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Key regulators control distinct transcriptional
programmes in blood progenitor and mast cells
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Abstract

Despite major advances in the generation of genome-wide binding
maps, the mechanisms by which transcription factors (TFs) regu-
late cell type identity have remained largely obscure. Through
comparative analysis of 10 key haematopoietic TFs in both mast
cells and blood progenitors, we demonstrate that the largely cell
type-specific binding profiles are not opportunistic, but instead
contribute to cell type-specific transcriptional control, because (i)
mathematical modelling of differential binding of shared TFs can
explain differential gene expression, (ii) consensus binding sites
are important for cell type-specific binding and (iii) knock-down of
blood stem cell regulators in mast cells reveals mast cell-specific
genes as direct targets. Finally, we show that the known mast cell
regulators Mitf and c-fos likely contribute to the global reorgani-
sation of TF binding profiles. Taken together therefore, our study
elucidates how key regulatory TFs contribute to transcriptional
programmes in several distinct mammalian cell types.
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Introduction

Transcription factor (TF) proteins decode the gene regulatory instruc-

tions encoded within our genomes and unsurprisingly therefore have

emerged as key regulators of cellular identity. Individual TFs bind to

short sequence motifs within gene regulatory regions, where the regula-

tory code is translated into gene expression changes through co-operative

interactions between individual TFs as well as the recruitment of

accessory proteins such as histone-modifying enzymes and the

various components of the RNA polymerase holocomplex. TF binding

to DNA therefore represents the first major information processing

event during the regulation of gene expression and has therefore been

a major focus of modern biomedical research ever since the first

description of the lac operon (Jacob &Monod, 1961).

The advent of high-throughput sequencing technology greatly facil-

itated the generation of genome-wide TF binding maps, by directly

sequencing the DNA fragments obtained via chromatin immunopre-

cipitation using the so-called ChIP-Seq technique (Johnson et al, 2007;

Robertson et al, 2007). ChIP-Seq experiments not only form the back-

bone of several large international research initiatives (Adams et al,

2012; Dunham et al, 2012), but also represent a powerful tool for

individual research laboratories. New insights generated using this

approach range from the definition of new consensus binding motifs

(Schmidt et al, 2012) and combinatorial TF interactions (Wilson et al,

2010) to previously unrecognised roles for repeat elements as

substrates for gene regulatory evolution (Bourque et al, 2008).

Genome-wide TF binding maps, however, have so far delivered

comparatively little progress in our understanding of TF-mediated

control of cellular identity. Evidence has been provided for distal

regulatory regions being critically important for the establishment of

cell type identity (Heinz et al, 2010), and also the possibility that

binding to promoters by at least some TFs can reinforce cellular

identity (Rahl et al, 2010). Nevertheless, the sheer number of sites

bound by a given TF, often more than 10,000, has made it difficult

to gain a global understanding of TF-mediated control of cell type

identity. The question has been raised therefore whether a large

proportion of binding events are “opportunistic” rather than “func-

tional” (John et al, 2011; Zhu et al, 2012), where “functional”

would refer to those binding events that are relevant in terms of

transcriptional control processes. Indeed, some high profile studies

have restricted their analysis of TF binding sites to the minority of

sites located in the vicinity of genes that change expression following

external stimulation or TF knock-down (Garber et al, 2012).

Another important observation gained from ChIP-Seq studies

concerns the realisation that global binding patterns for a given TF can
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be very distinct in different cell types (Wei et al, 2011) and indeed

may correlate more strongly with other TFs in the same cell type than

with itself across different cell types (Hannah et al, 2011). Of note, the

cell type-specific nature of global binding patterns has also been

observed for so-called master regulator TFs (Lodato et al, 2013), there-

fore raising the question as to how a “master regulator” can dictate cell

type identity, when in fact it appears that its own global binding

patterns are largely driven by the cellular environment? One possible

explanation for this apparent paradox may of course be related to the

notion of opportunistic binding, because if most binding events were

to be opportunistic rather than functional, then the “opportunistic”

binding events may be driven by the cellular environment, whereas

the minority of “functional” binding events might relate to the cell

identity conferring activity of a “master regulatory” TF.

The recent explosion in TF-mediated cellular reprogramming

protocols (Takahashi & Yamanaka, 2006) only adds further urgency

to research efforts aiming to close the very fundamental knowledge

gaps in TF function outlined above, because a comprehensive under-

standing of how TFs interact with our genome will not only advance

basic research but also be critical to gain a mechanistic understand-

ing of cellular reprogramming strategies developed within the stem

cell/regenerative medicine arena. Here, we report a comprehensive,

genome-scale analysis of TF-mediated transcriptional control in

blood progenitors and mast cells. Concerted mathematical and

experimental analysis of global binding patterns for 10 key haemato-

poietic TFs in both cell types suggests that cell type-specific binding

is not opportunistic, but instead makes meaningful contributions to

cell type-specific transcriptional control. We furthermore illustrate

how cell type-specific TFs likely contribute to the global reorganisa-

tion of TF binding profiles. Our findings therefore represent a rele-

vant comprehensive computational and experimental analysis

illustrating how multiple key regulatory TFs contribute to transcrip-

tional programmes in distinct mammalian cell types.

Results

Many so-called blood stem cell “master regulators” are
expressed similarly in mast cell and multipotent progenitors

We have previously established the multipotent and stem cell factor

(SCF)-dependent HPC7 cell line (Pinto do et al, 2001) as a useful

model for genome-scale analysis of transcriptional control

mechanisms in early blood stem/progenitor cells (Wilson et al,

2009, 2010). In the absence of comprehensive data from other cell

types however, it is impossible to perform the necessary compara-

tive analysis required for the identification of those transcriptional

mechanisms that contribute to cell type-specific control and cellular

identity. Obtaining good quality TF ChIP-Seq data from blood cells

can be challenging due to limiting cell numbers and population

heterogeneity. Primary mast cells can be expanded as a homo-

genous population when bone marrow progenitors are cultured in

the presence of IL-3 and SCF. To initiate comparative analysis, we

generated RNA-Seq transcriptional profiles for both HPC7 and

primary mast cells, with two biological replicates for each cell type.

Each replicate produced approximately 30 million uniquely mappable

reads, and expression values from biological replicates were highly

correlated (Supplementary Fig S1).

Fig 1A shows the transcript expression levels in log2 fpkm values

for all genes in HPC7 (x-axis) and mast cells (y-axis). Differential

expression analysis revealed approximately 9K genes expressed at

comparable levels in both cell types (category I), approximately 4K

genes that are HPC7 or mast cell type-specific (categories II and III,

respectively) and approximately 10K genes that are not expressed in

either of the two cell types (category IV). Using independent micro-

array expression data for primary common myeloid progenitors and

mast cells (Wu et al, 2009), we were able to demonstrate that genes

specifically expressed in either HPC-7 or mast cells in our RNA-Seq

data showed high enrichment in the primary CMPs and mast cells,

respectively (Fig 1B). Of note, our HPC7 RNA-Seq gene set was

more highly enriched in CMP expression data compared to other

haematopoietic progenitors and other non-blood cell types (Supple-

mentary Table S1). Together with visual inspection of individual

gene loci (Fig 1C), GSEA allowed us to validate our expression data

against previously established benchmarks.

Given our goal of comparative analysis of transcriptional control

mechanisms, we next performed differential expression analysis for

all known TFs (Fig 1D). Many TFs previously characterised as key

regulators of HSC development and/or function were expressed at

similar levels in both HPC7 and mast cells (see expression levels for

Scl/Tal1, Runx1, Erg, Meis1, Fli1, Pu.1 in Fig 1E). Some of these

factors, like SCL/TAL1 (Salmon et al, 2007), GATA2 (Tsai & Orkin,

1997) and PU.1 (Walsh et al, 2002), had been implicated in mast

cell function before, but no such information had been provided for

the other HSC regulators. Similar levels of expression of key regula-

tory TFs suggested to us that, instead of quantitative variation

between cell types, a distinct behaviour of TFs could contribute to

specific transcriptional programmes.

Genome-wide binding patterns are largely distinct for key
regulatory TFs expressed in both HPC7 and mast cells

To perform a comparative analysis of genome-wide binding patterns

of the key regulators simultaneously expressed in HPC7 and mast

cells, we generated ChIP-Seq data for CTCF, E2A, ERG, FLI1, LMO2,

MEIS1, PU.1, RUNX1 and SCL in primary mast cells and also CTCF

and E2A in HPC7 cells. Together with our previously reported

ChIP-Seq data for ERG, FLI1, GATA2, LMO2, MEIS1, PU.1, RUNX1

and SCL in HPC7 (Wilson et al, 2010) and GATA2 in mast cells

(Moignard et al, 2013), this provided us with genome-scale data for

the same 10 TFs in two cell types and would therefore allow us

to investigate the contribution of shared TFs to cell type-specific

transcriptional programmes.

Visual inspection of ChIP-Seq results demonstrated very good

signal-to-noise ratios for all 20 datasets and also suggested that

binding profiles for most TFs diverged substantially between HPC7

and mast cells. This observation is illustrated in Fig 2A, which

shows binding density profiles for all 10 TFs in both HPC7 and mast

cells across the Kit gene locus. Kit is expressed at comparable levels

in HPC7 and mast cells and encodes the receptor for SCF, a cytokine

required for the growth of both HPC7 and mast cells. Comparison of

the right (mast) and the left (HPC7) panels showed some overlap of

binding peaks, but also substantial differences in binding locations

for the same TF with several regions showing consistent binding by

multiple TFs in either one or the other cell type. This observation

suggested that even though the Kit locus is bound by all 10 factors
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Figure 1. RNA-seq gene expression profiling of HPC7 and mast cells.

A Scatterplot of fpkm values for all genes in both cell types. Each dot on the scatterplot is coloured based on 4 categories: (I) non-cell-type-specific, (II) HPC7-specific,
(III) mast-specific and (IV) not expressed.

B Gene set enrichment analysis of genes in category (II) and (III) against the BioGPS expression dataset for CMP and mast cells. NES denotes normalised enrichment
score.

C Genome browser screenshot of a gene expressed in haematopoietic progenitors (Eng) and a non-cell-type-specific gene (Cdk9). The y-axis represents read density
along regions of known transcripts. Higher values correspond to more RNA transcripts.

D The same scatterplot as in (A) but only all known transcription factors are shown (data from RIKEN transcription factor database: http://genome.gsc.riken.jp/TFdb/). A
large proportion of transcription factors are expressed at similar levels in HPC7 and mast cells, while a smaller subset are cell type-specific transcription factors.

E fpkm values of 10 key haematopoietic transcription factors.
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in both cell types, the 10 TFs interact with the Kit gene locus in a

cell type-specific manner.

To gauge the extent of cell type-specific binding at the level of

the entire genome, we mapped binding peaks for all 10 TFs in both

cell types and determined the extent of cell type-specific and shared

peaks. This analysis demonstrated that with the exception of CTCF,

all TFs showed largely non-overlapping binding sites (Fig 2B,

Supplementary Table S2). Moreover, pairwise correlation analysis

of all genome-wide binding profiles followed by hierarchical clustering

demonstrated that with the exception of CTCF, binding patterns for

the TFs clustered by cell type rather than the paired HPC7/mast cell

datasets for the same TF (Fig 2C). These observations therefore

indicate that the cellular environment can exert a major influence

on global binding patterns where key regulatory TFs such as

RUNX1, GATA2, MEIS1, SCL/TAL1 occupy largely non-overlapping

parts of the genome in a cell type-specific manner within two closely

related haematopoietic cell types.

Genome-scale modelling reveals strong correlation between
binding of shared TFs and cell type-specific gene expression

Having identified predominantly cell type-specific binding patterns

for key regulatory TFs raised the question as to whether TFs are

passively recruited to cell type-specific regions of open chromatin

with no major regulatory impact, or whether they actively partici-

pate in two different transcriptional programmes. To evaluate the

extent to which cell type-specific binding of shared TFs might be

associated with gene expression, we developed multivariate linear

regression models to correlate TF binding information in the two

cell types as the predictor variables with gene expression data as the

response variable (Fig 3A). Specifically, differential TF binding

scores (DTF) for all shared TFs accounted for 10 predictor variables

that were used to predict differential gene expression (DGE).
TF-mediated control of gene expression was modelled taking into

account both promoter and distal TF-bound regions.

Simple linear regression models including those genes bound by

at least one TF (9,952 genes, Supplementary Fig S2A) showed some

correlation between differential binding of shared TFs and gene

expression in the two cell types (cross-validation R2 ~ 0.227,

Fig 3B), and scatterplots of predicted and observed values showed a

moderate positive correlation (correlation coefficient ~0.477,

Supplementary Fig S2B). However, a significant group of genes

with no change in gene expression was not predicted correctly

(Supplementary Fig S2B). Since gene regulation often involves

co-operativity between TFs, we next investigated model predictions

using subsets of the original data by applying a minimum threshold

for number of bound TFs. As shown in Fig 3B, increasing this

threshold improved prediction accuracy reaching R2 values of 0.414

when genes bound by five or more TFs simultaneously were

included (1,223 genes) and predicted values are much better corre-

lated with observed values (correlation coefficient ~0.649 for 5 or

more TFs). A downside of this approach, however, is that predic-

tions are only possible for a subset of genes if stringent cut-offs are

implemented about the minimum numbers of TFs that must be

bound to a given locus (Supplementary Tables S3 and S4).

We therefore sought to develop an alternative approach that

would allow us to include co-operativity in our modelling without

having to focus analysis on subsets of genes. In addition to the 10

predictor variables for 10 shared TFs, we examined the predictive

power of 45 pairwise TF combination variables in a generalised

additive model (GAM) (Hastie & Tibshirani, 1986; Wood, 2011).

This approach uses smoothing functions of the predictor variables

to fit single TF variables or concordant pairs of TFs to differential

gene expression in a non-linear fashion. As shown in Fig 3C, GAM

with interaction terms correlated more strongly with gene expres-

sion changes (adjusted R2 ~0.417, correlation coefficient ~0.645)

than GAM without interaction terms (adjusted R2 ~0.346, correlation

coefficient ~0.588) (Supplementary Table S5). We were also able to

identify interesting TF pairs that co-operate to affect cell type-

specific gene expression. For example, pairwise interaction between

the ETS factors Erg and Fli1 with several other TFs was significantly

correlated with gene expression changes (Supplementary Table S6).

Predictions obtained using GAM were more accurate than the

corresponding results obtained from genes simultaneously bound by

2 or more TFs (8261 genes) with the linear regression model (cross-

validation R2 ~0.252) even in the absence of interaction terms.

Importantly, our observation that differential binding of shared

factors is predictive of differential gene expression is consistent with

the notion that cell type-specific binding of shared TFs makes mean-

ingful contributions to differential gene expression.

Both cell type-specific and commonly bound regions show
enrichment of consensus sequence motifs for the shared factors,
but differ in their motif content for possible collaborating TFs

In view of our results, it remained unclear whether cell type-specific

binding is largely mediated through tethering of shared factors to

regulatory elements through protein-protein interaction with cell

type-specific factors, or whether cell type-specific binding of shared

TFs requires direct binding to DNA and, therefore, represents classi-

cal TF functionality. To investigate this question further, we carried

out comprehensive motif analysis of common as well as cell type-

specific TF-bound regions. Importantly, sequence motifs for key

HSC regulators such as RUNX1, GATA2 and ERG/PU.1 were over-

represented across the board, that is, in HPC7-specific, shared and

mast cell-specific TF-bound regions (see Fig 4). This observation

therefore suggested that, just as for those regions bound in both cell

types, direct DNA binding via established consensus motifs plays an

important role for the binding of shared TFs to cell type-specific

regions.

Having established that binding to cell type-specific peak regions

appears to involve direct interaction with DNA, the question arises

as to why some regions are only bound in one or the other cell type,

and whether indeed cell type-specific TFs play a role in making

these regions accessible for binding by the shared TFs. In the latter

scenario, it should be possible to pinpoint any such consistent cell

type-specific TFs through overrepresentation of their consensus

binding sites within those regions bound by the shared TFs in only

one or the other cell type. Indeed, we observed specific enrichment

and/or depletion of consensus sequence motifs in the cell type-

specific regions, such as an overrepresentation of Hox factor consen-

sus binding sites in the HPC7-specific regions, depletion of AP-1

motifs in the HPC7-specific regions and also some specific occur-

rence of E-box motifs in the mast cell-specific regions (see Fig 4).

This analysis therefore demonstrated that, in terms of their motif

content, the HPC7-, common and mast cell-specific regions bound
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by the shared TFs are qualitatively different. For example, Hox motif

overrepresentation in HPC7-specific regions was consistent with the

known role for Hox factors in blood stem/progenitor cells and

suggests that Hox factors may play a role in granting accessibility of

shared TFs to HPC7-specific regions.

Mitf and c-fos participate in binding of shared TFs to mast
cell-specific regions

Our analysis of DNA sequence motif content together with our

RNA-Seq expression data allowed us to ask whether there are any

TFs specifically upregulated in mast cells that are known to bind the

mast cell-specific AP-1 and E-box motifs. Subsequent functional

analysis would then allow us to assess their potential role in reor-

ganising the binding profiles of shared TFs during the process of

mast cell maturation. With respect to the AP-1 motif, mast cells

expressed higher levels of c-fos and c-jun than HPC7, thus establishing

c-fos as a candidate TF for mast cell-specific binding to AP-1

motif-containing regions. With respect to the E-box motif, the

known mast cell regulator MITF similarly emerged as a candidate

regulator and indeed was expressed over 47-fold higher in mast cells

than in HPC7. To explore potential contributions of c-FOS and MITF

to mast cell-specific binding of the shared TFs, ChIP-Seq experi-

ments were performed for both c-FOS and MITF in primary mast

cells. ChIP-Seq results showed that these 2 factors can be detected

in mast cell-specific regions together with shared factors that were
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absent in HPC7 cells (Fig 5A, left panel). Motif analysis of binding

peaks (Supplementary Table S7) revealed overrepresentation of the

expected consensus binding sites for c-FOS and MITF as well as

consensus motifs for some of the shared TFs such as GATA2, ERG/

PU.1 and RUNX1 (see Fig 5B). These results therefore highlighted

the possibility of coordinated binding by c-FOS and/or MITF with a

subset of the shared TFs to mast cell-specific regulatory regions.

To directly investigate this hypothesis, we overlapped binding

peaks of c-FOS and MITF with each of the shared TFs for

common as well as cell type-specific regions. As shown in Fig 5C,

c-FOS and MITF in mast cells co-occupy a substantial proportion

of the regions bound by the shared TFs. MITF and c-FOS also

bound to a substantial proportion of regions bound by shared TFs

in both mast cells and HPC7, but not to HPC7-specific regions.

These binding patterns are illustrated, for example, at the Erg

gene locus, where c-FOS and MITF bind to regions together with

shared TFs such as GATA2 and thus occupy regions in mast cells

that are already bound in HPC7 cells (Fig 5A, right panel). In
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Figure 5. Mast cell-specific transcription factors, Mitf and c-fos.

A Genome browser screenshots of the mast cell-specific gene loci Mcpt4 and Mcpt8 and a shared TF gene locus (Erg). On the left, mast-specific TFs and Gata2 bind to a
new region in mast cells that is absent in HPC7. On the right, Gata2 binding is present in HPC7 but a new region in mast cells (arrowheads) is co-occupied with the
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B De novo motif analysis of Mitf and c-fos peaks.
C Co-occupancy between mast cell-specific and shared transcription factors in cell type-specific and common binding regions. For any given TF, TFi, the total number

of peaks in each type of binding region (e.g. mast cell-specific) was taken as 100%.
D Observed versus predicted values scatterplot for the generalised additive model with pairwise TF interactions. From left to right, the scatterplot shows all genes, Mitf-

bound genes and c-fos-bound genes, respectively.
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addition, MITF and c-FOS also bind to regions not bound in

HPC7, and this “new” binding is accompanied by relocation of

shared TFs such as GATA2 to these regions (see arrowhead in

Fig 5A, right panel). Taken together therefore, these data are

consistent with a model whereby mast cell-specific and shared

TFs contribute to gene regulation in mast cells by binding to both

shared and mast cell-specific regulatory regions. In order to assess

the relative contribution of MITF and c-FOS to mast cell-specific

expression, we overlapped the scatterplot comparing actual HPC7/

mast cell expression differences with those predicted from our
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GAM, specifically for those genes that are bound by MITF or

c-FOS (Fig 5D). The group of genes that were correctly predicted

by the 10 TF model associated predominantly with single binding

events for MITF and c-FOS within their gene locus. However,

those genes that are expressed at higher levels in mast cells than

predicted by our model associated strongly with multiple (> 2)

binding events of MITF or c-FOS. Our results therefore indicate

that cell type-specific factors such as MITF contribute to the

global organisation of the shared TFs interrogated in this study

and likely play important roles in cell type-specific transcriptional

control beyond the gene loci that are differentially bound by

shared TFs.

In order to investigate the effect that the addition of MITF

and c-FOS would have to the predictive power of GAM, we

then recalculated our model including these two factors (see

Supplementary Fig S4 and Supplementary Tables S8 and S9). We

may not have seen a significant improvement in R2 value when

fitting 12 predictor variables because Mitf and c-FOS binding

correlates with the 10 shared TFs. Nevertheless, the new model

incorporates approximately 700 more genes, and thus, we were

able to explain similar amounts of variation (as the 10TF model)

but on a larger set of genes.

We wondered what known features of regulatory regions might

correlate with the ability of our model to make good predictions. It

has been suggested that acetylation of lysine 27 of histone H3

(H3AcK27) is a good mark to identify active regions of the genome

(Creyghton et al, 2010). To investigate whether there is a link

between this histone mark and our model predictions, we generated

genome-wide profile for H3AcK27 in HPC7 and mast cells (Supple-

mentary Fig S5). Interestingly, we observed that there is a strong

association (chi-square test P-value ~0) between those genes with

high H3AcK27 in at least 1 cell type and genes that are well

predicted (absolute residuals ≤ 1.5) by the GAM (≥ 2 TFs with inter-

action) (Supplementary Fig S6A). To exclude the possibility that this

strong association was a contribution of non-differentially expressed

genes, we performed the chi-square test on differentially expressed

genes only and showed that the association is still significant (Sup-

plementary Fig S6B). Taken together, our model captures biologi-

cally relevant links between differential TF binding and differential

gene expression, which shows a significant overlap with other

known features of active gene regulatory elements (such as

H3AcK27) and with likely other features.

Knock-down and functional promoter studies demonstrate active
participation of HSC regulators in mast cell-specific
transcriptional control

While results in the previous section underscored the importance of

cell type-specific factors such as MITF for cell type-specific expres-

sion, our mathematical modelling and DNA sequence motif content

analysis also suggested that shared TFs play an active role in mast

cell-specific gene expression. To evaluate the contribution of shared

TFs to mast cell-specific expression experimentally, we performed

knock-down experiments for several shared TFs in primary mast

cells, followed by microarray gene expression profiling. TFs were

knocked down following transfection of retroviral shRNA vectors

with shRNA against luciferase serving as a negative control (Supple-

mentary Fig S7A). The fraction of differentially expressed genes

following TF knock-down with binding peaks for the respective TF

in their loci ranged from 10.8 to 70.3% (see Fig 7EB). We next over-

lapped differentially expressed genes with binding peaks with our

initial expression scatterplot (Fig 6A and Supplementary Fig S8) to

exclude expression changes due to indirect effects. Interestingly,

knock-down of shared TFs under analysis had a profound effect on

the expression of mast cell-specific genes. In the case of Gata2, its

reduction mainly caused downregulation of mast cell-specific genes,

consistent with the known activating role of GATA2 (Masuda et al,

2007). In the case of Erg knock-down, the numbers of mast cell

genes that were up- and downregulated were similar. To analyse the

importance of shared TFs for mast cell growth, we also performed

growth competition experiments in the mast cell line MST between

uninfected cells and those where one of the shared TF was knocked

down. Results showed that TF knock-down caused a growth

disadvantage, with particularly striking results for Fli1 and Gata2

(Supplementary Fig S9).

To confirm that expression changes following shared TFs knock-

down involved canonical motifs as predicted from our motif analysis,

we next analysed the promoter of the Cx3cr1 gene, which is

expressed specifically in mast cells and is downregulated in primary

mast cells following Erg, Fli1 and Gata2 knock-down (Supplemen-

tary Fig S10A). The Cx3cr1 promoter was bound by ERG, FLI1, PU.1

and GATA2 (Supplementary Fig S10B) and also contained relevant

binding sites conserved between mouse and human (Fig 6B). Lucif-

erase assays showed that the Cx3cr1 promoter is highly active in the

mast cell lines FMP6- and MST (Fig 6C). Moreover, mutation of the

single conserved GATA motif reduced activity more than 50% and

simultaneous mutation of all 4 conserved ETS-family motifs

abolished promoter activity. To analyse the possible effect of

protein-protein interactions in protein recruitment, we performed

knock-down experiments for Fli1, Gata2 and Pu.1 in the mast cell

line MST followed by ChIP for the same factors, which allowed us

to assess TF recruitment to the Cx3cr1 promoter region by qPCR

(Fig 6D). This analysis demonstrated that reduction in FLI1 levels

reduced the recruitment of GATA2, yet recruitment of ETS proteins

FLI1 and PU.1 was not affected by reduction in GATA2. Similar

results were obtained in two additional regions (Supplementary Fig

S11). Taken together, these results demonstrate that complex

combinatorial interplay of shared TFs such as ERG, FLI1, PU.1 and

GATA2 contributes to mast cell-specific transcriptional control.

Discussion

Combinatorial TF interactions are critical determinants of cell type

identity, a phenomenon particularly well understood within the

blood system. Mast cells are a vital component of the immune

system and also play a key role in multiple pathologies including

allergic and autoimmune disorders, yet mast cells have remained

one of the least understood blood lineages. Here, we show by

comparative expression analysis that, unlike for erythroid, granulo-

cyte/macrophage or lymphoid lineages, mast cells display compara-

ble expression levels of a whole set of blood stem cell-affiliated TFs.

Shared TF expression between HSPCs and mast cells may in part be

consequence of a shared dependence on SCF signalling. Mast cells

and HSCs are, however, functionally very different cell types. To

investigate this apparent contradiction between co-expression of key
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Figure 6. Perturbation of key haematopoietic TFs, Erg and Gata2.

A HPC7 versus mast scatterplot of RNA-seq fpkm values. From left to right, the scatterplot shows all genes, Erg-regulated targets and Gata2-regulated targets,
respectively. Points on the scatterplot are coloured based on the log2 fold change of shErg or shGata2 compared to control. Only genes that are differentially
expressed in the knock-down (absolute log FC > 0.38, P-value ≤ 0.05) are shown. The complete list of regulated targets and expression values can be found in
Supplementary Table S10.

B Nucleotide sequence alignment of the Cx3cr1 promoter region. Conserved GATA (red) and Ets (blue) motifs are highlighted.
C MST and FMP6- cells were electroporated with luciferase reporter constructs containing either the promoter or 2 different mutant versions of the promoter (GATA

motif or simultaneous mutation of 4 conserved ETS motifs). Mean and SEM for two independent transfections (each one performed in triplicate) are shown. Values
are expressed relative to the pGL2-Basic vector (Control).

D Real-time PCR analysis of ChIP for FLI1, GATA2 and PU.1 following knock-down of the same genes in the Cx3cr1 promoter region. Experiments were performed in MST
mast cell line and results are expressed relative to total DNA input.
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regulators and different biological function, we performed a compre-

hensive genome-scale comparative analysis of gene expression and

TF binding. In-depth experimental and computational analysis

revealed: (i) largely non-overlapping binding profiles of shared TFs

which are predictive of differential gene expression, (ii) cell type-

specific TFs are likely drivers of global TF binding patterns of shared

TFs and (iii) cell type-specific binding of shared TFs actively contrib-

utes to cell type-specific gene expression. Taken together therefore,

our results argue against the currently prevalent model that a large

proportion of TF binding events are opportunistic with no immedi-

ate transcriptional function. Of note, repeated cycles of moving

between experimental and computational analysis were required to

make a compelling case for this important point.

Contemporary biological research increasingly employs mathe-

matical modelling approaches, not only because the size of datasets

is growing exponentially, but also because the development of a

mathematical framework consistent with biological observations

offers potential insights into underlying mechanisms and permits in

silico experimentation to select the most promising hypotheses for

subsequent experimental validation. Previous attempts to model

gene expression from TF binding data have largely focused on

multi-TF ChIP-Seq data from a single cell type (Ouyang et al, 2009;

Karlic et al, 2010; Marbach et al, 2012). More recent studies

supported the idea that quantitative differences in TF binding

signals between different cell types reflect the differences in gene

expression but surprisingly using TF binding data from more than

one cell type did not improve the performance of linear regression

models (Cheng & Gerstein, 2012; Cheng et al, 2012; Handstad et al,

2012). In contrast, our implementation of GAM substantially

improved the R2 values (0.252 versus 0.417). We would argue that

GAMs are more representative of current transcription factor knowl-

edge because they take into account non-linear and combinatorial

transcription factor effects on gene expression. Moreover, our recur-

sive strategy of moving between experimentation and computation

prompted us to perform additional ChIP-Seq experiments for Mitf

and c-fos, which in turn allowed us to revisit the GAMs in conjunc-

tion with the Mitf and c-fos datasets. This analysis showed that

genes more strongly upregulated in mast cells than predicted by

differential binding of the shared factors commonly contained

several binding peaks for the mast cell-specific TFs. What might

have been perceived as a deficiency in our model was therefore

utilised to make new discoveries about transcriptional control mech-

anisms that may distinguish two closely related cell types.

High-throughput sequencing has transformed the analysis of tran-

scription factor function allowing for the first time the production of

genome-wide binding maps in complex mammalian genomes. The

generation of new insights from these largely descriptive genome-

wide maps has, however, proved much harder than might have been

anticipated. One particular puzzling result was the observation that

unlike with genes, where genome sequencing showed mammalian

genomes to have far fewer genes than had been expected (Lander

et al, 2001), TF binding events in many cases far exceeded expecta-

tions and commonly outnumber the total number of genes. A real

disconnection has therefore opened up between the number of genes

affected by TF perturbation such as knock-out or overexpression,

which is commonly in the low hundreds, compared with the number

of genes that have a TF binding peak in their locus, which is often in

the middle to high thousands. One conclusion often drawn from this

disparity is that a large proportion of TF binding events may be

“opportunistic” rather than “functional,” where it is thought that

TFs bind to regions that happen to be accessible and contain relevant

motifs, without this binding being particularly relevant in terms of

transcriptional control processes. While it is undoubtedly true that

such opportunistic binding could represent a substrate for evolution

and therefore serve some function, the notion that the majority of

binding events may be non-functional presents major conceptual

problems; for example, no clear sequence or other features have

been identified as yet that would allow us to distinguish “functional”

from “non-functional” binding events. With such major gaps in our

understanding, it is perhaps no surprise that the study of TF function

following on from ChIP-Seq map has proved difficult.

One major argument in favour of opportunistic binding has been

the observation that cellular environments have a major impact on

TF binding profiles, as indicated by the recurrent observation that

many TFs show largely non-overlapping binding maps when

assayed in two or more distinct cell types (Wei et al, 2011). Here,

we have shown comprehensively that for nine TFs analysed in

progenitor cells and mast cells, this was again the case. Moreover, a

given factor was more similar to other factors in the same cell type

rather than itself in a different cell type. Unlike previous studies

however, we provide several lines of evidence to suggest that the

different binding patterns in the two cell types are not largely the

consequence of opportunistic non-functional binding because (i)

differential binding can be used to construct a highly predictive

model for “explaining” differential gene expression, (ii) consensus

sequence motifs were overrepresented in both common and cell

type specifically bound regions for all factors, (iii) knock-down of

“shared” TFs in mast cells affected the expression of TF-bound and

mast cell-specific expressed genes and (iv) mutation in consensus

motifs for shared factors (ETS and GATA) reduced promoter activity

in mast cell lines.

It is well recognised that TFs only bind a minor proportion of all

possible matches to their consensus motif found in the genome

(Bresnick et al, 2012). Moreover, factor binding is also commonly

seen in regions that lack cognate binding sites. So-called master

regulators have been shown to open new regulatory regions through

binding to their consensus sequence motifs (Lichtinger et al, 2012;

Mullen et al, 2011). Lineage regulators have also been implicated in

mediating the co-localisation of signal-responsive TFs. For example,

SMAD and TCF proteins, the downstream effector TFs of BMP and

WNT signalling, were recently shown to be directed to cell type-

specific enhancer regions by lineage-specific master regulators

(Trompouki et al, 2011). Since interactions with specific DNA

sequences appeared to play no major role in SMAD and TCF binding,

the authors concluded that a major function of BMP/WNT signalling

may be to reinforce the transcriptional state of a given cell, mediated

largely through interactions of SMAD and TCF proteins with lineage-

specific regulators. A recent study of the muscle determining TF

MyoD argued against opportunistic binding as a general feature of

key regulatory TFs (Yao et al, 2013). We believe that our experimen-

tal and computational analysis of 10 TFs in two related cell types

provides an important new contribution to this ongoing debate.

Moreover, our study constitutes the first comprehensive report of

genome-wide TF binding profiles in mast cells and is therefore likely

to have a major impact in furthering our understanding of the critical

importance of mast cells for the functioning of the immune system.
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Materials and Methods

Mouse bone marrow-derived mast cells (BMMCs)

Bone marrow cells were collected from tibias and femurs of 3- to

5-month-old mice, cultured in Iscove’s modified Dulbecco’s medium

with 10% foetal bovine serum (Sigma), 1% penicillin/streptomycin

(Sigma), 150 micromolar MTG (Sigma), 10% stem cell factor condi-

tional media from BHK/MKL cells and 10 ng/ml of recombinant

mIL-3 (Peprotech). Cells were frequently transferred to new flasks

to remove adherent cells and experiments were performed after

3 weeks, when cultures were homogenous, as confirmed by the

presence of FcERI by FACS and toluidine blue staining of cytospins

(Supplementary Fig S12).

Chromatin immunoprecipitation sequencing

ChIP assays were performed as previously described (Forsberg et al,

2000) using polyclonal antibodies against CTCF (Upstate, 07-729),

E2A (Santa Cruz, sc-763x), ERG (Santa Cruz, sc354x), FLI1 (Abcam,

ab15289-500), LMO2 (R&D, AF2726), MEIS1 (Santa Cruz,

sc-10599x), PU.1 (Santa Cruz, sc-352x), RUNX1 (Abcam, ab23980-

100), SCL/TAL1 (Santa Cruz, sc12984x), MITF (Cosmo Bio Co.,

BAM-73-107-EX), c-FOS (Santa Cruz, sc-253x), H3AcK27 (Abcam,

ab4729) and control non-specific rabbit (Sigma, I5006) and goat

(Sigma, I5256) IgG. ChIP samples were amplified and sequenced as

described (Wilson et al, 2010). Reads were mapped to the mm9

mouse reference genome using Bowtie (Langmead et al, 2009) and

peaks called using MACS (Zhang et al, 2008). Mapped reads were

converted to density plots and displayed as UCSC genome browser

custom tracks.

ChIP-Seq peak coordinates from all 10 shared TFs were

combined into a single list and peaks overlapping by at least 1 bp

were merged. A matrix was generated for peak coverage scores,

denoted as cov(HPC-7) and cov(mast), for all the merged coordi-

nates. Coverage scores were counted using the intersectBed function

from BEDTools (Quinlan & Hall, 2010) and then normalised per 10

million reads. For n coordinates and 20 samples, this produces an

n × 20 coverage matrix. Hierarchical clustering and heatmap of the

Pearson correlation coefficient between each pair of datasets were

generated in R. This matrix was used for further analysis—differen-

tial score calculation and regression modelling.

RNA sequencing

Total RNA was isolated using Tri-Reagent (Sigma-Aldrich) and

digested with DNase I using TurboDNA (Applied Biosystems/Ambion).

DNaseI-digested total RNA was processed and sequenced by

BGI-Hong Kong. RNA-seq data were aligned to the mm9 transcrip-

tome using TopHat (Trapnell et al, 2009) and assembled using Cuff-

links (Trapnell et al, 2010). Expression values were expressed as

fpkm (fragments per kilobase of exon per million fragments) values.

Differential expression was calculated using Cuffdiff (Trapnell et al,

2010), and transcripts with q-value ≤ 0.05 were considered signifi-

cant. Significant transcripts with fpkm values ≥ 2 in HPC7 and mast

were classified as non-cell-type-specific (category I), while signifi-

cant transcripts with absolute fold change ≥ 4 were classified as

cell type-specific (categories II and III). Transcripts with fpkm values

≤ 2 were considered not expressed (category IV). Mapped reads

were converted to density plots and displayed as UCSC genome

browser custom tracks.

Cell lines, reporter constructs, transfections and retroviral
transduction

Murine mast cell lines FMP6- and MST have been described

(McKinlay et al, 1998) (Elefanty & Cory, 1992) and characterised

(Bockamp et al, 1998) previously. Cx3cr1 luciferase reporter

constructs were custom-made (Life Technologies), cloned into

pGL2basic (Promega) and confirmed by sequencing. Cells were trans-

fected and assayed as previously described (Gottgens et al, 1997).

shRNA fragments were inserted into pMSCV/LTRmiR30-PIG:

luciferase (50 CACGTACGCGGAATACTTCGAA 30 (Bot et al, 2005)),
Erg (50 ACCTCCCAATATGACCACAAAT 30), Gata2 (50 CGCCGCCA
TTACTGTGAATATT 30 (Huang et al, 2009)), Fli1 (50 ACCAGTGA-
GAGTCAATGTCAAG 30), Pu.1 (50 AGGATGTGCTTCCCTTATCAAA
30) and Lmo2 (50 CCCAGCCCTTAGAGAGAATTTA 30). Retrovirus

was produced using the pCL-Eco Retrovirus Packaging Vector

(Imgenex). BMMCs were infected with retrovirus by centrifugation

at 2,200 rpm at 32°C for 1.5 h with 4 lg/ml polybrene

(Sigma-Aldrich) after which the retroviral supernatant was replaced

with fresh media. After 48 h, GFP+-transduced cells were sorted

and cultured further for 24 h before RNA extraction. Knock-down

efficiency is shown in Supplementary Fig S8A.

Microarray gene expression analysis

DNaseI-digested RNA was processed and hybridised by Cambridge

Genomic Services (Cambridge, UK). Samples were amplified using

TotalPrep 96-RNA amplification kit (Applied Biosystems/Ambion)

and hybridised to MouseWG-6 v2 microarrays (Illumina). Raw data

were processed in R using variance stabilising transformation from

the lumi package (Du et al, 2008). Probes with detection call ≥ 0.01

in all samples were removed, and then, the data were quantile-

normalised. Differentially expressed probes between shRNA and

control samples were identified using the limma package (Smyth,

2005). Probes with adjusted P-value ≤ 0.05 and fold change > 1.3

were considered significant.

Gene set enrichment analysis

The BioGPS dataset was downloaded from NCBI Gene Expression

Omnibus (GSE10246). CEL files were processed by gcrma algorithm,

probes with “absent” call in all samples were removed, and remain-

ing data were quantile-normalised in R using the affy package

(Gautier et al, 2004). Gene set enrichment analysis (GSEA) (Subra-

manian et al, 2005) was performed on this expression dataset using

only the following samples: CMP, mast cells, HSC, GMP, B cells, T

cells, macrophages. Custom gene sets were generated from category

II and III genes as described in the “RNA Sequencing” section.

Statistical modelling

Differential scores were calculated for each of the 10 shared TFs and

the RNA-seq data (equations (1) and (2)). Differential gene expres-

sion (DGE) was calculated for each known gene transcript t, while
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differential TF scores (DTF) for a given TF were calculated for each

peak region r in the coverage score matrix and then averaged for

each gene. Peaks were assigned to genes using annotation from

UCSC where peaks within �1 kb of the transcription start site or

within intragenic regions were assigned to the respective gene. The

remaining intergenic peaks were assigned to both the nearest 50 and
30 genes. If no gene was found within 50 kb of an intergenic peak, it

was not assigned to any genes. There were 151,925 TF-bound

regions in total. 110,667 regions mapped to 19,163 genes and 41,258

regions did not map to any genes. Of 110,667 regions mapped to

genes, 46,536 regions were bound by 2 or more TFs.

DGEt ¼ log2
fpkmðHPC7Þt
fpkmðmastÞt

(1)

DTFr ¼ log2
covðHPC7Þr
covðmastÞr

(2)

Linear regression models are useful for quantifying the relation-

ships between multiple predictor variables to a response variable. In

this study, regression models were employed to understand the rela-

tionship between quantitative changes in TF binding and changes in

gene expression. Multiple linear regression models were analysed

using the stats package in R. DTFi are 10 predictor variables in the

model corresponding to the 10 TFs, while DGE is the response vari-

able for all genes g in the genome (equation (3)). Tenfold cross-vali-

dation was carried out to obtain Pearson’s correlation coefficient

between predicted and observed values. 10% of the entire dataset

was used for testing, while 90% was used for training. The procedure

was repeated until all the data have been utilised for testing and each

repetition has non-overlapping test dataset. R2 is the squared correla-

tion coefficient and prediction accuracy was taken as the average of

all R2 values. Scatterplot correlation coefficients were calculated from

the observed and predicted values from fitting the full dataset.

DGEg ¼ a0 þ
X10

i¼1

aiDTFi;g þ eg (3)

Another modelling approach used in this study is the generalised

additive models (GAMs). This type of model uses the sum of

smooth functions ∑s(Xn) instead of the linear forms ∑bnXn to allow

non-linear relationships between the predictor variables (X1, X2,

X3,. . ., Xn) and the response variable. GAMs with and without inter-

action terms were analysed using the mgcv package in R (Wood,

2011). mgcv uses smoothing spline functions of the predictor vari-

ables. Equation (4) corresponds to the GAM with interaction term

where we included all pairwise interaction terms (ΔTFi, ΔTFj)
between the 10 factors. Only genes with at least 2 TFs bound were

used for this analysis since genes bound by 1 TF are not suitable for

testing interactions. Differential gene expression (ΔGE) is assumed

to have a Gaussian distribution with an identity link function.

Restricted maximum-likelihood (REML) (Wood, 2011) estimation

was used in selecting the smoothing parameters, and adjusted R2

values was used to assess model prediction accuracy.

DGEg ¼ b0 þ
X10

i¼1

siðDTFi;gÞ þ
X10

i;j¼1
i6¼j

si;jðDTFi;g ;DTFj;gÞ (4)

Motif analysis

De novo motif analysis on the central 100-bp peak regions was

carried out using the Homer software (Heinz et al, 2010), and

matches to known motifs were discovered using TOMTOM (Gupta

et al, 2007). Similarity to known motifs was discovered from 2

databases—Jaspar and UniProbe (Bryne et al, 2008; Robasky &

Bulyk, 2011). Only significant motifs (q-value ≤ 0.01) were

reported. To carry out the motif content analysis, the same proce-

dure as above was carried out on cell type-specific and common

peak regions. Peak regions for each of the 10 shared TFs were

divided into three categories: HPC7-specific (HPC7-bound only),

mast cell-specific (mast-bound only) and common (HPC7/mast

peaks overlapping ≥ 1 bp) regions. Results from de novo motif

analysis were combined in a matrix where columns are datasets,

rows are Jaspar/UniProbe motifs and each row/column value is x

or 0, where x corresponds to the fraction of peaks with signifi-

cant (TOMTOM q-value ≤ 0.05) match to a particular motif, while

0 is a non-significant match. The matrix was used to generate a

heatmap that indicates fraction of peaks containing motif in cell

type-specific and common regions.

Plotting in R

Bar charts and scatterplots were plotted using ggplot2 (Wickham,

2009). Venn diagrams were created using the venneuler package

(Wilkinson, 2011). Heatmaps were generated using the gplots pack-

ages (Warnes et al, 2012).

Data deposition

The raw and processed data from the ChIP-Seq, RNA-Seq and micro-

array experiments reported in this publication have been submitted

to the NCBI Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo)

and assigned the identifier GSE48086.

Supplementary information for this article is available online:

http://emboj.embopress.org

Acknowledgments
Work in the authors’ laboratories is supported by grants from Leukaemia and

Lymphoma Research, the Medical Research Council, the Leukaemia and

Lymphoma Society, Cancer Research UK, the National Institute for Health

Research Cambridge Biomedical Research Centre and core support grants by

the Wellcome Trust to the Cambridge Institute for Medical Research and

Wellcome Trust &MRC Cambridge Stem Cell Institute. FSN is the recipient of a

Yousef Jameel scholarship. shPu.1 was kindly donated by Dr. Peter Laslo,

University of Leeds, UK. shLmo2 was kindly donated by Dr. Gerd Blobel,

University of Pennsylvania.

Author contributions
NKW, VM, AIL-C and IJ-M performed research. FSN, RH and ED performed

bioinformatic analysis. FJC-N designed experiments, performed research and

analysed data. LW discussed results and manuscript. BG designed study and

supervised work. BG, FJC-N and FSN wrote the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

The EMBO Journal Vol 33 | No 11 | 2014 ª 2014 The Authors

The EMBO Journal Transcriptional control of distinct lineages Fernando J Calero-Nieto et al

1224



References

Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, Bock C,

Boehm B, Campo E, Caricasole A, Dahl F, Dermitzakis ET, Enver T, Esteller

M, Estivill X, Ferguson-Smith A, Fitzgibbon J, Flicek P, Giehl C, Graf T et al

(2012) BLUEPRINT to decode the epigenetic signature written in blood.

Nat Biotechnol 30: 224 – 226

Bockamp EO, Fordham JL, Gottgens B, Murrell AM, Sanchez MJ, Green AR

(1998) Transcriptional regulation of the stem cell leukemia gene by PU.1

and Elf-1. J Biol Chem 273: 29032 – 29042

Bot I, Guo J, Van Eck M, Van Santbrink PJ, Groot PH, Hildebrand RB, Seppen J,

Van Berkel TJ, Biessen EA (2005) Lentiviral shRNA silencing of murine bone

marrow cell CCR2 leads to persistent knockdown of CCR2 function in vivo.

Blood 106: 1147 – 1153

Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew J-L, Ruan

Y, Wei C-L, Ng HH, Liu ET (2008) Evolution of the mammalian

transcription factor binding repertoire via transposable elements. Genome

Res 18: 1752 – 1762

Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS (2012) Master

regulatory GATA transcription factors: mechanistic principles and

emerging links to hematologic malignancies. Nucleic Acids Res 40:

5819 – 5831

Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I, Krogh A,

Lenhard B, Sandelin A (2008) JASPAR, the open access database of

transcription factor-binding profiles: new content and tools in the 2008

update. Nucleic Acids Res 36: D102 –D106

Cheng C, Alexander R, Min R, Leng J, Yip KY, Rozowsky J, Yan KK, Dong X,

Djebali S, Ruan Y, Davis CA, Carninci P, Lassman T, Gingeras TR, Guigo R,

Birney E, Weng Z, Snyder M, Gerstein M (2012) Understanding

transcriptional regulation by integrative analysis of transcription factor

binding data. Genome Res 22: 1658 – 1667

Cheng C, Gerstein M (2012) Modeling the relative relationship of

transcription factor binding and histone modifications to gene expression

levels in mouse embryonic stem cells. Nucleic Acids Res 40: 553 – 568

Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ,

Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA,

Jaenisch R (2010) Histone H3K27ac separates active from poised

enhancers and predicts developmental state. Proc Natl Acad Sci USA 107:

21931 – 21936

Du P, Kibbe WA, Lin SM (2008) Lumi: a pipeline for processing Illumina

microarray. Bioinformatics 24: 1547 – 1548

Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB,

Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F,

Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N et al (2012) An

integrated encyclopedia of DNA elements in the human genome. Nature

489: 57 – 74

Elefanty AG, Cory S (1992) bcr-abl-Induced cell lines can switch from

mast cell to erythroid or myeloid differentiation in vitro. Blood 79:

1271 – 1281

Forsberg EC, Downs KM, Bresnick EH (2000) Direct interaction of NF-E2 with

hypersensitive site 2 of the beta-globin locus control region in living cells.

Blood 96: 334 – 339

Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, Guttman M,

Robinson J, Minie B, Chevrier N, Itzhaki Z, Blecher-Gonen R, Bornstein C,

Amann-Zalcenstein D, Weiner A, Friedrich D, Meldrim J, Ram O, Cheng C,

Gnirke A, Fisher S et al (2012) A high-throughput chromatin

immunoprecipitation approach reveals principles of dynamic gene

regulation in mammals. Mol Cell 47: 810 – 822

Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy–analysis of Affymetrix

GeneChip data at the probe level. Bioinformatics 20: 307 – 315

Gottgens B, McLaughlin F, Bockamp EO, Fordham JL, Begley CG, Kosmopoulos

K, Elefanty AG, Green AR (1997) Transcription of the SCL gene in erythroid

and CD34 positive primitive myeloid cells is controlled by a complex

network of lineage-restricted chromatin-dependent and chromatin-

independent regulatory elements. Oncogene 15: 2419 – 2428

Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying

similarity between motifs. Genome Biol 8: R24

Handstad T, Rye M, Mocnik R, Drablos F, Saetrom P (2012) Cell-type

specificity of ChIP-predicted transcription factor binding sites. BMC

Genomics 13: 372

Hannah R, Joshi A, Wilson NK, Kinston S, Gottgens B (2011) A compendium of

genome-wide hematopoietic transcription factor maps supports the

identification of gene regulatory control mechanisms. Exp Hematol 39:

531 – 541

Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1:

297 – 310

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C,

Singh H, Glass CK (2010) Simple combinations of lineage-determining

transcription factors prime cis-regulatory elements required for

macrophage and B cell identities. Mol Cell 38: 576 – 589

Huang Z, Dore LC, Li Z, Orkin SH, Feng G, Lin S, Crispino JD (2009) GATA-2

reinforces megakaryocyte development in the absence of GATA-1. Mol Cell

Biol 29: 5168 – 5180

Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of

proteins. J Mol Biol 3: 318 – 356

John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL,

Stamatoyannopoulos JA (2011) Chromatin accessibility pre-determines

glucocorticoid receptor binding patterns. Nat Genet 43: 264 – 268

Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping

of in vivo protein-DNA interactions. Science 316: 1497 – 1502

Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone

modification levels are predictive for gene expression. Proc Natl Acad Sci

USA 107: 2926 – 2931

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K,

Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A,

Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K et al

(2001) Initial sequencing and analysis of the human genome. Nature 409:

860 – 921

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome.

Genome Biol 10: R25

Lichtinger M, Ingram R, Hannah R, Muller D, Clarke D, Assi SA, Lie ALM,

Noailles L, Vijayabaskar MS, Wu M, Tenen DG, Westhead DR, Kouskoff V,

Lacaud G, Gottgens B, Bonifer C (2012) RUNX1 reshapes the epigenetic

landscape at the onset of haematopoiesis. EMBO J 31: 4318 – 4333

Lodato MA, Ng CW, Wamstad JA, Cheng AW, Thai KK, Fraenkel E, Jaenisch R,

Boyer LA (2013) SOX2 co-occupies distal enhancer elements with distinct

POU factors in ESCs and NPCs to specify cell state. PLoS Genet 9:

e1003288

Marbach D, Roy S, Ay F, Meyer PE, Candeias R, Kahveci T, Bristow CA, Kellis

M (2012) Predictive regulatory models in Drosophila melanogaster by

integrative inference of transcriptional networks. Genome Res 22:

1334 – 1349

Masuda A, Hashimoto K, Yokoi T, Doi T, Kodama T, Kume H, Ohno K,

Matsuguchi T (2007) Essential role of GATA transcriptional factors in the

activation of mast cells. J Immunol 178: 360 – 368

ª 2014 The Authors The EMBO Journal Vol 33 | No 11 | 2014

Fernando J Calero-Nieto et al Transcriptional control of distinct lineages The EMBO Journal

1225



McKinlay LH, Tymms MJ, Thomas RS, Seth A, Hasthorpe S, Hertzog PJ, Kola

I (1998) The role of Ets-1 in mast cell granulocyte-macrophage

colony-stimulating factor expression and activation. J Immunol 161:

4098 – 4105

Moignard V, Macaulay IC, Swiers G, Buettner F, Schutte J, Calero-Nieto FJ,

Kinston S, Joshi A, Hannah R, Theis FJ, Jacobsen SE, de Bruijn MF, Gottgens

B (2013) Characterization of transcriptional networks in blood stem and

progenitor cells using high-throughput single-cell gene expression

analysis. Nat Cell Biol 15: 363 – 372

Mullen AC, Orlando DA, Newman JJ, Loven J, Kumar RM, Bilodeau S, Reddy J,

Guenther MG, DeKoter RP, Young RA (2011) Master transcription factors

determine cell type-specific responses to TGF-beta signaling. Cell 147:

565 – 576

Ouyang Z, Zhou Q, Wong WH (2009) ChIP-Seq of transcription factors

predicts absolute and differential gene expression in embryonic stem cells.

Proc Natl Acad Sci 106: 21521 – 21526

Pinto do OP, Wandzioch E, Kolterud A, Carlsson L (2001) Multipotent

hematopoietic progenitor cells immortalized by Lhx2 self-renew by a cell

nonautonomous mechanism. Exp Hematol 29: 1019 – 1028

Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26: 841 – 842

Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA,

Young RA (2010) c-Myc regulates transcriptional pause release. Cell 141:

432 – 445

Robasky K, Bulyk ML (2011) UniPROBE, update 2011: expanded content and

search tools in the online database of protein-binding microarray data on

protein-DNA interactions. Nucleic Acids Res 39: D124 –D128

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G,

Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M,

Snyder M, Jones S (2007) Genome-wide profiles of STAT1 DNA association

using chromatin immunoprecipitation and massively parallel sequencing.

Nat Methods 4: 651 – 657

Salmon JM, Slater NJ, Hall MA, McCormack MP, Nutt SL, Jane SM, Curtis DJ

(2007) Aberrant mast-cell differentiation in mice lacking the stem-cell

leukemia gene. Blood 110: 3573 – 3581

Schmidt D, Schwalie PC, Wilson MD, Ballester B, Goncalves A, Kutter C, Brown

GD, Marshall A, Flicek P, Odom DT (2012) Waves of retrotransposon

expansion remodel genome organization and CTCF binding in multiple

mammalian lineages. Cell 148: 335 – 348

Smyth G (2005) Limma: Linear Models for Microarray Data. New York:

Springer, pp 397 – 420

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,

Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set

enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proc Natl Acad Sci USA 102:

15545 – 15550

Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from

mouse embryonic and adult fibroblast cultures by defined factors. Cell

126: 663 – 676

Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions

with RNA-Seq. Bioinformatics 25: 1105 – 1111

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,

Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and

quantification by RNA-Seq reveals unannotated transcripts and

isoform switching during cell differentiation. Nat Biotechnol 28:

511 – 515

Trompouki E, Bowman TV, Lawton LN, Fan ZP, Wu DC, DiBiase A, Martin CS,

Cech JN, Sessa AK, Leblanc JL, Li P, Durand EM, Mosimann C, Heffner GC,

Daley GQ, Paulson RF, Young RA, Zon LI (2011) Lineage regulators direct

BMP and Wnt pathways to cell-specific programs during differentiation

and regeneration. Cell 147: 577 – 589

Tsai FY, Orkin SH (1997) Transcription factor GATA-2 is required for

proliferation/survival of early hematopoietic cells and mast cell formation,

but not for erythroid and myeloid terminal differentiation. Blood 89:

3636 – 3643

Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF, Friend DS,

Stevens RL, Anastasi J, Singh H (2002) Cooperative and antagonistic

interplay between PU.1 and GATA-2 in the specification of myeloid cell

fates. Immunity 17: 665 – 676

Warnes GR, Ben B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T,

Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B. (2012)

gplots: Various R programming tools for plotting data.

Wei G, Abraham BJ, Yagi R, Jothi R, Cui K, Sharma S, Narlikar L, Northrup DL,

Tang Q, Paul WE, Zhu J, Zhao K (2011) Genome-wide analyses of

transcription factor GATA3-mediated gene regulation in distinct T cell

types. Immunity 35: 299 – 311

Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. New York:

Springer.

Wilkinson L. (2011) Venneuler: Venn and Euler Diagrams.

Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, Kaimakis P, Chilarska

PM, Kinston S, Ouwehand WH, Dzierzak E, Pimanda JE, de Bruijn MF,

Gottgens B (2010) Combinatorial transcriptional control in blood stem/

progenitor cells: genome-wide analysis of ten major transcriptional

regulators. Cell Stem Cell 7: 532 – 544

Wilson NK, Miranda-Saavedra D, Kinston S, Bonadies N, Foster SD, Calero-

Nieto F, Dawson MA, Donaldson IJ, Dumon S, Frampton J, Janky R, Sun XH,

Teichmann SA, Bannister AJ, Gottgens B (2009) The transcriptional

program controlled by the stem cell leukemia gene Scl/Tal1 during early

embryonic hematopoietic development. Blood 113: 5456 – 5465

Wood SN (2011) Fast stable restricted maximum likelihood and marginal

likelihood estimation of semiparametric generalized linear models. J R Stat

Soc B 73: 3 – 36

Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J,

Janes J, Huss JW 3rd, Su AI (2009) BioGPS: an extensible and customizable

portal for querying and organizing gene annotation resources. Genome

Biol 10: R130

Yao Z, Fong AP, Cao Y, Ruzzo WL, Gentleman RC, Tapscott SJ (2013)

Comparison of endogenous and overexpressed MyoD shows enhanced

binding of physiologically bound sites. Skelet Muscle 3: 8

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C,

Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-

Seq (MACS). Genome Biol 9: R137

Zhu BM, Kang K, Yu JH, Chen W, Smith HE, Lee D, Sun HW, Wei L,

Hennighausen L (2012) Genome-wide analyses reveal the extent of

opportunistic STAT5 binding that does not yield transcriptional activation

of neighboring genes. Nucleic Acids Res 40: 4461 – 4472

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

The EMBO Journal Vol 33 | No 11 | 2014 ª 2014 The Authors

The EMBO Journal Transcriptional control of distinct lineages Fernando J Calero-Nieto et al

1226


