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 Background: Thyroid nodules are extremely common and typically diagnosed with ultrasound whether benign or malignant. 
Imaging diagnosis assisted by Artificial Intelligence has attracted much attention in recent years. The aim of 
our study was to build an ensemble deep learning classification model to accurately differentiate benign and 
malignant thyroid nodules.

 Material/Methods: Based on current advanced methods of image segmentation and classification algorithms, we proposed an 
ensemble deep learning classification model for thyroid nodules (EDLC-TN) after precise localization. We com-
pared diagnostic performance with four other state-of-the-art deep learning algorithms and three ultrasound 
radiologists according to ACR TI-RADS criteria. Finally, we demonstrated the general applicability of EDLC-TN 
for diagnosing thyroid cancer using ultrasound images from multi medical centers.

 Results: The method proposed in this paper has been trained and tested on a thyroid ultrasound image dataset con-
taining 26 541 images and the accuracy of this method could reach 98.51%. EDLC-TN demonstrated the high-
est value for area under the curve, sensitivity, specificity, and accuracy among five state-of-the-art algorithms. 
Combining EDLC-TN with models and radiologists could improve diagnostic accuracy. EDLC-TN achieved excel-
lent diagnostic performance when applied to ultrasound images from another independent hospital.

 Conclusions: Based on ensemble deep learning, the proposed approach in this paper is superior to other similar existing 
methods of thyroid classification, as well as ultrasound radiologists. Moreover, our network represents a gen-
eralized platform that potentially can be applied to medical images from multiple medical centers.
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Background

Thyroid nodules are common clinically, and with application 
of high-frequency ultrasound, their incidence has increased. 
Ultrasound diagnosis of benign and malignant nodules is main-
ly performed under guidelines from the American College of 
Radiology (ACR) [1] and the ultrasound section of the American 
Thyroid Association (ATA) [2], both of which have been increas-
ingly improved in recent years. But there still remain some 
defects, and diagnostic accuracy is not consistent due to dif-
fering levels of experience among radiologists performing ul-
trasound [3]. With gradual development of machine learning in 
recent years, intelligent medical image diagnosis has become 
available. Deep learning can reveal subtler and more abstract 
information embedded in images along with the deepening of 
the network layers. In addition, use of artificial intelligence (AI) 
for medical or auxiliary medical care can lighten the burden of 
doctors and optimize medical treatments. Medical image pro-
cessing is one of the breakthroughs in this field. Both deep 
learning and AI have achieved high accuracy for classification 
of skin cancer and detection of pneumonia [4,5], even exceed-
ing that of physicians. This is also true for diagnosis of thy-
roid nodules [6–9].

In 2008, Lim KJ et al. [10] were the first to apply a neural net-
work to differentiation of benign and malignant thyroid nod-
ules. Ma J et al. [11] were the first to use a convolutional neu-
ral network in this field in 2017. They separately trained two 
networks in the ImageNet database. Then, by concatenating 
feature images, they used the softmax classifier to diagnose 
thyroid nodules with an accuracy of 83.02%±0.72%. Imaging 
diagnosis assisted by AI has attracted much attention in the 
past several years. If the diagnostic effectiveness of AI – in-
cluding accuracy, sensitivity, and specificity – is found to be 
comparable to that of an experienced radiologist perform-
ing ultrasound, it will have a tremendous impact on the im-
aging diagnosis.

However, if ultrasound images are directly used as inputs to a 
neural network, the shape information from thyroid nodules 
may be lost. Thus, two different AI models were trained on the 
basis of ensemble learning [12]. To accurately diagnose thyroid 
nodules, we calculated the mean output of these two types 
of models and determined whether the thyroid nodules were 
benign or malignant using a new model: EDLC-TN (ensemble 
deep learning-based classifier for thyroid nodules). The aim 
of our research was to use the deep learning method to dif-
ferentiate benign and malignant thyroid nodules, thereby im-
proving the accuracy of lesion identification.

Material and Methods

Study cohort and datasets

We used four independent ultrasound datasets to develop 
and evaluate EDLC-TN in four different hospitals: Tianjin 
Medical University Cancer Institute and Hospital (Center 1), Jilin 
Integrated Traditional Chinese and Western Medicine Hospital 
(Center 2), Cangzhou Hospital of Integrated Traditional Chinese, 
Western Medicine of Hebei Province (Center 3), and Peking 
University BinHai Hospital (Center 4). Between January 2015 
and December 2017, consecutive patients in these four med-
ical centers who underwent diagnostic thyroid ultrasound ex-
amination and subsequent surgery were included in the study. 
Exclusion criteria were: (1) images from anatomical sites that 
were judged as not having tumor according to postoperative 
pathology; (2) nodules with incomplete or low-quality ultra-
sound images; and (3) cases with incomplete clinicopatho-
logical information. Finally, three datasets from Centers 1 to 
3 including a total of 25 509 thyroid ultrasound images were 
used to train and test the model, of which 15 255 were ma-
lignant and 10 254 were benign (confirmed by postoperative 
pathological diagnosis). Images (n=1,032) from Center 4 dif-
fered greatly from the other three in terms of style, clarity, and 
machine types. Therefore, the dataset from Center 4 was only 
used as an external validation set for verifying the generaliz-
ability of the model. Data from each medical Centers 1 to 3 
were randomly divided into training and testing sets at a ra-
tio of approximately 7: 3 (Table 1). In all settings, testing data 
did not include any images used in training.

This study was approved by the Tianjin Medical University 
Cancer Institute and Hospital ethics committee. Informed con-
sent from patients was waived due to the retrospective nature. 
In training and test datasets, ultrasound images were collect-
ed and stored by various brands of ultrasonic equipment, such 
as PHILIPS, GE, Siemens, Mindray, and TOSHIBA. In addition, 
the images were acquired with superficial probes.

Experimental pathways

Our experimental pathways mainly included three parts 
(Figure 1): segmentation of nodules, ensemble learning for 
classification, and testing the diagnostic performance of the 
model. The purpose of the training segmentation model was 
only to find the nodule automatically. To verify whether the 
algorithm was effective or not, we manually performed a test 
check of 500 images, reaching a relevance ratio of more than 
98%. Using the segmentation model, the region of interest (ROI) 
containing the nodule was first segmented and then classifi-
cation was modeled. Results of the classification were calcu-
lated quantitatively as the comprehensive evaluation of the 
two processes. The classification model was improved based 
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on DenseNet [13] and adopted as a multistep cascade exper-
iment pathway, as shown in Figure 2. The classification result 
was determined according to the voting of three weak mod-
els by the average method and the voting method. Finally, we 
compared diagnostic performance of the EDLC-TN with that 
of ultrasonographers and four advanced deep learning mod-
els, and conducted an external test.

EDLC-TN model

A multistep cascade experiment pathway was adopted, as 
shown in Figure 2.

First, the image boundary with annotation was cut off 
(Supplementary Table 1) for data cleaning. Then, the nodule 
and the surrounding area of the image (region of interest, ROI) 

 Center 1 (23504) Center 2 (530) Center 3 (1475) Center 4 (1032) Total of all (26541)

Training dataset

 Benign 6464 205 522 – 7191

 Malignant 10090 164 414 – 10668

 Total for training 16554 369 936 – 17859

Testing dataset

 Benign 2620 84 359 502 3565

 Malignant 4330 77 180 530 5117

 Total for testing 6950 161 539 1032 8682

Table 1. Number of training and testing images from four datasets. 

25 509 images are o�ered by three independent hospitals
(15 255 malignant cases and 10 254 benign cases)

Images remain only the ultrasound signal area

Training set (17 859 images)

3 000 images that the boundary of
containing nodules are delineated

Data desensitization

Iteration

Three ultrasound
radiologists

Four state-ofo-art
deep learning models

Ensemble
model

Test

Internal test set
( 7 650 images)

Extremal test set
( 1 032 images)

Random selected 70% images

Random selected
30% images

Random selected
1 000 images

The remaining
6 650 images

The remaining
14 859 images
enter the trained
segmentation
model

Random selection

Training & veri�cation

Produced ROI & mask

Classi�cation model

Training by ROI
Trained by ROI Trained by ROI & mask

Training and validation

Combine multiple models

Model 2Model 1 Model 3

Segmentation
model

A

B

C

Figure 1.  Pathways of experiments. Our experimental pathways mainly included three parts. (A) Data desensitization, removal 
of the sections of the patient’s personal information in the images. (B) Training and validation of ensemble learning for 
classification of thyroid nodules. In the segmentation part, the nodule area was manually marked and used to train the 
segmentation model. ROI and mask were extracted by the segmentation model. Then, three weak models were trained and 
combined to obtain an advanced classification model. (C) Comparison experiments with radiologists and other deep learning 
models, and external validation experiment. We then compared performance of the classification model with that of three 
ultrasound radiologists and four state-of-the-art deep learning models. Finally, we conducted an external validation using an 
independent dataset.
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was extracted. We used a semiautomatic method to achieve 
this goal, that is, carefully annotating the boundaries of thyroid 
nodules in 3000 images by hand, and training a nodule segmen-
tation model with these marked images to segment all of the 
rest images. The structure of segmentation model is shown in 
Supplementary Table 2, and the method of converting the seg-
mentation results to ROI is shown in Supplementary Table 1.

Through the above process, each image generated a three-
channel ROI R, and a one-channel mask M. We used these 
data to train nodule classification models based on the struc-
ture shown in Supplementary Table 3. For better performance, 
we trained multiple models and combined them through two 
ensemble learning methods, namely the average and voting 
methods. The average method calculates the mean value of all 
base model results. For the voting method, each base model 
votes on the category of the image, and the final result is the 
category with more votes.

The Adam optimizer was used during the training. The learning 
rate was initialized as 0.1. After 60 epoch iterations, it was de-
creased to 0.01, and then reduced by 10 times after every 200 
epochs. The batch size was adjusted to the maximum within 

the limits of the computer memory. We trained our models on 
NVIDIA TITAN XP GPU based on the TensorFlow framework.

Radiologist evaluation and comparison

To assess the predictive effect of this deep learning algorithm, 
this paper reflects the performance of radiologists (W.X., Z.J.L. 
and Z.S.) on 1000 (11.52%, 1000/8,682) ultrasound images 
randomly selected from the test set and compares accuracy 
in differentiating between benign and malignant thyroid nod-
ules on ultrasound images with the predictive results of deep 
learning models. The radiologists assessed nodules accord-
ing to ACR TI-RADS criteria [1] and predicted whether a nod-
ule was benign or malignant. After each individual indepen-
dently judged and labeled each ultrasound image, in a kind 
of double-blind experiment, we used postoperative patholog-
ical analysis results (i.e., benign and malignant diagnoses that 
were completely correct) for statistical analysis. Finally, the av-
erage accuracy rate was calculated to assess each individu-
al radiologist’s accuracy in evaluation of an ultrasound image 
of a thyroid nodule. The independent radiologists involved in 
the evaluation work were the attending doctor or associate 
professors. The first reader (W.X.) had 13 years of experience, 

Boundary
cutting

Nodule
segmentation

Mask
cutting

Mask

Segmentation algorithm

ROI
extraction

Final
classi�cation

result

Voting method

ROI

ROI
Model 1 trained by ROI

Probability
pi 1

Probability
pi 2

Probability
pi 3

Model 2 trained by ROI

Classi�cation algorithms

Model 3 trained by ROI
and mask.

A
a b c d

B

Figure 2.  The multistep cascade experiment pathway of EDLC-TN. (A) The process of extracting ROI and mask. First, the boundary was 
cut off (a). Second, the nodule area was segregated (b). Then, the mask image of the thyroid nodule was depicted (c). Finally, 
ROI was segmented (d). (B) The process of classifying images by ensemble learning model. After obtaining the ROI and its 
corresponding mask, three classification models were trained and combined to obtain an advanced classification model. 
ROI was put into models and got the final classification result through the voting method.
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the second reader (Z.J.L) had 8 years of experience, and the 
third reader (Z.S.) had more than 30 years of experience in di-
agnosing thyroid nodules.

Comparison with four state-of-the-art deep learning 
models

We compared the diagnostic performance of our mod-
el with the four machine learning algorithms which are 

currently most popular and advanced, including ResNeXt [14], 
SE_Inception_v4 [15], SE_Net [16] and Xception [17]. These 
models are widely used in the field of AI of medical imag-
es [18,19]. The 3000 ultrasound images randomly selected from 
the test set in Center 1 were used for this part of the study. 
The area under the receiver operating characteristic (ROC) 
curve with a 95% confidence interval (CI), accuracy, sensitiv-
ity, and specificity were calculated to compare capability for 
diagnosing thyroid cancer on ultrasound.

 Center 1 Center 2 Center 3 Center 4

No. of patients  10993  151  460  261

Sex

 Female (n)  8379 (76.22%)  117 (77.48%)  369 (80.22%)  197 (75.48%)

 Male (n)  2614 (23.78%)  34 (22.52%)  91 (19.78%)  64 (24.52%)

Age (years)  46 (18-84)  49 (21-67)  51 (18-73)  52 (23-70)

Position of nodules

 Left lobe  5063 (46.06%)  79 (52.31%)  214 (46.52%)  127 (48.66%)

 Right lobe  5652 (51.41)  70 (46.36%)  228 (49.57%)  128 (27.77%)

 Isthmus  278 (2.53%)  2 (1.32%)  18 (3.91%)  6 (2.61%)

Size (cm)  1.25 (0.38-7.80)  1.72 (0.58-6.25)  1.53 (0.30-6.91)  2.12 (0.49-7.21)

Postoperative pathology

Benign nodules  3996 (36.35%)  82 (54.30%)  213 (46.30%)  153 (58.62%)

 Nodular goiter  2745  71  166  127

 Adenomatous goiter  551  11  45  26

 Thyroid granuloma  518

 Follicular adenoma  182  2

Malignant nodules  6997 (63.65%)  69 (45.70%)  247 (53.70%)  108 (41.38%)

 PTC  6910  69  246  108

 MTC  65  1

 FTC  20

 ATC  2

Total images  23504  530  1475  1032

 Benign  9084  289  881  502

 Malignant  14420  241  594  530

Types of machine Philips EPIQ 5 Philips IU22 Philips EPIQ 7 GE LOGIQ E9

Philips IU Elite Philips IU22 Mindray DC-8

Philips IU22 Siemens Acuson Qxana 2 Siemens Acuson S2000

Philips HD11 Siemens Acuson S2000

TOSHIBA Aplio 500

 TOSHIBA Aplio 400    

Table 2. Demographic data and image information for all patients from four medical centers.

PTC – papillary thyroid carcinoma; MTC – medullary thyroid carcinoma; FTC – follicular thyroid carcinoma; ATC – anaplastic thyroid 
carcinoma.
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General applicability test

In this section, we aimed to investigate the general applicabili-
ty of our AI system for diagnosing thyroid cancer. We did so by 
testing our network on a dataset of ultrasound images (n=1032) 
from Peking University BinHai Hospital, including 502 benign 
nodule images and 530 malignant nodule images (Table 1).

Statistical analysis

Data are shown as the means and standard deviations for con-
tinuous variables. The number of patients and images were 
analyzed for categorical variables. Diagnostic performance 
of the EDLC-TN and the radiologists was evaluated by calcu-
lating sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy. To determine 
whether the diagnostic performance of our models significantly 
differed, the AUCs between the EDLC-TN and the other four 
models were compared using the Z test. The intraclass corre-
lation coefficient (ICC) and Kappa value were used to assess 
test-retest reliability and inter-reader agreement for different 
radiologists. All statistical results shown were calculated us-
ing MedCalc for Windows v15.8 (MedCalc Software, Ostend, 
Belgium), and P<0.05 was considered statistically significant.

Results

Four image datasets and study population

The total number of ultrasound images in this work was 26 541, 
including 10 756 benign nodule images and 15 785 malignant 

nodule images. Of the images, 17 859 (67.29%) images from 
Centers 1 to 3 were used for training. A total of 7 560 (28.82%) 
images from Centers 1 to 3 were used for internal testing. 
The dataset from Center 4 containing 1 032 (3.89%) images 
was only used as an external test set without training for veri-
fying the generalizability of the model. Table 1 summarizes the 
number of images used in our training and testing datasets.

A total of 11 865 patients who underwent ultrasound exami-
nation and surgery between January 2015 and December 2017 
at one of these four centers were included in this research. 
Demographic data and image information for all patients from 
four medical centers are shown in Table 2.

Classification by EDLC-TN

In this paper, accuracy, specificity and sensitivity were the main 
evaluation criteria for classification. Two models were similar in 
structure, so we analyzed the experimental results of one them, 
Classifier1, as the main model. The results of ensemble learn-
ing using different combination strategies are shown in Table 3. 
Among them, the method of voting requires at least three weak 
models, so two instances of weak classifier 1 are used.

The accuracy rate of the two weak models was already high. 
Strong classifier 1 and strong classifier 2 both were obtained 
by combining two models. Of the three methods, the averag-
ing method calculates the arithmetic mean of the results ob-
tained from the two models, the competition method takes 
the higher confidence level of two results as the predicted 
value, and the voting method combines the results of multi-
ple (more than 3) models. All the models vote for benignancy 
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Figure 3.  Performance of the EDLC-TN in identification of thyroid cancer in different datasets. (A) Performance of the EDLC-TN on 
the training dataset. The accuracy, sensitivity and specificity were 93.70%, 93.19%, and 94.01%, respectively. (B) Diagnostic 
performance of the EDLC-TN and four other state-of-the-art machine learning algorithms. The EDLC-TN demonstrated 
the highest value for AUC (0.941, 95% CI: 0.935–0.946), sensitivity (93.77%), specificity (94.44%), and accuracy (98.51%). 
(C) The performance of EDLC-TN on the external validation dataset. The EDLC-TN achieved an accuracy of 95.76%, with 
a sensitivity of 95.88%, a specificity of 93.75% and an AUC of 0.979 (95% CI: 0.958–0.992).
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and malignancy, with the majority of votes serving as the fi-
nal result. Therefore, we found that the strong classifiers had 
higher accuracy than each weak classifier. The test results for 
weak and strong classifiers in diagnosis of thyroid nodules are 
shown in Supplementary Table 4.

The model proposed in this paper is the structure of “classifica-
tion after segmentation”. The performance of ensemble learning 
is shown in Figure 3A. With the changing threshold, accuracy, 
specificity, and sensitivity continue to change. When the thresh-
old is around 0.54, the accuracy, sensitivity, and specificity were 
all at the high level (93.70%, 93.19% and 94.01%, respectively).

EDLC-TN vs. radiologists

In this experiment, three thyroid disease radiologists in the 
hospital were randomly selected to independently evaluate be-
nign and malignant thyroid ultrasound images (the same test 
data set used for deep learning) and annotate them. The accu-
racy of each doctor and their average values are shown in 
Table 3. Those results indicate that the deep learning mod-
el proposed in this paper is more accurate than that of indi-
vidual radiologists.

In addition, we also carried out relevant experiments with multi-
expert cooperating diagnosis, that is, the three radiologists 

simultaneously performed benign and malignant judgments 
and voted on one ultrasound image, and the majority of the 
votes were the final results. After comparing the results of a 
single model and a single radiologist, the highest accuracy of 
the model was 93.70%. However, compared with the accuracy 
of the model, the result of the medical consultation of three 
radiologists was more accurate, with a rate of 95.43%. Finally, 
the accuracy was 96.54% with analyses of the model and ra-
diologist combined, which was higher than that for indepen-
dent diagnosis by either (Table 3).

The ICC and Kappa value were used to assess test-retest re-
liability and inter-reader agreement for three radiologists. As 
a result, the ICC of diagnosing results from three radiologists 
was 0.7052 (95%IC: 0.6836–0.7260). The Kappa values for 
Radiologist 1 vs. 2, Radiologist 2 vs. 3 and Radiologist 1 vs. 3 
were 0.649 (95%IC: 0.609–0.689), 0.656 (95%IC: 0.616–0.696), 
0.774 (95%IC: 0.741–0.808), separately.

EDLC-TN vs. other four AI models

The diagnostic performance of the four machine learning algo-
rithms is shown in Table 4 and Figure 3B. The EDLC-TN mod-
el demonstrated the highest value for AUC (0.941, 95% CI: 
0.935–0.946), which was significantly higher than the other 
four models (P<0.0001). Also, the EDLC-TN model performed 

 Accuracy Sensitivity Specificity

EDLC-TN 93.70% 93.19% 94.01%

Radiologist 1 91.55% 91.45% 91.71%

Radiologist 2 87.26% 96.34% 72.19%

Radiologist 3 93.07% 92.56% 93.92%

Average of radiologists 90.63% 93.45% 85.94%

Radiologists and EDLC-TN 96.54% 97.11% 95.58%

Table 3. Comparison of the diagnostic performance of EDLC-TN with radiologists.

EDLC-TN – ensemble deep learning classification model of thyroid nodules.

AUC Sensitivity (%) Specificity (%) Accuracy (%)

EDLC-TN  0.941 (0.936–0.946) 93.77 94.44 98.51

ResNeXt  0.882 (0.875–0.889)* 85.53 90.86 82.83

SE_Inception_v4  0.874 (0.866–0.881)* 90.33 84.38 97.12

SE_Net  0.840 (0.832–0.848)* 88.64 79.35 96.52

Xception  0.880 (0.872–0.887)* 84.68 91.26 93.84

Table 4. Comparison of the diagnostic performance of EDLC-TN with other four state-of-the-art algorithms.

EDLC-TN – ensemble deep learning classification model of thyroid nodules; AUC – area under the ROC curve; AUCs of EDLC-TN and 
other three models were calculated by the method of DeLong et al. P – The difference of AUCs between the EDLC-TN and other four 
models was compared by Z-test, * P<0.05.
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had the highest values for sensitivity (93.77%), specificity 
(94.44%), and accuracy (98.51%).

Generalizability of EDLC-TN

To investigate the generalizability of EDLC-TN in diagnosis 
of thyroid cancer, we applied the same deep learning frame-
work to ultrasound images from Peking University BinHai 
Hospital (Center 4), which were not contained in the train-
ing set (Table 1). In this test, the EDLC-TN achieved an accu-
racy of 95.76%, with a sensitivity of 95.88% and a specificity 
of 93.75% in differentiating between benign and malignant 
thyroid nodules. The ROC curve is shown in Figure 3C and the 
area under the ROC curve of EDLC-TN for diagnosing thyroid 
cancer was 0.979 (95% CI: 0.958-0.992).

Discussion

Many researchers have made significant contributions to the 
field of deep learning models for differentiating between be-
nign and malignant thyroid lesions. Xia J et al. [20] proposed 
an extreme learning machine (ELM) based on ultrasound fea-
tures, such as composition, echogenicity, margin, shape, and 
calcification, to classify malignant and benign thyroid nodules 
and it achieved 87.72% diagnostic accuracy. Liu T et al. [21] 
used the CNN model learned from ImageNet as a pretrained 
feature extractor for an ultrasound image dataset. Their ex-
perimental results with 1 037 images demonstrated an accu-
racy of 93.1%. Li et al. [6] also structured an ensemble mod-
el for diagnosis of thyroid cancer based on ResNet 50 and 
Darknet 19. However, the diagnostic accuracy was only 85.7% 
to 88.9% because the types of two sub-models were similar.

In this study, we proposed a new ensemble deep learning clas-
sification model called EDLC-TN for classifying benign and ma-
lignant thyroid nodules by ultrasound with evidence from mul-
tiple centers. The strengths of EDLC-TN model are fourfold. 
The core of this method is performing deep learning model 
training on the basis of segmenting the ROI, which is the area 
where the thyroid nodule is located. The accuracy of this mod-
el is the highest among the state-of-the-art algorithms and 
other models mentioned above. The accuracy of our model in 
diagnosing benign and malignant thyroid nodules was higher 
than that of a single radiologist and the model could help im-
prove the diagnostic accuracy of radiologists. This model rep-
resents a generalized platform that can be universally applied 
to ultrasound images from different medical centers. Moreover, 
remarkable progress has been made with deep learning in the 
field of image processing, resulting in mature models of seg-
mentation, localization, and classification for natural images. 
We used ensemble learning methods to connect the results 

of multiple models of deep learning. With that method, it was 
possible to distinguish between malignant and benign nod-
ules with the highest accuracy, in contrast to other advanced 
deep learning models. The diagnostic performance of the ra-
diologists in diagnosing thyroid cancer can be significantly im-
proved if combined with EDLC-TN. Therefore, it could benefit 
radiologists in diagnosis to a large extent.

Furthermore, our network is a general platform that can be 
universally applied to ultrasound images from different med-
ical centers. When applying the EDLC-TN model to ultrasound 
images from a hospital with totally different types of ultra-
sound equipment, the EDLC-TN achieved excellent accuracy, 
sensitivity, and specificity. Even compared to a radiologist’s 
performance, our model also has advantages. The high accu-
racy with model in our study suggests that the EDLC-TN mod-
el has the potential to effectively learn from different types of 
medical images with a high degree of generalization. This could 
benefit screening programs and produce more efficient refer-
ral systems in all medical fields, particularly in low-resource 
or remote areas. The result might a wide-ranging impact on 
both clinical care and public health.

There are several limitations to this study. Our benign data-
sets contained a high percentage of malignant nodules and 
nodular goiters, which may have introduced bias. Only three 
senior radiologists were chosen as the matched group, con-
tributing to study bias. This model did not analyze extensive 
pathological types of thyroid nodules; they will be assessed 
in future studies. Our algorithm only gives a classification re-
sult and not provide a classification standard or texture anal-
ysis. In medicine, a good predictive algorithm often is insuffi-
cient. What is needed is the ability to explain an algorithm’s 
decisions and increase the credibility of diagnostic results [22]. 
We did not know whether this model can be applied to oth-
er types of medical images. These limitations will be over-
come by expanding the ultrasound images datasets with var-
ious image types.

Conclusions

In this work, we proposed an ensemble deep learning classi-
fication model called EDLC-TN for distinguishing between be-
nign and malignant thyroid nodules in ultrasound images. In 
addition, our network represents a generalized platform that 
can potentially be applied to different medical centers to as-
sist radiologists.
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Supplementary Data

Algorithm 1. Detector for the upper and lower boundaries of a given nodule.

Input: mask: Distinguish whether a pixel belongs to the nodule with 0 or 1 label.
Output: up_bound: Upper boundary of the nodule;
                  low_bound: Lower boundary of the nodule.
1:  RS = S (mask, axis=1) // The sum of each line of the mask.
2:  RS.append(0) // In order to simplify the calculation process.
3:  start, maxLen, curLen = 0, 0, 0
4:  for i, v in enumerate(RS) do
5:      if v > threshold then
6:          curLen +=1
7:      else
8:          if curLen > maxLen then
9:              start = i – curLen
10:             maxLen = curLen
11:         end if
12:     end if
13: end for
14: up_bound = start, low_bound = start + maxLen
15: return up_bound, low_bound

Supplementary Table 1. The algorithm for finding the upper and lower boundaries of a nodule.

Processing Layer Output size Activation

Down-sampling conv1_1 224×224 Relu

conv1_2 224×224 Relu

pool1 112×112

conv2_1 112×112 Relu

conv2_2 112×112 Relu

pool2 56×56

conv3_1 56×56 Relu

conv3_2 56×56 Relu

conv3_3 56×56 Relu

conv3_4 56×56 Relu

pool3 28×28

conv4_1 28×28 Relu

conv4_2 28×28 Relu

conv4_3 28×28 Relu

conv4_4 28×28 Relu

pool4 14×14

conv5_1 14×14 Relu

conv5_2 14×14 Relu

Supplementary Table 2. ROI extraction algorithm structure.
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Layer Detail Output size

Convolution 3×3 conv 64×64×16

Dense Block1 {3×3 conv }×17 64×64×220

Transition Layer1 1×1 conv
32×32×220

2×2 avg pool

Dense Block2 {3×3 conv }×17 32×32×424

Transition Layer2 1×1 conv
16×16×424

2×2 avg pool

Dense Block3 {3×3 conv }×17 16×16×628

Transition Layer3 1×1 conv
8×8×628

2×2 avg pool

Dense Block4 {3×3 conv }×17 8×8×832

Transition Layer4 1×1 conv
4×4×832

2×2 avg pool

Dense Block5 {3×3 conv }×17 4×4×1036

Batch Normalization 4×4×1036

Relu 4×4×1036

Pooling 4×4 avg pool 1×1×1036

Fully Connection 1036

Fully Connection 2

Softmax 2

Supplementary Table 3. Classification algorithm structure.

Supplementary Table 2 continued. ROI extraction algorithm structure.

Processing Layer Output size Activation

Down-sampling 
[continued]

conv5_3 14×14 Relu

conv5_4 14×14 Relu

pool5 7×7

conv6 7×7 Relu

conv7 7×7 Relu

conv8 7×7 Relu

Up-sampling deconv1 14×14

deconv2 28×28

deconv3 224×224
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Model Accuracy Sensitivity Specificity

Weak Model 1 92.24% 95.22% 87.29%

Weak model 2 92.31% 91.89% 93.00%

Weak Model 3 91.89% 91.00% 92.26%

Strong Model 93.70% 93.19% 94.01%

Supplementary Table 4. Test results of weak and strong classifiers in the diagnosis of thyroid nodules.
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