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Background: This study proposed a precise diagnostic model for malignant solitary pulmonary nodules 
(SPNs). This model can be used to identify objective and quantifiable image features and guide the clinical 
treatment strategy adopted for SPNs. This model will help clinicians optimize management strategies for 
SPN.
Methods: In this retrospective study, the clinical data of 455 patients of SPN with defined pathological 
diagnosis between September 2016 and August 2019 were collected and analyzed. The data included 
pathological diagnosis, preoperative computed tomography (CT) diagnosis, gender, age, smoking history, 
family history of tumor, previous history, and contact history data. The quantitative image features and 
radiomic information of the SPNs were provided using computer-aided detection (CAD) “digital lung” 
software. The Chi-squared test was used to assess the accuracy between CAD and conventional CT in the 
diagnosis of SPNs. The diagnostic model for benign or malignant SPNs was developed using a multivariate 
logistic regression analysis that comprises 6 radiomic factors (irregularity, average diameter, COPD910, 
proportion of emphysema, proportion of fat, and average density of related blood vessels). The area under 
the receiver operating characteristic curve was used to evaluate the performance of the model in determining 
SPN risk of malignancy.
Results: There was a statistical difference in the accuracy of CAD and conventional CT in diagnosing 
SPNs. According to the golden standard pathological diagnosis, the diagnostic accuracy of CAD (81%) was 
higher than that of conventional CT (63.7%) (P<0.05). Six variables (i.e., irregularity, the mean diameter, 
COPD910, the proportion of emphysema, the proportion of fat, and the vascular density) were identified 
using multivariable logistic regression to establish the diagnostic model for distinguish benign or malignant 
SPNs. The area under the receiver operating characteristic (ROC) curve (AUC) of the diagnostic model was 
0.876 (95% CI: 0.8445–0.9076), and its sensitivity and specificity were 81.25% and 82.56% respectively.
Conclusions: The proposed diagnostic model, which comprises 6 radiomic factors, is accurate and 
effective at diagnosing benign or malignant SPNs.
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Introduction

Lung cancer is the leading cause of cancer-related death 
worldwide (1), and with its high morbidity and mortality 
rate, it accounts for 23% of all deaths from malignancies. 
Despite improvements in the diagnosis and treatment 
of lung cancer (2,3), the cure rate is only approximately  
10% (4). As the symptoms do not always distinctly appear 
in early stage lung cancer, the optimal time for treatment 
is often missed (5). A previous study indicated that the 
overall 5-year survival rate of patients with stage IA of lung 
cancer is approximately 92% (6). Thus, early diagnosis and 
therapy for tumors is crucial if the survival rate of patients 
is to be improved. Lung cancer mainly presents as solitary 
pulmonary nodules (SPNs) in the early stage. Thus, the 
accurate diagnosis of SPNs is important to detect lung 
cancer early.

The clinical methods for evaluating SPN status are 
based on image characteristics and clinical information, and 
depend on the judgment of a radiologist. This traditional 
evaluation method is time consuming and inaccurate. Some 
classical diagnostic models for tumors based on clinical 
data, tumor markers, and image parameters, including 
size, density, growth rate, calcification, and morphology, 
have been proposed (7). Most lung cancer lesions present 
as tiny nodules in the early stage, and show no classical 
characteristics. In recent years, machine-learning relative 
methods, such as support vector machines (8) and deep 
learning technology (9), have been used to optimize 
classical imaging features to improve diagnostic accuracy. 
Due to the lack of a strong correlation between the imaging 
characteristics and SPN status, clinical guidelines have 
not yet integrated computer-based tools to differentiate 
between benign and malignant lesions. Thus, screening out 
more objective and quantifiable imaging omics parameters 
and combining digital transforming technology is essential 
for SPN prediction.

Computer-aided detection (CAD) technology can detect 
pulmonary nodules more quicky and more efficiently than 
imaging professionals (10,11). CAD significantly improves 
pulmonary nodule detection and has great accuracy (12-14). 
Target lesions can be identified, separated, and measured 
using the CAD “digital lung” software, which quickly 
calculates and quantifies imaging omics parameter data 
to make a diagnostic judgment. A few classical diagnostic 
models for SPN have been established based on the image 
features extracted by professional radiologists (7,15). 
We propose a novel clinical diagnostic model based on 

quantified image features using CAD combined with clinical 
data. This model could guide the clinical strategy adopted 
for the treatment of SPNs. This model diagnoses whether 
SPNs are benign or malignant.

We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-462/rc).

Methods

Participants and ethics

This retrospective study was approved by the Ethics 
Committee of the General Hospital of the People’s 
Liberation Army (PLAGH) (No. S2016-019-01), and was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). Individual consent for this retrospective 
analysis was waived.

A total of 455 patients diagnosed with SPNs between 
September 2016 and August 2019 were enrolled in this 
study. To be eligible for inclusion in the study, patients had 
to meet the following inclusion criteria: (I) have received 
CT scans within 2 weeks before surgery; (II) have single or 
multiple primary SPNs <3 cm in diameter with the nodules 
confirmed to be of the same histological subtype; (III) have 
had the lesions surgically resected and have pathological 
confirmation of atypical adenomatous hyperplasia 
(AAH), adenocarcinoma in situ (AIS), minimally invasive 
adenocarcinoma (MIA), invasive adenocarcinoma (IAC), 
or benign lesions; (IV) have complete medical records, 
including past medical history, smoking history and contact 
history records; and (V) have no lymph nodes or distant 
metastases (stage IA).

CT scan acquisition and CAD data processing

Computed tomography (CT) scanning was performed by 
2 radiologists on a helical multidetector scanner (Brilliance 
iCT 64-slice, Philips Inc., Netherlands) on patients in 
the supine position. The scanning parameters for all 
patients were as follows: 120 kV tube voltage, 512×512 
image matrix, 5.0 mm thickness, 80 mm collimation, and 
0.758 pitch. The images were output in the DICOM 
format. Quantifiable data in the radiographs in the 
DICOM format were extracted using a Medical Imaging 
Diagnostic Workstation based on CAD “digital lung” 
software (Food and Drug Administration (FDA) approved 
application number K143586; National Medical Products 

https://atm.amegroups.com/article/view/10.21037/atm-22-462/rc
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Administration (NMPA) approved application number 
20170024). Data processing was conducted according 
to the standard operation protocol. The comprehensive 
feature parameters of the target regions in the lesion were 
quantified using CAD. The features comprised SPN size, 
density, morphological, environment, lung tissue density, 
and fractal dimension. The detailed CT parameters are 
listed in Table 1.

Statistical analysis

A total of 455 patients were divided into benign group 
and malignant group. There were 176 cases in the benign 
group, including 113 cases of benign nodules and 63 cases 

of AAH. The malignant group included 279 cases, including 
52 cases of AIS, 57 cases of MIA, and 170 cases of IA.

A statistical description based on the patients’ clinical 
features, CT imaging features, and radiomics information 
was conducted using SPSS 24.0, R 3.5.0, and SAS 9.3 
software. The specific analytical methods for the different 
parameters were as follows: normal distribution parameters 
are presented as mean ± standard deviation, and the 
differential analysis was achieved through variance; non-
normal distribution parameters are presented as median 
and interquartile range, and were analyzed using a non-
parametric test; the qualitative data are presented as 
percentages using the chi-square test or Fisher’s exact test.

In this study, the diagnostic model was built using 
logistic regression. A univariate binary logistic regression 
analysis was first used to screen the statistically significant 
univariable, which were then used in the multivariate binary 
logistic regression analysis. The strength of the major-
related factors was evaluated using the P values, odds ratios 
(ORs), and 95% confidence intervals (CIs). The area under 
the receiver operating characteristic (ROC) curve (AUC) 
was used to evaluate the predictive performance of the 
model in determining SPN status (benign or malignant). 
Calibration curves were plotted to assess the model with the 
Hosmer-Lemeshow test.

Results

Patient characteristics

A total of 455 patients who met the inclusion criteria were 
recruited and included in the training set. The detailed 
clinical characteristics of all the patients are listed in Table 2. 
Of the 455 patients, 198 (43.5%) were male and 257 (56.5%) 
were female. The patients were allocated into 5 groups 
based on their pathological diagnosis. In the 5 groups of 
SPNs, there were 63 (13.8%) AAH, 52 (11.4%) AIS, 57 
(12.5%) MIA, 170 (37.4%) IA, and 113 (24.8%) BL cases.

Comparing CAD “digital lung” auxiliary diagnosis and 
conventional CT diagnosis

In this study, a data set of 342 (AAH, AIS, MIA, or IA) 
patients was used to assess the diagnostic accuracy between 
the CAD “digital lung” and conventional CT before 
surgery. According to the golden standard pathological 
diagnosis, the accuracy assessment of the conventional CT is 
displayed in Table S1; it was 63.7% (n=218). The error rate 

Table 1 CT parameters used for screening for SPNs

Classification Parameters

Size Volume

Area

SA/V

MaxLumenDiameter

MeanLumenDi

MASS

Density Mean Intensity

Ground Glass

COPD950P

COPD910P

Emphysema%

AgatstonCal

FatRatio

VolumeCal

CavityRatio

Irregularity Irregularity

Associated microvessel VesselTortuosity

VesselNumber

VesselVolume

Fractal dimension FractalDiameter

Lung intensity LungIntensity

Pleural ratio Pleuralratio

CT, computerized tomography; SPNs, solitary pulmonary 
nodules; SA/V, surface area/volume. 

https://cdn.amegroups.cn/static/public/ATM-22-462-Supplementary.pdf
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Table 2 Characteristics of enrolled patients

Clinical characteristics N (%)

Pathological diagnosis

AAH 63 (13.8)

AIS 52 (11.4)

MIA 57 (12.5)

IA 170 (37.4)

BL 113 (24.8)

Gender

Male 198 (43.5)

Female 257 (56.5)

Family history

Yes 352 (77.4)

No 103 (22.6)

Smoking history (year)

No 357 (78.5)

Quitting smoking >5 9 (2.0)

Yes 89 (19.6)

Medical history

No 255 (56.0)

History of malignancy 35 (7.7)

Chronic or benign of lung 26 (5.7)

Benign lung outside 139 (30.5)

Contact history

No 453 (99.6)

Yes 2 (0.4)

Multiple primary tumors

No 356 (78.2)

Yes 99 (21.8)

Left or right

Left 146 (32.1)

Right 309 (67.9)

Lab

Upper left 85 (18.7)

Low left 59 (13.0)

Upper right 167 (36.7)

Right middle lobe 39 (8.6)

Low right 105 (23.1)

AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma 
in situ; MIA, minimally invasive adenocarcinoma; IA, 1A; BL, 
benign lesion. 

was 12.0% (n=41), including 2.6% (n=9) under-diagnosed 
and 9.4% (n=32) over-diagnosed cases. An indefinite event 
accounted for 24.3% (n=83) of the cases. For CAD, the 
diagnostic accuracy and indefinite event comprised 81.0% 
(n=277) and 15.5% (n=53) of the cases, respectively. The 
error rate was 12.0% (n=12), including 0.6% (n=2) under-
diagnosed and 2.9% (n=10) over-diagnosed cases. The 
indefinite events accounted for 24.3% (n=83) of the cases.

The diagnostic accuracy was assessed in relation to the 
infiltration degree and different maximum diameter sizes 
using the 2 strategies before surgery (Tables S2-S5). There 
was no significant difference (P=0.33) in the degree of 
infiltration (Table S6). However, the CAD “digital lung” 
was more accurate than the conventional CT at making 
different maximum diameter size assessments (Table S7) 
(P=0.00).

Correlation analysis between the quantitative images 
features and malignancy of SPNs

The training patients were divided into 2 groups, benign 
(BL or AAH) and malignant (AIS, MIA, or IA). A total 
of 31 clinical characters were identified and statistically 
compared to analyze their  correlat ion with SPN 
malignancy; 19 clinical characters, including gender, age, 
family history, medical history, whether the primary tumor 
was malignant, volume, surface area, average diameter, the 
longest diameter, MASS, irregular, COPD950, COPD910, 
emphysema proportion, irregularity, related blood count, 
blood vessels, the average density, fat percentage, and fractal 
dimension, were statistically different (P<0.05; Table S4).  
The other 12 factors (i.e., smoking history, right and left 
lung, pulmonary lobe location, special contact history, 
average density, ground glass proportion, calcification score, 
calcification volume, related vascular tortuosity, related 
vascular volume, cavity proportion, and pleural proportion, 
were not significantly correlated (P>0.05; data not shown).

Multivariate binary logistic regression analysis

The 19 screened characteristics were evaluated using a 
regression analysis. The selected 6 characteristics (Table 3)  
were examined in relation to whether the SPN was 
malignant or not [P<0.05; that is, X8 (irregularity), X10 
(average diameter), X13 (COPD910), X14 (proportion of 
emphysema), X17 (proportion of fat), and X19 (average 
density of related blood vessels)].

https://cdn.amegroups.cn/static/public/ATM-22-462-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-462-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-462-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-462-Supplementary.pdf
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The establishment of a prediction model for SPN

Six clinical features were used to develop the predictive 
model. The predictive model was established based on 
the coefficients and ORs of the variables. The following 
formula was used for which the value of P represents the 
probability of a malignant SPN: 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

exp 5.778 0.402 X8 1.099 X10 0.076 X13 0.396 X14 0.043 X17 0.002 X19
1 exp 5.778 0.402 X8 1.099 X10 0.076 X13 0.396 X14 0.043 X17 0.002 X19  

P
− + × + × + × − × + × − ×

=
+ − + × + × + × − × + × − × [1]

where X8 refers to MASS, X10 to mean diameter, X13 to 
COPD910P, X14 to emphysema% and X17 to proportion 
of fat.

The evaluation of the diagnostic model

The ROC for the model was presented and the AUC was 
0.876 (95% CI: 0.8445–0.9076), which suggests that the 
research model performed well in distinguishing between 
benign and malignant SPNs (Figure 1). The Hosmer-

Lemeshow test was used to evaluate the calibration. There 
was no statistically significant difference between the model-
predicted and actual-observed values (χ2=7.1314, P=0.5225), 
indicating its excellent predictive ability. A nomogram 
was simultaneously established based on the multivariable 
logistic analysis for which the derivation cohort was used as 
a quantitative tool (Figure 2).

Discussion

A clinical diagnostic model for predicting benign or 
malignant SPNs was developed successfully. This model 
could be used to guide the treatment of SPNs or other solid 
tumors. The diagnostic accuracy between CAD “digital 
lung” and conventional CT before surgery was assessed 
using a data set comprising 342 (AAH, AIS, MIA, or IA) 
patients. The diagnostic accuracy of CAD was higher than 
that of conventional CT in the pathological subgroups. The 
under-diagnosed and over-diagnosed events were found to 
be fewer using CAD. Consistent with the findings of our 
previous studies (10,12), CAD was faster and more efficient 
at accurately diagnosing SPNs than professional radiologists.

The CAD “digital lung” was used to identify and isolate 
lesions and segment the quantitative parameters for visual 
features. The univariate binary logistic regression analysis 
showed that radiomic features, such as MASS, SA/V, 
COPD950, COPD910, the proportion of emphysema, 
irregularity, the number of related vessels, vascular 
density, the proportion of fat and fractal dimension, were 
significantly correlated to SPN malignancy. We also verified 
that some classic parameters (i.e., gender, age, family 
history of malignancy, previous medical history, multiple 
primary, volume, surface area, average diameter, and 

Table 3 Predictors of malignant SPNs

Variables β S.E z value Pr (>|z|) OR 95% CI 

(Intercept) −5.778 0.806 −7.167 7.67E−13 0.003 0.001–0.015

X8 0.402 0.061 6.545 5.95E−11 1.495 1.326–1.687

X10 1.099 0.204 5.392 6.96E−08 3.001 2.013–4.474

X13 0.076 0.009 8.055 7.95E−16 1.079 1.059–1.099

X14 −0.396 0.082 −4.818 1.45E−06 0.673 0.573–0.791

X17 0.043 0.022 1.928 0.053912 1.043 0.999–1.090

X19 −0.002 0.001 −2.973 0.002944 0.998 0.997–0.999

SPNs, solitary pulmonary nodules; X8, irregularity; X10, average diameter; X13, COPD910; X14, proportion of emphysema; X17, proportion 
of fat; X19, average density of related blood vessels. 
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Figure 1 ROC curve for the diagnostic model. ROC, receiver 
operator characteristic.
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Figure 2 Nomogram for predicting benign or malignant SPNs. SPNs, solitary pulmonary nodules. 

maximum diameter) can be used to determine malignancy. 
These feature parameters combined with other signatures 
(i.e., size, density, morphology, and the surrounding 
environment) were analyzed using multivariate logistic 
regression analysis to assess the nature of SPNs. Similarly, 
SA/V, COPD910, the proportion of fat, mean diameter, 
and vascular density were found to be risk factors for 
malignancy. However, the proportion of emphysema was a 
protective factor. The results indicate that the multivariate 
logistic regression analysis was more comprehensive than 
univariate binary logistic regression analysis for SPN 
analyses. Finally, 6 variable predictors, including MASS, 
mean diameters, COPD910, the proportion of emphysema, 
and the proportion of fat, were used in a multivariate binary 
logistic regression analysis to derive a prediction model for 
malignancy. Our ROC analyses illustrate that the mode 
(AUC of 0.876) had a powerful predictive performance. The 
Hosmer-Lemeshow test showed that the difference between 
the model-predicted and actual-observed values was not 
statistically significant (χ2=7.1314, P=0.5225), indicating its 
excellent predictive ability.

Classical models, such as the Mayo (7) and VA models (15) 
were used to diagnose the probability of SPN malignancy. 
In these models, multivariate statistical methods are 
based on a large amount of radiographic data and clinical 
information. The Mayo model was established using data 
for 3 clinical characteristics (i.e., age, cigarette-smoking 
history, and history of cancer) and 3 radiological features 
(i.e., spiculation, upper lobe location, and diameter) from 
629 patients identified by CT; 65% of the patients had 
benign lesions while 35% had malignant lesions. The 

AUC of the model was 0.876. Thus, this model was more 
accurate in the diagnosis of benign lesions, but it showed a 
low diagnostic rate for early or low-grade malignant lung 
cancer. Conversely, the model in this study showed that 
38.6% of the patients had benign lesions (AHH or BL), 
and 61.4% had malignant lesions (AIS, MIA, or IA). The 
malignant cases in our model were all in the pIA stage of 
lung cancer; thus, the model was effective at detecting and 
diagnosing SPN. The Veterans Affairs (VA) model (15) was 
based on the following 4 factors from 532 patients: nodule 
diameter, smoking history, smoking cessation time, and age. 
Malignant cases were confirmed through pathology while 
benign cases with stable lesions were confirmed in the 2-year 
follow-up period. The AUC was 0.79. Conversely, our 
model was developed based on quantitative image features. 
Unlike classical models that need observers to judge image 
features, the model imports data from CAD into its formula. 
The model has the advantage of eliminating subjective bias 
for image feature acquisition.

There were some limitations to this research. First, the 
sample size should be expanded for model verification and 
to compare the diagnostic ability with that of the classical 
model. Second, non-adenocarcinoma malignant tumors 
should be included to avoid the unilateralism of this model.

In conclusion, the proposed predictive model, which 
comprises 6 radiomics factors, is accurate and effective at 
diagnosing benign or malignant SPNs.
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