is the ideal level for efficient MEG, compared to 2.8Eg for PbSe QDs in solution. The cause of the 

threshold reduction is not clear and suggests that the relationships derived by Beard et al. [59] 
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(Equation (4)) has limitations. Nevertheless, these results are promising for the development of an 

efficient PV cell enhanced by MEG. 

6. Future Directions 

Although current investigations have only reported marginal improvements in energy efficiency for 

QD-based solar cells due to MEG, there is still significant potential for improvement. One strategy for 

future development is to utilize the scope QDs afford for control of charge carrier interactions  

and dynamics [26,33]. This approach can be used to both optimize the absorption edge of the QDs  

for exploitation of the solar spectrum, and to suppress the processes that compete with MEG. The 

competing processes include: phonon emission [33], charge carrier transfer to a surface state [43,79], 

Auger relaxation [80], where the electron’s excess energy is transferred to the hole which exhibits 

faster phonon cooling due to the denser band structure of the valence band, and transfer of energy to 

surface ligands through vibrational coupling [81]—these processes are illustrated in Figure 8. 

Figure 8. Illustration of the processes which compete with MEG, yellow arrows represent 

waste energy. (a) Phonon emission; (b) Electron transfer to a surface state; (c) Auger 

relaxation, where the electron’s excess energy is transferred to the hole which exhibits 

faster phonon cooling due to the denser band structure of the valence band; (d) Transfer of 

energy to surface ligands through vibrational coupling. 

 
(a) (b) 

(c) (d) 

As mentioned in Section 3, core-shell QDs can be produced which enable the localization of the 

wavefunctions of both the photogenerated hole and electron to be manipulated. This can result in an 

effective Eg that is smaller than either of the core or shell material individually, allowing the optimum 

value to be achieved for a greater range of materials. Manipulating the localization of the charge 



Nanomaterials 2014, 4 39 

 

 

carriers can also be used to suppress some of the processes in competition with MEG, thereby 

improving the QY. Reducing the electron-hole wavefunction overlap by the use of a Type II or  

quasi-Type II QD structure has been shown to dramatically reduce Auger relaxation [81]. Confinement 

of the electron and hole to the core in type I core/shell QDs can reduce interaction with surface states 

and ligands [13]. Conversely, QDs which localize charge in the shell may benefit from a more direct 

charge extraction route, potentially leading to greater extraction efficiency and a consequently 

improved overall cell efficiency. All of these factors must be considered together in the design of  

core-shell QD structures. 

An additional potential benefit of core-shell QDs is their effect on the bi-exciton interaction energy, 

Δxx. In a Type II or quasi-Type II QD, the imbalance of charge between the core and shell produces a 

strong Coulombic interaction between the photo-generated charges, the net result of which may be 

repulsive or attractive. A significant attractive interaction, corresponding to a bound biexciton i.e.,  

Δxx < 0, reduces hvth by Δxx [25]. The Detailed Balance model has been used to calculate the potential 

to solar cell efficiency of this reduction in hvth; for Δxx = −0.1 eV, the maximum photovoltaic 

efficiency increases to as much as 50% [82]. However, current experimental investigations have so far 

found Δxx to be repulsive in Type II QDs [83], i.e., Δxx > 0. These experimental results are consistent 

with simple perturbative calculations of Δxx [84], which consider just the interactions between the four 

charges that comprise a bi-exciton as well as self-polarisation effects. However, this approach does not 

incorporate some important physical effects, such as the exchange interaction [85], and thus does not 

fully describe the values of Δxx achievable. Moreover, other calculations, for ZnSe/CdS QDs with 

different core diameters and shell thickness in this case, have yielded both positive and negative values 

of Δxx [86,87]. More detailed theoretical studies, including effects such as band bending and electron 

correlation, are needed to determine whether it is possible to design QDs which exhibit a large and 

attractive biexciton interaction energy, i.e., Δxx < 0, which in an idealized system could result in a 

threshold energy less than 2 Eg, significantly enhancing MEG efficiency. 

7. Conclusions 

Following the controversy surrounding the initial investigations of MEG, experimental techniques 

have been developed over the last five years which eliminate misleading artifacts and thus allow the 

reliable measurement of MEG efficiency. However, while these measurements show that MEG in QDs 

does result in improved energy conversion compared to impact ionization in bulk semiconductors, the 

improvement is not currently enough to increase solar cell performance significantly. However, further 

improvement in MEG efficiency may be realized by engineering exciton dynamics in QDs by control 

of their size, shape and composition. In particular, suppressing the hot exciton relaxation channels that 

compete with MEG will significantly improve its efficiency. 
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