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Abstract: Today, the number of known viruses infecting methanogenic archaea is limited. Here, we
report on a novel lytic virus, designated Blf4, and its host strain Methanoculleus bourgensis E02.3,
a methanogenic archaeon belonging to the Methanomicrobiales, both isolated from a commercial
biogas plant in Germany. The virus consists of an icosahedral head 60 nm in diameter and a long
non-contractile tail of 125 nm in length, which is consistent with the new isolate belonging to
the Siphoviridae family. Electron microscopy revealed that Blf4 attaches to the vegetative cells of
M. bourgensis E02.3 as well as to cellular appendages. Apart from M. bourgensis E02.3, none of the
tested Methanoculleus strains were lysed by Blf4, indicating a narrow host range. The complete
37 kb dsDNA genome of Blf4 contains 63 open reading frames (ORFs), all organized in the same
transcriptional direction. For most of the ORFs, potential functions were predicted. In addition,
the genome of the host M. bourgensis E02.3 was sequenced and assembled, resulting in a 2.6 Mbp
draft genome consisting of nine contigs. All genes required for a hydrogenotrophic lifestyle were
predicted. A CRISPR/Cas system (type I-U) was identified with six spacers directed against Blf4,
indicating that this defense system might not be very efficient in fending off invading Blf4 virus.

Keywords: archaea; biogas; Methanoculleus sp.; virus; Siphoviridae; genome sequence

1. Introduction

Methanogenesis, biogenic methane formation, is a metabolic trait found exclusively
in certain members of the Archaea. These methanogenic archaea (methanogens) thrive by
coupling the conversion of simple C1 and C2 compounds (such as CO2, formate, methanol,
or acetate) to methane with energy conservation [1,2]. This unique metabolic capacity
makes methanogens highly relevant in mitigating climate change. On the one hand,
methane is a potent greenhouse gas that contributes significantly to global warming [3].
On the other hand, methane is a clean energy source, as its combustion with oxygen
produces only CO2 and water [4]. One strategy to provide regenerative methane (biogas)
in times of dwindling fossil fuels is through anaerobic digestion. This multi-step process,
which leads to the decomposition of biomass or waste, involves a plethora of different
anaerobic microorganisms, with methanogens operating at the terminal step [5]. Cultivated
methanogens are currently classified into seven orders, Methanococcales, Methanopyrales,
Methanocellales, Methanobacteriales, Methanomassiliicoccales, Methanosarcinales, and
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Methanomicrobiales [6]. Of the latter two, the genera Methanosarcina and Methanoculleus
are particularly abundant in biogas plants fed with energy crops [7,8], which indicates their
crucial role in the process.

In all types of ecosystems, viruses play an important role in affecting the abundance of
microorganisms, the composition of microbial communities, and the dynamics of microbial
populations [9–11]. There are currently 17 archaeal virus families described, which are
divided into archaea-specific and cosmopolitan virus families based on their morphology
and genome characteristics. The archaea-specific virus families are often characterized by
their unique morphology (for reviews see, e.g., [12–14]). The cosmopolitan group includes
the Caudovirales, which are divided into the Podoviridae, the Siphoviridae, the Myoviridae,
and the Magroviruses [14]. In addition to the previously known archaeal virus families,
the analysis of metagenome data offers a large repertory for the discovery of new archaeal
viruses and virus families.

In addition to defense mechanisms against foreign nucleic acids, such as restriction–
modification (RM) systems, prokaryotes often have clustered regularly interspaced palin-
dromic repeats (CRISPR)/CRISPR-associated (Cas) systems, which are the adaptive prokary-
otic immunity. They are present in most sequenced archaeal genomes (>90%). Today, the
CRISPR/Cas systems are divided into 2 classes, 6 types, and >30 subtypes [15,16]. The
system consists of a CRISPR array and genes for Cas proteins. The array is organized into
spacer sequences, which are short pieces of DNA from previous invaders (20–40 bp) and
repeats (20–40 bp) that are positioned between the individual spacers. At the 5′-end of
the array is the so-called leader sequence. In the event of an infection with foreign nucleic
acids, the CRISPR/Cas system defends in three phases. In the adaptation phase, new
spacers are added to the CRISPR array by the enzyme complex containing Cas 1 next to
the leader sequence, whereby foreign DNA will later be recognized using the protospacer
adjacent motif (PAM) sequence. In the expression phase, the array is transcribed and the
precursor CRISPR RNA (pre-crRNA) is processed, which leads to short mature crRNAs. In
the interference phase, the crRNA forms the interference complex with other Cas proteins,
which degrades the foreign nucleic acids (for reviews see, e.g., [17,18]).

Whether CRISPR/Cas systems play a significant role in fending off viral infections
of methanogenic archaea involved in anaerobic digestion is unclear. The emerging evi-
dence for the relevance of viruses to the structure and population dynamics of archaeal
communities is still largely based on observations in situ [19–21]. Most isolated and de-
scribed viruses infecting methanogens are restricted to the Methanobacteriales, including
the related Methanothermobacter marburgensis-infecting viruses ψM1 and ψM2, and the
Methanothermobacter wolfeii provirus ψM100 [22–24]. Further examples are the viruses
ΦF1, ΦF3, and Drs3, which infect members of the genus Methanobacterium [25,26]. For a
member of the Methanococcales, Methanococcus voltae, virus(-like) particles were reported
but not characterized in detail [27,28]. Recently, the first virus infecting a member of the
Methanosarcinales (MetSV) was isolated and characterized [29]. A second virus infecting
Methanosarcina sp. (MetMV) was predicted via a metagenomic approach [30]. For the
other methanogenic orders, no virus has been described. From virus (phage) research on
bacteria, as well as from isolation-independent approaches, such as metagenomics and
genome-based searches for proviruses, it is very likely that virus diversity in methanogens,
and the whole archaeal domain, is greatly under-appreciated [13,31].

In this study, we isolated Methanoculleus bourgensis E02.3 and its lytic virus, Blf4, from
a commercial biogas plant in Germany. The virus belongs to the Siphoviridae, and is the
first one described to infect a member of the Methanomicrobiales, expanding the repertoire
of isolated viruses infecting methanogens.

2. Materials and Methods
2.1. Isolation and Characterization of Methanoculleus bourgensis E02.3

All manipulations were made under anaerobic conditions, either by applying standard
anaerobic techniques [32] or by working in a glove box (Coy, Grass Lake, MI USA) operated
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with an atmosphere of N2/CO2/H2 (78:18:4, v/v). “Modified Basal Medium” (MBM) and
solid “Modified Basal Agar” (MBA) were used to isolate and culture methanogenic archaea
present in sludge obtained in April 2013 from a full-scale commercial anaerobic digester
in Germany (designated “BG1” in [33]). MBM and MBA were prepared as described [26],
without adding yeast extract and supplementing with sodium acetate (Carl Roth, Karlsruhe,
Germany) to 40 mM. The sludge was serially diluted ten-fold, dispensed onto MBA plates,
and incubated at 45 ◦C with H2/CO2 (80:20 (v/v), 1.5 × 105 Pa) for 12 days. In this initial
isolation step, the media contained 100 µg mL−1 (final concentration) of streptomycin
and ampicillin each in order to inhibit bacterial growth. Obtaining a pure culture from a
single colony on MBA and assessment of purity by phase-contrast and epifluorescence
microscopy was conducted as described [26]. Growth was monitored photometrically
by determining the optical density at 578 nm (OD578) or 600 nm (OD600) at 37 ◦C, 40 ◦C,
45 ◦C, and 50 ◦C. Growth onsodium formate (Merck, Darmstadt, Germany) at 45 ◦C was
assessed as described [34]. Methanol for the growth experiments was from VWR (Dresden,
Germany). Lysis of growing cultures by the virus was assessed by following their optical
density after it was added.

The taxonomic rank of M. bourgensis E02.3, as well as its phylogeny, was assessed by
analyzing a nearly complete fragment (1395 bp) of the 16S rRNA gene sequence, amplified
by PCR. A phylogenetic tree was constructed using the neighbor-joining method and the
Jukes–Cantor distance correction with MEGA based on a Geneious10.2.5 CLUSTAL W
alignment of sequences representing the genus [35] and bootstrap values based on 1000
replications [36]. Additionally, the genome of M. bourgensis E02.3 was sequenced. Chro-
mosomal DNA was isolated from M. bourgensis E02.3 using the Wizard Genomic DNA
Purification Kit (Promega, Madison, WI, USA) as recommended by the manufacturer. Illu-
mina shotgun paired-end sequencing libraries were prepared using the Nextera DNA Flex
Library Preparation Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions. The sample was sequenced on the NextSeq500 using the NextSeq 500/550
Mid Output Kit v2.5 sequencing chemistry (300 cycles). Additionally, 400 ng of high-
molecular-weight genomic DNA were sequenced using the SQK-RBK004 rapid sequencing
kit, FLO-MINI106 flow cells, and a MinIon device (MinKNOWversion 20.06.4) (Oxford
Nanopore Technologies, Oxford, United Kingdom). Of the 2,213,275 paired-end reads,
15% overlapped and were merged using bbmerge [37]. A hybrid assembly of the merged
and unmerged Illumina reads and MinION reads was performed using SPAdes v3.13 [38],
and open reading frames (ORFs) were automatically annotated [39]. Read coverage was
determined using the samtools depth function after mapping the Illumina data with
BWA-MEM [40] and the MinIon data with Vulcan [41], respectively. Manual curation was
performed to identify the genes for methanogenesis, archaeal flagellum, restriction modifi-
cation systems (BLASTN; https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 8 March
2021); CRISPR/Cas systems were identified using CRISPRFinder [42], MacSyFinder [43],
and CRISPRCasFinder [44]) and emboss_needle for the alignment of the fla-genes [45].
Protospacers were predicted from a CRISPR array in order to manually derive PAM motifs
at the 5’ end of the Blf4 genome leading strand, and design logos using Weblogo soft-
ware [46,47]. The draft genome sequence of M. bourgensis E02.3 is available at GenBank
under the accession number GCA_018495055.1.

2.2. Isolation and Characterization of Blf4 Virus

Sludge from the anaerobic digester was diluted 1:4 with MBM and manually homoge-
nized. After centrifugation at 3000× g for 10 min, the supernatant was filtered through a
0.45 µm membrane. M. bourgensis E02.3 was infected with the filtrate in a standard double-
layer plaque assay analogous to a procedure described previously [26]. Briefly, 1 mL of
a serial 10-fold filtrate dilution (in MBM) was mixed with 1 mL of exponentially (OD578
of approximately 0.1) growing strain E02.3, combined with 2.5 mL of semi-solid molten
MBA (0.7% (w/v) agar), and poured on fresh MBA plates. The plates were incubated at
45 ◦C with H2/CO2 for 14 days. Single plaques were harvested, serially diluted in MBM,
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and the lytic virus was again isolated via the plaque assays to ensure that a pure strain
was obtained. For amplification of virus biomass, the volumes of the Blf4 lysate (up to
8 mL) were increased to lyse increasing volumes (up to 160 mL) of M. bourgensis E02.3
cultures incubated with slight agitation at 45 ◦C over several infection/lysis cycles. For
subsequent analyses, the cultures were cleared by centrifugation at 10,000× g for 30 min
after complete cell lysis (24–48 h) had occurred, and aliquots of the supernatants were either
stored anaerobically in 5% (v/v) glycerol at −80 ◦C (Blf4 virus stock), subjected to isolation
of the virus (see below), or used to assess the host spectrum of the Blf4 virus. For the latter,
three Methanoculleus species, M. bourgensis MS2T (DSM 3045, type strain), M. marisnigri
AN8 (DSM 4552), and M. thermophilus CR1T (DSM 2373, type strain) (Deutsche Sammlung
für Mikroorganismen und Zellkulturen, DSMZ, Braunschweig, Germany), were cultivated
in the respective media suggested by DSMZ (DSM 3045 in medium 332 at 37 ◦C, DSM 4552
in medium 141b at 37 ◦C, and DSM 2373 in medium 141 with strain-specific modifications
at 55 ◦C) with H2/CO2 (80:20) and supplemented daily, as the energy substrate. For lysis
assays, strains were grown in 5 or 50 mL culture to an optical density of 0.15–0.2 and sup-
plemented with 0.2–0.5 mL of virus lysate passed through a 0.2 µm sterile filter (Sarstedt,
Nümbrecht, Germany). The optical density was followed until complete lysis occurred or
the stationary phase was reached.

The Blf4 virus was visualized by transmission electron microscopy (TEM) using
conventional negative staining. To this end, virus stock suspension or Blf4-infected M. bour-
gensis E02.3 was applied to either pioloform- or formvar-carbon-coated, 300- or 400-mesh
copper grids (Plano GmbH, Wetzlar, Germany) stained with 1–2% aqueous uranyl acetate
solution and examined by TEM (JEM-1010, JEOL, Tokyo, Japan or Morgagni 268D, Thermo
Fisher Scientific, Waltham, MA, USA) at an accelerated voltage of 80 kV.

2.3. Genomic Analysis of Blf4 Virus

Lysate (80 mL) containing Blf4 virus was thoroughly mixed with chloroform at a
final concentration of 5% (v/v), incubated at 4 ◦C for 16 h, and centrifuged at 3000× g for
20 min. The supernatant was passed through a 0.45 µm pore filter (Filtropur S 0.45, Sarstedt,
Germany) and subjected to ultracentrifugation (120,000× g, 2 h, 4 ◦C). The sediment was
resuspended and, after another ultracentrifugation under the same condition, further
purified by ultrafiltration through a 100 kDa molecular weight cut-off microcentrifuge
device (Pall Corporation, Port Washington, NY, USA) at 1000× g. The retentate was treated
with DNaseI (Thermo Fisher Scientific) to remove host DNA.

DNA was extracted from the isolated virus using the High Pure Viral Nucleic Acid
kit (Roche, Mannheim, Germany) as per the manufacturer’s instructions. Illumina short-
read shotgun sequencing of virus DNA from Blf4 with standard NGS library preparation,
followed by paired-end 300 bp sequencing on a MiSeq system (Illumina) was conducted
at the Genome Center of the Technische Universität Dresden. The sequencing run gen-
erated 7,813,662 paired-end raw reads. Filtering and subsampling were conducted as
described [26]. Assembly was done using SPAdes v3.11.1 [48] with the “plasmid” and
“careful” options selected. The resulting contigs were processed by Recycler to yield one
circular contig [49]. The presence of a circular contig was further supported by cutting
the contig in silico at an intergenic region and joining the ends to a novel contig. The
resulting read mapping with BWA-MEM was contiguous and did not support any break
point [40]. Annotation was done using RAST [50]. Further functions were assigned using
BLASTP (NCBI, Bethesda MD, USA), phyre2 [51], and the antiCRISPR protein prediction
tool PaCRISPR [52]. Virus classification was performed using VIRFAM by searching for the
head–neck–tail module and recombinase [53,54]. The genome sequence of Blf4 is available
at NCBI under the accession number MZ171369.
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3. Results
3.1. Initial Characterization of M. bourgensis E02.3

The methanogenic strain E02.3 was isolated from the sludge of a commercial biogas
plant in Germany (see Section 2.1). E02.3 formed round, yellow to greenish, shiny colonies
of approximately 5 mm in diameter on MBA (Figure 1a). The cells were coccoid with a
diameter of 0.5–2 µm (Figure 1b) and exhibited F420 autofluorescence (Figure 1c), which is
a hallmark of methanogens. During inspection by light microscopy, motility of the E02.3
strain was not observed. The strictly anaerobic strain was able to utilize H2/CO2 (80:20,
v/v; 1.5 × 105 Pa) or formate (150 mM) for growth. Growth with methanol (125 mM) or
acetate (120 mM) as sole energy sources was not observed. Growth of the E02.3 strain
required acetate (10–40 mM gave no phenotypic difference) to be present in the medium.
Growth was fastest at 40 ◦C and 45 ◦C (Figure 2a), the temperature range at which the
biogas plant was operated. Growth was apparently impaired at 37 ◦C and 50 ◦C (Figure 2a).

Viruses 2021, 13, x FOR PEER REVIEW 5 of 14 
 

 

3. Results 
3.1. Initial Characterization of M. bourgensis E02.3 

The methanogenic strain E02.3 was isolated from the sludge of a commercial biogas 
plant in Germany (see Section 2.1). E02.3 formed round, yellow to greenish, shiny colo-
nies of approximately 5 mm in diameter on MBA (Figure 1a). The cells were coccoid with 
a diameter of 0.5−2 µm (Figure 1b) and exhibited F420 autofluorescence (Figure 1c), which 
is a hallmark of methanogens. During inspection by light microscopy, motility of the 
E02.3 strain was not observed. The strictly anaerobic strain was able to utilize H2/CO2 
(80:20, v/v; 1.5 × 105 Pa) or formate (150 mM) for growth. Growth with methanol (125 mM) 
or acetate (120 mM) as sole energy sources was not observed. Growth of the E02.3 strain 
required acetate (10−40 mM gave no phenotypic difference) to be present in the medium. 
Growth was fastest at 40° C and 45 °C (Figure 2a), the temperature range at which the 
biogas plant was operated. Growth was apparently impaired at 37 °C and 50 °C (Figure 
2a). 

 

Figure 1. Morphology of methanogenic isolate E02.3. Colonies on MBA (a), cells visualized by 
phase contrast (b), and fluorescence microscopy (c); scale bars = 10 µm. 

 

 

 

 

 

 

 

 

Figure 2. Growth rate of M. bourgensis E02.3 dependent on temperature (a) and lysis of by Blf4 virus 
at 45 °C (b); growth of M. bourgensis E02.3 was monitored at 578 nm over time and the growth rate 
(h−1) was calculated for the exponential phase. Filled circles: untreated cultures; open circles: cul-
tures challenged with Blf4 after 48 h (arrow). To save space, the y-axis of (a) is shown discontinu-
ously. The average values and their standard deviations (error bars) of three biological replicates 
are shown. 

Comparative analysis of the nearly complete 16S rRNA gene (1395 bp) from the 
E02.3 isolate with other sequences in GenBank (BLASTN) showed that this strain belongs 
to the genus Methanoculleus, being most closely related to M. bourgensis CB-1 (nucleotide 
identity of 99.9%, accession number AB065298) (Supplementary Figure S1). Both acetate 
auxotrophy and the doubling time of approximately 12 h correspond to M. bourgensis’ 

Figure 1. Morphology of methanogenic isolate E02.3. Colonies on MBA (a), cells visualized by phase
contrast (b), and fluorescence microscopy (c); scale bars = 10 µm.

Viruses 2021, 13, x FOR PEER REVIEW 5 of 14 
 

 

3. Results 
3.1. Initial Characterization of M. bourgensis E02.3 

The methanogenic strain E02.3 was isolated from the sludge of a commercial biogas 
plant in Germany (see Section 2.1). E02.3 formed round, yellow to greenish, shiny colo-
nies of approximately 5 mm in diameter on MBA (Figure 1a). The cells were coccoid with 
a diameter of 0.5−2 µm (Figure 1b) and exhibited F420 autofluorescence (Figure 1c), which 
is a hallmark of methanogens. During inspection by light microscopy, motility of the 
E02.3 strain was not observed. The strictly anaerobic strain was able to utilize H2/CO2 
(80:20, v/v; 1.5 × 105 Pa) or formate (150 mM) for growth. Growth with methanol (125 mM) 
or acetate (120 mM) as sole energy sources was not observed. Growth of the E02.3 strain 
required acetate (10−40 mM gave no phenotypic difference) to be present in the medium. 
Growth was fastest at 40° C and 45 °C (Figure 2a), the temperature range at which the 
biogas plant was operated. Growth was apparently impaired at 37 °C and 50 °C (Figure 
2a). 

 

Figure 1. Morphology of methanogenic isolate E02.3. Colonies on MBA (a), cells visualized by 
phase contrast (b), and fluorescence microscopy (c); scale bars = 10 µm. 

 

 

 

 

 

 

 

 

Figure 2. Growth rate of M. bourgensis E02.3 dependent on temperature (a) and lysis of by Blf4 virus 
at 45 °C (b); growth of M. bourgensis E02.3 was monitored at 578 nm over time and the growth rate 
(h−1) was calculated for the exponential phase. Filled circles: untreated cultures; open circles: cul-
tures challenged with Blf4 after 48 h (arrow). To save space, the y-axis of (a) is shown discontinu-
ously. The average values and their standard deviations (error bars) of three biological replicates 
are shown. 

Comparative analysis of the nearly complete 16S rRNA gene (1395 bp) from the 
E02.3 isolate with other sequences in GenBank (BLASTN) showed that this strain belongs 
to the genus Methanoculleus, being most closely related to M. bourgensis CB-1 (nucleotide 
identity of 99.9%, accession number AB065298) (Supplementary Figure S1). Both acetate 
auxotrophy and the doubling time of approximately 12 h correspond to M. bourgensis’ 

Figure 2. Growth rate of M. bourgensis E02.3 dependent on temperature (a) and lysis of by Blf4 virus at
45 ◦C (b); growth of M. bourgensis E02.3 was monitored at 578 nm over time and the growth rate (h−1)
was calculated for the exponential phase. Filled circles: untreated cultures; open circles: cultures
challenged with Blf4 after 48 h (arrow). To save space, the y-axis of (a) is shown discontinuously. The
average values and their standard deviations (error bars) of three biological replicates are shown.

Comparative analysis of the nearly complete 16S rRNA gene (1395 bp) from the E02.3
isolate with other sequences in GenBank (BLASTN) showed that this strain belongs to the
genus Methanoculleus, being most closely related to M. bourgensis CB-1 (nucleotide identity
of 99.9%, accession number AB065298) (Supplementary Figure S1). Both acetate auxotrophy
and the doubling time of approximately 12 h correspond to M. bourgensis’ phenotype [55]
and are, thus, consistent with this conclusion. For further analysis, chromosomal DNA was
isolated and sequenced using Illumina and Oxford Nanopore technology. We obtained
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7,813,662 paired-end Illumina reads of lengths of 300 bp and 58,777 Minion reads with
lengths between 103 bp and 62,913 bp (average 3053 bp). The draft genome with nine
contigs (total length of 2,643,145 bp) was well covered by Illumina reads (average coverage
of 239, standard deviation of 51) and Minion reads (average coverage of 63, standard
deviation of 10), and had an average GC content of around 61% (Supplementary Table S1).
The calculated genome size of approximately 2.6 Mbp is similar to those of the M. bourgensis
strains MAB1 and MS2T (Supplementary Table S2). Based on automated annotation, most
enzymes for hydrogenotrophic methanogenesis were encoded on contig 1 and localized in a
large cluster (nt 460089–479419), which is highly similar to a cluster in M. bourgensis strains
MS2T and MAB1. In order to identify the genes for the proteins that are necessary for
growth on other methanogenic substrates, a search was performed for the corresponding
genes in the strains M. bourgensis MS2T and MAB1 (present in the NCBI database) and a
BLASTN analysis of the M. bourgensis E02.3 draft genome. The genes encoding formate
dehydrogenase (required for growth on formate; BN140_1327/_1328/_1329) were found
in contig 4. Genes for (potentially redundant) enzymes involved in the assimilation of
acetate were found scattered across the genome—putative acetate-CoA ligase (BN140_034)
in contig 2, acetate kinase (BN140_1312) in contig 4, phosphotransacetylase (BN140_0884)
in contig 3, acetyl-CoA-synthetase (BN140_2190) in contigs 8 and 5, and carbon monoxide
dehydrogenase/acetyl-CoA synthase complex (MMAB1_3162) in contig 4.

One locus encoding the proteins for the archaeal flagellum was identified (flaJ, flaI,
flaH, flaF, flaG, and the flagellin flaB) in contig 1. The deduced proteins were 48.1 to 89.5%
identical to those from M. thermophilus and M. marisnigri. A CRISPR/Cas system type I-U
was identified in contig 7 (see Section 2.1). It consists of an array with 63 direct repeats
(62 spacers of 36 to 41 nt in length) and genes for Cas3, Csx17, Csb1, Csb2, Cas4/1-fusion,
and Cas2 protein (Figure 3a). M. bourgensis strains MAB1 (Figure 3b) and MS2T (Figure 3c)
also encode a CRISPR/Cas system type I-U, but subtype I (I-U_I) [44]. In addition to a
different arrangement of the corresponding genes for the Cas proteins, the identical array
of M. bourgensis MAB1 and MS2T also contains more spacers (144) (Figure 3a–c). The repeat
unit of all three M. bourgensis strains, E02.3, MS2T, and MAB1, was identical (36 nt).

Specific spacers against the Blf4 virus were identified by a direct search of the spacer
sequences against the Blf4 genome (accession number MZ171369) using BLASTN. Thus,
spacers with mismatches were also analyzed. Six spacers against the Blf4 virus were
identified in the M. bourgensis E02.3 array, in which only two spacers had one mismatch
(spacers 13 and 17), three spacers had two mismatches (spacers 8, 54, and 59), and one had
five mismatches (spacer 28). In comparison, M. bourgensis MS2T and MAB1 had 16 spacers
against the Blf4 virus (two without mismatches). No spacers without a mismatch were
present in the array of M. bourgensis E02.3 and only two spacers completely identical to Blf4
were present in the arrays of M. bourgensis MAB1 and MS2T, respectively. It has been shown
that a 100% match is not necessary for the functionality of CRISPR/Cas systems [56,57].
Notably, strains E02.3, MS2T, and MAB1 had only one spacer in common (E02.3 spacer 13
and MS2T/MAB1 spacer 122; two mismatches to Blf4—red boxes in Figure 3) the other
Blf4-specific spacers were completely different. Using the six spacers from M. bourgensis
E02.3, a PAM motif was predicted (Figure 3d) using the 5´end of the Blf4 genome leading
strand. Highly similar PAM motifs for Blf4 were also derived from M. bourgensis MS2T and
MAB1 (Figure 3e,f).
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Figure 3. CRISPR/Cas system type I-U of M. bourgensis E02.3 and predicted PAM motifs:
(a) CRISPR/Cas system in M. bourgensis E02.3 contig 7. It consists of the genes for Cas3, Csx17, Csb1,
Csb2- and Cas4/1-fusion, and Cas2. The array includes 63 directed repeats with a length of 36 nt,
which were arranged alternately with spacers. (b) CRISPR/Cas system in M. bourgensis MAB1 type
I-U_I, and (c) CRISPR/Cas system in M. bourgensis MS2T type I-U_I. They consist of the genes for
the Cas proteins Cas1, (only M. bourgensis MAB1, Cas 2), Cas 3, Csb1, Csb2, and Csx 17. The arrays
are identical, including 144 spacers and the same direct repeats as the M. bourgensis E02.3 type I-U
system. PAM motifs were predicted by manual curation of the Blf4 specific spacers for the strains
(d) M. bourgensis E02.3, (e) M. bourgensis MS2T, and (f) M. bourgensis MAB1. Only one common spacer
against Blf4 was identified (indicated in red). The leader sequence is marked in blue.

As for further mechanisms of defense against foreign DNA, restriction–modification
systems were searched in the genome sequence of M. bourgensis E02.3. The draft genome
was compared with the known restriction–modification systems from M. bourgensis MS2T

and MAB1 (using BLASTN). Genes were identified, which are annotated in M. bourgensis
MS2T and MAB1 as enzymes of the type III restriction–modification system in contig 3 (nt:
259043–263631). A further section in contig 3 is very similar to another type III restriction–
modification of M. bourgensis MS2T (BN140_0641/0642) and MAB1 (MMAB1_0829/0830),
but an intermediate section of 1251 bp (contig 3; 5255–6470 nt) differs significantly in the
primary structure. Surprisingly, none of the known type I restriction–modification systems
from M. bourgensis MS2T (BN140_0921-0923; BN140_1098-1100) or MAB1 (MMAB1_2046-
2048) were identified.

3.2. Characterization of the Blf4 Virus

Blf4 completely lysed cultures of M. bourgensis E02.3 24 h after they were challenged
with the virus (Figure 2b). TEM analysis of purified Blf4 suggested its affiliation with the
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virus family Siphoviridae. The non-contractile tail was approximately 125 nm in length and
10 nm in width. It was straight or curved and had a slightly enlarged terminal segment. The
nearly isometric hexagonal head was approximately 60 nm in diameter (Figure 4). When
Blf4-infected M. bourgensis E02.3 was analyzed by TEM, the virus was seen attached to
vegetative cells, and, less frequently, to cellular appendages of E02.3, which are presumably
archaeal flagella (Supplementary Figure S2). Flagellotropy (i.e., attaching to flagella) of
members of the Siphoviridae is not uncommon [58,59].

Viruses 2021, 13, x FOR PEER REVIEW 8 of 14 
 

 

As for further mechanisms of defense against foreign DNA, restriction–modification 
systems were searched in the genome sequence of M. bourgensis E02.3. The draft genome 
was compared with the known restriction–modification systems from M. bourgensis MS2T 
and MAB1 (using BLASTN). Genes were identified, which are annotated in M. bourgensis 
MS2T and MAB1 as enzymes of the type III restriction–modification system in contig 3 
(nt: 259043−263631). A further section in contig 3 is very similar to another type III re-
striction–modification of M. bourgensis MS2T (BN140_0641/0642) and MAB1 
(MMAB1_0829/0830), but an intermediate section of 1251 bp (contig 3; 5255–6470 nt) 
differs significantly in the primary structure. Surprisingly, none of the known type I re-
striction–modification systems from M. bourgensis MS2T (BN140_0921-0923; 
BN140_1098-1100) or MAB1 (MMAB1_2046-2048) were identified. 

3.2. Characterization of the Blf4 virus  
Blf4 completely lysed cultures of M. bourgensis E02.3 24 h after they were challenged 

with the virus (Figure 2b). TEM analysis of purified Blf4 suggested its affiliation with the 
virus family Siphoviridae. The non-contractile tail was approximately 125 nm in length 
and 10 nm in width. It was straight or curved and had a slightly enlarged terminal seg-
ment. The nearly isometric hexagonal head was approximately 60 nm in diameter (Figure 
4). When Blf4-infected M. bourgensis E02.3 was analyzed by TEM, the virus was seen at-
tached to vegetative cells, and, less frequently, to cellular appendages of E02.3, which are 
presumably archaeal flagella (Supplementary Figure S2). Flagellotropy (i.e., attaching to 
flagella) of members of the Siphoviridae is not uncommon [58,59]. 

 

 
Figure 4. TEM micrographs of the Blf4 virus. Left: virus attachment to cell appendage (arrows), 
presumably flagellum. Right: a single virus displaying typical morphological characteristics of 
members of the Siphoviridae; Blf4 contains a hexagonal head (approximately 60 nm in diameter) and 
a non-contractile tail (approximately 125 nm in length and 10 nm wide). The samples were nega-
tively stained with uranyl acetate (bars = 100 nm and 50 nm in the left and right images, respec-
tively). 

The host range of Blf4 was investigated by challenging various Methanoculleus 
strains (M. bourgensis MS2T, M. marisnigri AN8, and M. thermophilus CR1T; see Section 2.2) 
in liquid culture with the virus. For none of these strains could cell lysis be observed 
within 72 h after infecting exponentially growing hosts (Supplementary Figure S3). 

The assembly of sequencing reads generated one high coverage contig of 37,078 bp 
in length (average coverage of 876, standard deviation of 105). This length is comparable 
to other members of the Siphoviridae-infecting archaeal hosts (from approximately 26 kbp 

Figure 4. TEM micrographs of the Blf4 virus. Left: virus attachment to cell appendage (arrows),
presumably flagellum. Right: a single virus displaying typical morphological characteristics of
members of the Siphoviridae; Blf4 contains a hexagonal head (approximately 60 nm in diameter) and a
non-contractile tail (approximately 125 nm in length and 10 nm wide). The samples were negatively
stained with uranyl acetate (bars = 100 nm and 50 nm in the left and right images, respectively).

The host range of Blf4 was investigated by challenging various Methanoculleus strains
(M. bourgensis MS2T, M. marisnigri AN8, and M. thermophilus CR1T; see Section 2.2) in liquid
culture with the virus. For none of these strains could cell lysis be observed within 72 h
after infecting exponentially growing hosts (Supplementary Figure S3).

The assembly of sequencing reads generated one high coverage contig of 37,078 bp
in length (average coverage of 876, standard deviation of 105). This length is comparable
to other members of the Siphoviridae-infecting archaeal hosts (from approximately 26 kbp
for ψM2 up to approximately 42 kbp for BJ1) [14]. The GC content of 63.1% is close to the
calculated GC content of its host (60–62%, see Supplementary Table S1). While the read
data support the notion that the genome is circular, no terminal repeats or similar indicators
were found, and no physical experiments were conducted in this regard. Thus, beyond
bioinformatic indications, no further evidence is present to substantiate this notion. Of
the 63 ORFs identified within Blf4, manual analysis (see Section 2.3) allowed for assigning
functions to most of them (Supplementary Table S3). All ORFs were transcriptionally
organized in the same direction. The virus genome is structured as follows: ORF 1 and
2 encode putative membrane proteins and ORF 7 encodes a phage terminase. ORFs 10
and 11 encode phage portal proteins commonly found in members of the Caudovirales,
which also supports classifying Blf4 to the Siphoviridae. The portal proteins are involved in
virus replication (virion assembly), DNA packing, and DNA delivery [60]. ORFs 12 to 34
encode its structural components, such as tail and capsid. This genomic region is followed
by ORFs encoding functions necessary for the interaction with the host (e.g., (S-adenosyl-
dependent) methyltransferases, potential antiCRISPR proteins), and for the maturation
of the virus (e.g., HNH domain-containing protein) and the products of ORFs 62 and 63
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are putative endonucleases. Further genome analysis using VIRFAM for a head–neck–tail
module search supported the classification as Siphoviridae type 1 (no cluster assigned),
as well as protein function prediction for the major capsid protein (MCP)(ORF14), the
portal protein (ORF11), the terminase (ORF7), the head–tail adapter protein (ORF16), the
head closure protein (ORF17), the neck protein (ORF19), and the tail completion protein
(ORF20) (see Supplementary Tables S3 and S4). No significant similarities were detected
using BLASTP for the other four Siphoviridae type 1 infecting archaea (archaeal virus BJ1
(taxid 416419), Methanothermobacter wolfeii prophage ψM100 (taxid 173824), Methanobac-
terium phage ψM2 (taxid 77048), Methanobacterium formicicum virus Drs3 (taxid 1430441),
Methanosarcina-infecting virus MetSV (taxid 2035535), and Halorubrum phage CGphi46
(taxid 75406). Furthermore, VIRFAM (head–neck–tail module) analysis of these four
Siphoviridae members infecting archaea and Blf4 showed, beside the different genome sizes,
different arrangements of the genes for the structural proteins (Supplementary Figure S4).

4. Discussion

The Blf4 virus described here is only one of the few known to infect methanogenic
archaea. Blf4 virus and its host, M. bourgensis E02.3, were isolated from a commercial biogas
plant operated at approximately 40 ◦C [33]. The growth temperature range (Figure 2a)
is consistent with this environment. Phylogenetic analysis suggests that strain E02.3 is
a member of the genus Methanoculleus. The high degree of protein similarity that was
deduced from the genomic sequence to other M. bourgensis strains (MS2T or MAB1),
for example, those involved in energy metabolism (hydrogenotrophic methanogenesis),
supports this notion.

The Blf4 virus consists of an isometric icosahedral head and a non-contractile tail,
which suggests that it belongs to the Siphoviridae virus family. Viruses of this family
are known to infect bacteria or archaea. The morphology of Blf4 resembles that of the
methanogenic viruses Drs3, ψM1, and ΦF3 [23,25,26]. The genome of Blf4 might be
organized in a circular manner. However, more common to Siphoviridae is a circular,
permuted, terminally redundant genome that is packaged by a “headful mechanism” as
linear dsDNA into the viral particle, and circularizing after injection into the host [60].
Potential functions were predicted for most of Blf4′s genes. The genome appears to be
divided into three regions—a region encoding proteins involved in replication, a region
encoding structural proteins, followed by a region encoding proteins involved in virus
maturation and host–virus interaction. The arrangement of ORFs in these regions into
functionally distinct groups could potentially result in temporally distinct transcription
patterns representing early and late viral genes, as reported for other viruses [61–65].
According to our prediction of a portal protein, a phage terminase (large subunit), and an
HNH nuclease, it is likely that the genome of Blf4 is packaged using a type II packaging
system, as is known for other dsDNA-containing tailed viruses, such as the Escherichia coli
phage HK97 (reviewed in [66]).

In addition to proteins for virus propagation and structure, Blf4 also codes for proteins
that may be involved in host defense inhibition, namely antiCRISPR (Acr) proteins, which
are able to interfere with the host’s CRISPR/Cas system defenses (reviewed in [67]). Only a
few Acrs have been described and they mainly originate from viruses infecting Pseudomonas,
Pectobacterium, Listeria, Streptococcus, Moraxella, or Sulfolobus [68–73]. Here, Acrs that have
been predicted in the archaeal Blf4 virus share only low similarities to known Acrs. Still,
they might have enabled Blf4 to infect M. bourgensis E02.3, despite the presence of a
CRISPR/Cas system primed against it. The function of putative Blf4 Acrs and their
potential interaction with the host’s CRISPR/Cas system is unclear, but it is expected
to differ from the SIRV2 Acrs [67], as (a) the CRISPR/Cas systems of the hosts differ
(Sulfolobus contains types I-A, I-D, and III-B; M. bourgensis E02.3 contains type I-U), and (b)
no similarity between the respective Acrs could be detected. Possible explanations for the
very narrow host range of Blf4 observed in this study might be the fact that M. bourgensis
E02.3 lacks type I restriction–modification systems, which is encoded by other M. bourgensis
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(e.g., MS2T or MAB1), or the presence of more and different spacers against the virus in the
CRISPR array of the tested strains.

The finding that Blf4 attaches to both M. bourgensis E02.3′s cell surface and its ap-
pendages (Figure 4, Supplementary Figure S2) suggests that the virus might be facultatively
flagellotropic. This would increase the target radius (up to 10-fold) and allow for movement
of the virus from the flagella towards a second receptor on the cell surface [74,75]. Such
facultative flagellotropy raises the question about the array of epitopes Blf4 recognizes.
M. thermophilus and M. marisnigri contain flagella (particularly, FlaB), which are rather
distinct from those of M. bourgensis E02.3. Both strains were not lysed by Blf4. In contrast,
M. bourgensis MS2T, when challenged with Blf4, was also not lysed, despite encoding a
flagellum very similar to that of M. bourgensis E02.3. The observed immunity against Blf4
in the Methanoculleus strains examined here might be based on a combination of different
mechanisms, such as a defense system (CRISPR/Cas or a restriction–modification system
in the case of M. bourgensis MS2T) and incompatible receptors (in the case of M. thermophilus
or M. marisnigri).

Using culture-independent sequencing approaches, a number of methanogenic ar-
chaeal taxonomic groups have been identified as being potentially relevant for the biogas
process. In biogas plants operated in a similar fashion to the one from which Blf4 originated,
these abundant methanogens included the genera Methanosarcina and Methanoculleus [33].
In fact, members of the latter genus were repeatedly found to be the most abundant
methanogens present in the biogas plant from which Blf4 was isolated [76]. Assuming
that numerical abundance equals metabolic relevance and that each species is infected by
at least one virus, Blf4 and similar ones infecting members of the Methanoculleus genus
might exert a profound effect on their host’s abundance and, thus, on the efficiency and the
economy of the whole biogas process. Since only a few viruses of methanogens are known,
their overall impact on methanogenic activity can only be guessed. Therefore, exploring
the genetic diversity of viruses infecting methanogens and the dynamics of virus–host
interactions will aid our understanding of anaerobic digestion and of anaerobic systems
in general.
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.3390/v13101934/s1. Figure S1: Phylogenetic position of strain E02.3 within the genus Methanoculleus;
Figure S2: Attachment of virus Blf4 to M. bourgensis E02.3; Figure S3: Host range of virus Blf4;
Figure S4: VIRFAM analysis by head–neck–tail module search; Table S1: GC content of the draft
genome of M. bourgensis E02.3; Table S2: Genome sizes of M. bourgensis strains; Table S3: Open
reading frames in the Blf4 genome with similarity to described proteins in databases.
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