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Abstract

Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of

enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase

(SSAT) and spermine oxidase (SMOX) increase in the kidneys of mice treated with cisplatin.

We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cis-

platin acute kidney injury (AKI). Using gene knockout and chemical inhibitors, the role of

polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neu-

tralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, sig-

nificantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the

induction of SSAT and elevated polyamine catabolism in cells increases the phosphoryla-

tion of eukaryotic translation initiation factor 2α (eIF2α) and enhances the expression of

binding immunoglobulin protein BiP/GRP78) and CCAAT-enhancer-binding protein homolo-

gous protein (CHOP/GADD153). The increased expression of these endoplasmic reticulum

stress response (ERSR) markers was accompanied by the activation of caspase-3. These

results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular

damage through the induction of ERSR and the consequent onset of apoptosis. In support

of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutrali-

zation of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and

CHOP) and apoptosis (e.g. reduced activated caspase-3). These studies indicate that

enhanced polyamine catabolism and its toxic products are important mediators of ERSR

and critical to the pathogenesis of cisplatin AKI.
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Introduction

Cisplatin, a platinum based compound, is a commonly used and highly effective chemothera-

peutic agent utilized for the treatment of a variety of solid tumors [1, 2]. The principal mode of

cisplatin anti-tumor activity is via the formation of DNA–protein and DNA–DNA adducts [3,

4]. The non-repairable cisplatin-induced DNA damage results in the inhibition of tumor cell

division and induction of apoptosis. Despite its effectiveness, cisplatin usage is limited due its

ototoxic and nephrotoxic side effects. More than 25% of patients treated with cisplatin develop

renal failure and have to discontinue treatment [1, 5]. The molecular mechanisms of cisplatin

nephrotoxicity are not completely elucidated and it is most likely a process that depends on

the activation of multiple pathways and mechanisms.

Polyamines are aliphatic cations that play important roles in the regulation of DNA struc-

ture, DNA/protein and protein/protein interactions, as well as the scavenging of free radicals

[6–9]. They are indispensable in the maintenance of genomic integrity and in the regulation of

cell growth and viability [6–10]. Cellular levels of polyamines are tightly regulated through

their synthesis and degradation (Fig 1). Polyamine synthesis is initiated by ornithine decar-

boxylase (ODC) mediated decarboxylation of ornithine to form putrescine (Put). Sequential

enzymatic addition of aminopropyl groups to Put and spermidine (Spd); respectively, leads to

the formation of Spd and spermine (Spm). Polyamines are degraded through their back-con-

version via the spermidine/spermine N1-acetyltransferase/N1-acetylpolyamine oxidase (SSAT/

PAOX) cascade, and direct oxidation of Spm by spermine oxidase (SMOX). Oxidation of ace-

tyl-Spm and acetyl-Spd by PAOX and Spm by SMOX generates toxic molecules such as H2O2

and aminoaldehydes [11]. Polyamines are present in significant intracellular concentrations

(mM range); therefore, substantial concentrations of H2O2 and aminoaldehydes (e.g. 3-amino-

propanal, 3-acetoaminopropanal and acreloin) can be produced via their catabolism [12].

While H2O2 through generation of hydroxyl radicals causes DNA lesions [13, 14], both ami-

noaldehydes and H2O2 disrupt the integrity of lysosomal and mitochondrial membranes,

Fig 1. Depiction of polyamine synthetic and catabolic reactions. This schematic indicates that the

oxidation of acetylated polyamines and via APAOX or SMOX, respectively, leads to the generation of

cytotoxic molecules (H2O2 and aminoaldehydes).

https://doi.org/10.1371/journal.pone.0184570.g001
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causing further cell injury [15–18]. The expression of SSAT in cultured cells leads to increased

SMOX expression, alterations in polyamine homeostasis, DNA damage, mitochondrial dys-

function, growth arrest and apoptosis [19].

Catabolism of polyamines (Spd and Spm) is enhanced in the kidney, brain, liver, stomach,

colon and heart in response to ischemic reperfusion (I/R), toxic, septic or traumatic insults

[20–25]. In addition, expression of polyamine catabolic enzymes increases in, and is associated

with the remote organ dysfunction following an initial injury (e.g. liver damage following

AKI) [26]. The ablation of the SSAT gene or inhibition of polyamine oxidases by MDL72527

reduces the severity of tissue damage caused by I/R, toxic or septic injuries [23, 27–29].

The increased polyamine catabolism can cause tissue/organ damage consequent to

decreased levels of radical-scavenging natural polyamines and/or generation of reactive oxy-

gen molecules (e.g. H2O2) and aldehydes (e.g. 3-aminopropanal and acrolein) [20, 30–32]. The

role of by-products of polyamine catabolism in the mediation of tissue injury in cerebral ische-

mia has been previously examined. The aforementioned studies indicate that 3-aminopropanal

and acrolein contribute to an increased aldehyde load and cause tissue damage via disruption

of mitochondrial function and lysosome membrane damage [30, 33, 34]. These molecules are

also important inducers of Endoplasmic reticulum stress response (ERSR) and apoptosis [35,

36].

ERSR is the biological rescue response to the accumulation of misfolded proteins in cells

[37, 38]. The role of ERSR in the pathophysiology of I/R, radiocontrast medium, tunicamycin

and cisplatin induced AKI is well documented [37, 38]. Reactive oxygen species (ROS) and

aldehydes that are among the main molecular mediators of tissue damage in all of the above

injuries are also known to be important inducers of ERSR-mediated apoptosis [39, 40].

Using genetically engineered mice lacking SSAT or SMOX (SSAT-KO or SMOX-KO), and

through neutralization of toxic products of polyamine degradation we tested the following: 1)

whether or not SSAT and SMOX expression levels increase in response to cisplatin treatment;

2) is cisplatin-induced AKI in part mediated via enhanced activity of polyamine catabolic

enzymes and through generation of toxic products of polyamine degradation (e.g. H2O2 and

aminoaldehydes); and 3) does activation of polyamine catabolism induces ERSR, a pathway

that is critical to the mediation of cell injury, tissue damage and organ dysfunction.

Materials and methods

Reagents

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless other-

wise indicated. Oligonucleotides were purchased from ThermoFisher Scientific (Carlsbad,

CA). The following antibodies were used in this study: Rabbit anti-β-actin (Santa Cruz Bio-

tech, Santa Cruz, CA), Rabbit anti-pro and cleaved Caspase 3 (H-277, Santa Cruz Biotech,

Santa Cruz, CA), Rabbit anti-cleaved caspase 3 (Sigma-Aldrich, St Louis, MO), Rabbit anti-

CHOP/GADD153 (Santa Cruz Biotech, Santa Cruz, CA) and Goat anti BiP/GRP78 (Santa

Cruz Biotech, Santa Cruz, CA). Anti-hypusinated-eukaryotic translation initiation factor 5A

(eIF5A) was kind gift of Dr. R.G. Mirmira, Indiana School of Medicine (Indianapolis, Indi-

ana). Anti SMOX antibody was generated by Dr. R. A. Casero Jr. All secondary antibodies

were purchased from ThermoFisher Scientific.

Generation and genotyping of SSAT- and SMOX-KO mice. SSAT deficient (SSAT-KO)

mice were the kind gift of Dr. Carl W. Porter. Their generation and genotyping protocol has

been previously described [41, 42].

SMOX-deficient mice were generated through elimination of exons IV, V, and VI by

homologous recombination. The latter disrupts the FAD binding region (exon V) of SMOX.
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The targeting vector for the Smox knockout mouse was made using standard recombinant

methods. Briefly, the murine Smox gene was subcloned into the pBluescript SK(-) vector. A

neomycin cassette was introduced into the Smox locus; the resulting insertion led to the exci-

sion of exons IV, V, and VI (S1A Fig). The vector was linearized and transfected into 129S6/

SvEvTac ES cells. ES cells that had undergone homologous recombination were then selected

and subjected to Southern blot analysis (S1B Fig). Chimeras were bred onto C57Bl/6J wild-

type mice to generate F1 offspring. Offspring were genotyped as described (S1 Table). Mice

were back crossed to wild-type C57Bl/6J (Jackson labs) for 10 generations. Heterozygotes were

then intercrossed to produce Smox-KO mice.

Mouse model of cisplatin induced AKI

Studies outlined in this section were designed using ARRIVE guide lines and approved by Uni-

versity of Cincinnati’s Institutional Animal Care and Use Committee (IACUC, protocol num-

ber 04020901). Wild type (Wt) and genetically modified mice (n = 8/treatment group) were

administered a single intraperitoneal (i.p.) injection of vehicle (saline) or cisplatinum (20mg/

Kg). Studies examining the effect of neutralization of polyamine catabolites on the severity of

cisplatin AKI were performed in Wt mice (n = 6/treatment group) as outlined above. Animals

were given daily i.p. injection of phenelzine (30mg/kg/day) or a combination of PEG-catalase

(50units/g/day) and N-2-MPG (100mg/kg/day) for the duration of the studies (96 hrs). Ani-

mals were euthanized by an over dose (150μl) of Euthazol (390mg Sodium pentobarbital and

50mg phenytoin/100 ml) and processed to obtain the needed experimental specimens includ-

ing serum for the measurement of serum creatinine, kidneys for extraction of RNA and pro-

tein as well as measurement of polyamines and polyamine pathway enzyme levels. Kidney

samples were also harvested fixed in paraformaldehyde and preserved in 70% ethanol for his-

tology and immunofluorescence microscopy studies.

Tissue culture studies

Using HEK-SSAT-TREX cells that express high levels of SSAT upon exposure to tetracycline

[32], we determined the effect of enhanced production of this enzyme on tissue polyamine

catabolism, induction of ERSR and onset of apoptosis. Briefly, HEK_SSAT_TREX cells (seeded

at 2x106/100mm plate) were allowed to stabilize for 48 hours, treated with tetracycline (10μg/

ml) and harvested at timed intervals (3, 6, 15, 24, 48 and 72 hours). Time matched vehicle

treated cells served as controls. Cells were harvested and snap frozen in liquid nitrogen. Frozen

cells were processed for measurement of polyamines and the activity of polyamine pathway

enzymes, or processed for protein extraction.

Assessment of renal function

Serum creatinine levels were measured using a commercially available kit (Bioassay Systems,

Hayward, CA) following the manufacturer’s instructions.

Histopathology of kidney

The severity of renal damage was determined by examining the cortical and corticomedullary

regions of the kidney for tubular dilatation, cast formation, and edema.

Measurement of kidney ODC, SSAT and polyamine levels

Renal activity of SSAT and ODC, as well as polyamine pools were analyzed as described previ-

ously [22, 28].
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RNA extraction and Northern blot analysis

RNA was extracted using Tri-Reagent (MRC, Cincinnati, OH) and subjected to Northern blot

analysis as described previously [28].

Preparation of cell and kidney protein extracts and Western blot analysis

Cell extracts were prepared by lysing the frozen cell pellets in RIPA buffer (Thermo Scientific,

Rockford, IL), supplemented with protease and phosphatase inhibitors (Thermo Scientific). Kid-

ney extracts were prepared using T-PER buffer (Thermo Scientific), supplemented with protease

and phosphatase inhibitors (Thermo Scientific). Protein concentrations were determined using

BCA assay kit (Thermo Scientific) subjected to Western blot analysis as described previously [28].

Statistical analysis

The significance of differences between mean values±SEM of multiple samples will be exam-

ined using ANOVA. A “P” value of<0.05 was considered statistically significant.

Results

Polyamine catabolism is enhanced in the kidneys of cisplatin-treated

mice

In order to determine if polyamine catabolism is enhanced in response to treatment with cis-

platin, male C57BL/6 mice were given a single i.p. injection of cisplatin (20mg/kg). Increased

serum creatinine levels (Fig 2A) and tubular damage (Fig 2B) confirmed the induction of cis-

platin AKI. Mice treated with saline were used as controls. Cisplatin-treated and control ani-

mals were sacrificed 48 and 96 hours after treatment. Northern blot analysis of kidney RNA

from control and cisplatin-treated mice revealed significant increase in the expression of the

polyamine pathway catabolic enzymes, SSAT and SMOX transcripts, at 48 and 96 hours post-

cisplatin treatment (Fig 2C). The increase in polyamine catabolism in cisplatin AKI was fur-

ther confirmed by the determination of renal polyamine levels and activity of polyamine path-

way enzymes. These results demonstrate the presence of elevated SSAT activity (P<0.01),

reduced ODC activity (P<0.05), and increased expression of SMOX protein in response to

treatment with cisplatin (Fig 3A–3C). Assessment of kidney polyamine levels revealed that cis-

platin treatment leads to increased accumulation of Put (P<0.01); in addition to a greater than

62% reduction (P<0.01) in kidney Spm at 96 hours post cisplatin administration (Fig 3D).

Ablation of SSAT and SMOX protects against cisplatin AKI

In order to establish the role of polyamine catabolism in the mediation of cisplatin AKI, the

extent of the loss of renal function and severity of tubular damage was compared in the Wt,

SSAT-KO and SMOX-KO mice. Our results indicate that serum creatinine levels of saline-

treated Wt, SSAT-KO and SMOX-KO mice were similar; however, the serum creatinine levels

of Wt mice were significantly higher than both SSAT-KO (P<0.01) and SMOX-KO (P<0.01)

mice at 96 hours post-cisplatin treatment (Fig 4A). Examination of the renal histology also

revealed that compared to the kidneys of Wt mice, kidneys of SSAT-KO and SMOX-KO were

significantly protected against tubular damage by cisplatin treatment (Fig 4B).

Examination of the effect of cisplatin treatment on the activity of polyamine pathway

enzymes, ODC and SSAT, revealed that increases in SSAT activity were only significant in Wt

animals (P<0.05). While the activity of ODC was nearly 2-fold lower in saline-treated SSAT-

and SMOX-KO mice compared to their Wt littermates, the reduction in ODC activity in all 3

Enhanced polyamine catabolism in cisplatin acute kidney injury
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genotypes subsequent to cisplatin treatment was of a similar magnitude (approximately 50%;

Fig 3A). Measurement of SSAT activity also revealed that the increase in the activity of SSAT

after cisplatin treatment in SMOX-KO was less than half of that of Wt mice (P = 0.066, Fig

3B). In addition, comparison of kidney levels of SMOX protein revealed that the expression of

this protein is significantly higher in cisplatin-treated Wt mice than saline-treated control

mice or cisplatin-treated SSAT-KO mice (Fig 3C). Examination of tissue polyamine levels

revealed that the after cisplatin treatment kidney Put content increased significantly in Wt but

not in SMOX- or SSAT-KO mice (Fig 3D). The Spd content of the kidneys increased in Wt

(P<0.01) and SSAT-KO (P<0.01) but not SMOX mice after cisplatin treatment (Fig 3C).

Examination of Spm levels indicates that their reduction in cisplatin treated vs control animals

is of a greater magnitude in the Wt mice (62%; P<0.01) than SMOX-KO (43%; P<0.01) and

SSAT-KO (28%; P = 0.102) animals.

Neutralization of toxic products of polyamine degradation significantly

reduces the severity of cisplatin AKI in Wt mice

Aminoaldehydes and H2O2 can cause cell injury through induction of DNA damage and dis-

ruption of lysosomes and mitochondria[15–18]. Since polyamines are present at mM concen-

trations in the cell, comparable levels of H2O2 and aminoaldehydes can be generated through

their catabolism [12]. The latter can make the catabolism of polyamines an important source

of these toxic molecules. In order to ascertain the role of these molecules in the mediation of

cisplatin AKI, the effect of treatment with reagents that degrade H2O2 (e.g. cell permeable

polyethyleneglycol conjugated catalase; PEG-Cat) and compounds that neutralize (e.g. N-

2-mercaptopropionyl glycine, N-2-MPG) or sequester (e.g. phenelzine; PLZ) aminoaldehydes

Fig 2. Effect of cisplatin treatment on renal function and structure and the expression of polyamine

catabolic enzymes. A & B) Administration of cisplatin (20mg/kg) led to significantly increased serum

creatinine levels tubular injury ranging from mild (48 hours) to severe (96 hours) post-treatment (vacuolization,

small arrow head; cast, small arrows; sloughed cells and damaged tubules, large arrows). C) Expression of

SSAT and SMOX mRNA levels increase in kidneys of mice treated with cisplatin.

https://doi.org/10.1371/journal.pone.0184570.g002
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and acrolein on the severity of renal dysfunction and tubular damage caused by cisplatin was

determined. The serum creatinine levels and renal histology of saline-treated animals receiving

vehicle, PEG-Cat/N-2-MPG or PLZ were similar (Fig 5A). However, serum creatinine levels

were significantly lower (P<0.01; Fig 5A) and the tubules were significantly protected (Fig

5B) in cisplatin-injected animals treated with a combination of PEG-Cat (50units/g/day) and

N-2-MPG (100mg/kg/day) or PLZ (30mg/kg/day).

Expression of SSAT in cultured cells activates the ERSR and enhances

apoptosis

Using HEK cells (HEK-SSAT-Trex) that express SSAT upon exposure to tetracycline[32, 43],

we examined the effect of enhanced expression of SSAT on the induction of ERSR in vitro.

Treatment of HEK-SSAT-Trex cells with tetracycline led to the induction of SSAT (Fig 6A), a

Fig 3. Effect of SSAT and SMOX ablation on cisplatin AKI induced changes in ODC, SSAT and

polyamine levels. A) The activity of ODC is approximately 2-fold lower in saline treated SSAT-KO and

SMOX-KO mice compared to their Wt littermates (p<0.05); however, the reduction in ODC activity in all 3

groups subsequent to cisplatin treatment is of a similar magnitude and significant. (*Denotes significantly

higher enzymatic activity in control vs. cisplatin-treated animals). B) Renal SSAT activity is similar in saline

treated Wt and SMOX-KO mice. The SSAT activity is significantly elevated in Wt mice treated with cisplatin

compared to those treated with saline. (*Denotes significantly higher enzymatic activity in cisplatin-treated vs.

control animals. +Denotes a significant increase in cisplatin-treated Wt compared to similarly treated

SMOX-KO and SSAT-KO mice. #Denotes significant increase in cisplatin-treated SMOX-KO to SSAT-KO

mice). C) SMOX protein levels are elevated in the kidneys of cisplatin-treated Wt animals compared to saline

treated and cisplatin treated SSAT-KO mice. D) Examination of tissue polyamine levels reveals that the

kidney Put content increases significantly in Wt but not SMOX- and SSAT-KO mice after cisplatin treatment.

The Spd content of the kidneys only marginally increases in Wt and SSAT-KO mice after cisplatin treatment.

Examination of Spm levels indicates that their reduction is significantly greater in the Wt mice than SMOX-KO

and SSAT-KO animals. (*Denotes significantly increased content in cisplatin-treated vs saline-treated

animals of the same genotype. +Denotes a significant decrease in tissue content in cisplatin-treated animals

compared to saline-treated animals of the same genotype. #Denotes a significant decrease in tissue content

compared to saline-treated Wt mice).

https://doi.org/10.1371/journal.pone.0184570.g003
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significant elevation in Put and reductions in Spd and Spm levels (Fig 6B). Western blot analy-

ses indicate that the levels of hypusinated-eIF5A (hypusination of eIF5A is necessary for its

function during protein synthesis) are reduced in SSAT over-expressing HEK cells (Fig 6C).

Our results indicate that the induction of SSAT also leads to a time-dependent transient

increase in cellular levels of p-eIF2α, BiP/GRP78 and the pro-apoptotic protein, CHOP (Fig

6C). Increased activated caspase 3 levels were also detected in cell extracts from 48 to 72 hours

after Tetracycline-induction of SSAT (Fig 6C). Collectively, these results indicate that

enhanced catabolism of polyamines as a result of enhanced SSAT expression can lead to the

induction of ERSR and onset of apoptosis.

Polyamine catabolism in cisplatin AKI mediates the induction of ERSR

and the onset of apoptosis

Previous studies indicate that ERSR is important in the mediation of tubular damage in AKI of

different etiologies including those caused by cisplatin [44]. Based on our in vitro studies,

Fig 4. Effect of SSAT and SMOX ablation on cisplatin AKI. Ablation of SSAT and SMOX genes reduces

the loss of renal function (A) and protects against renal tubular injury caused by cisplatin treatment (B).

(*Denotes significant increase in creatinine levels in cisplatin-treated vs. control animals. +Indicates

significant increase in cisplatin-treated Wt compared to similarly treated SMOX-KO and SSAT-KO animals.

https://doi.org/10.1371/journal.pone.0184570.g004
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which indicate that the up-regulation of polyamine catabolism leads to the activation of ERSR

and onset of apoptosis, we examined the effect of modulation of polyamine catabolism on the

activation of ERSR and onset of apoptosis in cisplatin AKI. To this end, we compared the

expression of BiP and CHOP in the kidneys of control and cisplatin-treated Wt, SMOX-KO

and SSAT-KO mice. The renal expression levels of BiP and CHOP were similar in the control

samples from all 3 genotypes (Fig 7A). The expression of BiP and CHOP increased in the kid-

neys of mice from all three genotypes after cisplatin treatment (Fig 7A). However, the BiP and

CHOP expression levels were reduced in the kidneys of cisplatin treated SMOX-KO and

SSAT-KO mice compared to their cisplatin-treated Wt counterparts (Fig 7A). Activated

Fig 5. Effect of neutralization of toxic products of polyamine degradation on cisplatin AKI in Wt mice.

A) The serum creatinine levels of saline-treated animals receiving vehicle, PEG-Cat/N-2-MPG or PLZ were

similar. While serum creatinine levels were significantly lower in cisplatin-injected animals treated with a

combination of PEG-Cat (50units/g/day) and N-2-MPG (100mg/kg/day) or PLZ (30mg/kg/day). B) The renal

histology of saline-treated animals receiving vehicle, PEG-Cat/N-2-MPG or PLZ were normal. However, the

tubules were significantly protected in cisplatin-injected animals treated with a combination of PEG-Cat/N-

2-MPG or PLZ. (*Denotes a significant increase in serum creatinine of cisplatin-treated mice compared to

similarly treated animals given PEG-Cat/N-2-MPG or PLZ. # Denote significant increases in the serum

creatinine levels of cisplatin-treated compared to saline-treated mice in corresponding treatment groups).

https://doi.org/10.1371/journal.pone.0184570.g005
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caspase 3 levels were also significantly elevated in the kidneys of Wt compared to those of

SSAT-KO and SMOX-KO mice (Fig 7B), suggesting that the presence of intact polyamine cat-

abolic activity leads to the onset of more robust ER stress and apoptotic response.

Products of polyamine degradation, H2O2 and aminoaldehydes, are known inducers of ER

stress and apoptosis [39, 40]. Based on the ability of PEG-Cat/N-2-MPG and PLZ to modulate

the severity of cisplatin AKI, we next determined whether the protective effect of these chemicals

in cisplatin AKI is associated with the reduction of severity of ERSR. As demonstrated, the ex-

pression levels of BiP and CHOP increased in the kidneys of cisplatin-treated mice compared to

saline treated animals (Fig 8A). However, the expression levels of BiP and CHOP were signifi-

cantly reduced in the kidneys of cisplatin-treated mice that were subjected to daily treatment

with PEG-Cat/N-2-MPG or PLZ (Fig 8A). Furthermore, the activation of caspase 3 was signifi-

cantly more robust in the kidneys of Wt cisplatin-treated mice receiving vehicle compared to the

mice treated with cisplatin and subjected to daily PEG-Cat/N-2-MPG or PLZ treatment (Fig 8B).

The results of these experiments indicate that the severity of cisplatin AKI was associated

with ERSR activation in Wt mice and was significantly modulated in SMOX-KO and

SSAT-KO mice. Similarly, neutralization of polyamine degradation products diminishes the

activation of ERSR.

Discussion

In the present studies we tested the hypotheses that: 1) the expression levels of SSAT and

SMOX increase in response to cisplatin treatment; 2) cisplatin-induced AKI is in part

Fig 6. Overexpression of SSAT in cultured cells: impact on ERSR and apoptosis. A & B) Treatment of

HEK-SSAT-Trex cells with tetracycline led to the induction of SSAT a significant elevation in Put and

reductions in Spd and Spm levels. C) Western blot analyses indicate that the induction of SSAT leads to a

reduction in hypusinated-eIF5A levels, a time-dependent transient increase in p-eIF2α, BiP and CHOP levels.

Increased activated caspase3 levels were also detected in samples from 48 to 72 hours post Tetracycline-

induction of SSAT expression. The results are representative of 3 independent experiments (* Denotes

P<0.01).

https://doi.org/10.1371/journal.pone.0184570.g006
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mediated via enhanced activity of polyamine catabolic enzymes and through generation of

H2O2 and aminoaldehydes (e.g. 3-aminopropanal, acetyl-3-aminopropanal and acrolein); and

3) Increased polyamine catabolism activates ERSR, a pathway that is critical to the mediation

of cell injury, tissue damage and organ dysfunction. Our results demonstrated that the expres-

sion and activity of polyamine catabolic enzymes, SSAT and SMOX, increase in kidneys of

mice treated with cisplatin (Fig 2). Our results further revealed that the ablation of SSAT and

SMOX genes reduces the severity of kidney dysfunction and tubular damage, and protects

against cisplatin AKI (Fig 4). Examination of kidney polyamine levels indicated that deletion

of SSAT and SMOX caused a reduction in Spm and Spd levels, respectively, under baseline

conditions (Fig 3). The ablation of SSAT or SMOX blunted the increase in Put levels and mod-

ulated the alterations in Spm and Spd levels following treatment with cisplatin (Fig 3).

Products of polyamine degradation, 3-aminopropanal, acetyl- 3-aminopropanal and H2O2,

are profoundly cytotoxic [11]. The degradation of H2O2 by cell-permeable PEG-catalase and/

or neutralization or sequestration of aminoaldehydes by N-2-MPG or PLZ, respectively,

Fig 7. The consequence of SSAT and SMOX ablation on the induction of ERSR and onset of

apoptosis. The effect of modulation of polyamine catabolism on the activation of ERSR and onset of

apoptosis in cisplatin AKI was examined. A) The levels of BiP and CHOP were similar in the control samples

from all 3 genotypes. The expression of BiP and CHOP increased in all three genotypes after cisplatin

treatment; however, the BiP and CHOP expression levels were reduced in cisplatin treated SMOX-KO and

SSAT-KO mice compared to their cisplatin-treated Wt counterparts. The results are representative of 3

independent experiments. B) The levels of activated caspase 3 (arrows) were also significantly elevated in the

kidneys of Wt compared to SSAT-KO and SMOX-KO mice.

https://doi.org/10.1371/journal.pone.0184570.g007
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reduced the severity of cisplatin AKI, as determined by reductions in serum creatinine levels

and the extent of renal tubular damage (Fig 5).

H2O2, an important inducer of tissue damage in AKI, is generated as a result of alterations

in mitochondrial activity as well as enhanced polyamine oxidation [11, 45]. Therefore, maneu-

vers that neutralize H2O2 constitute a more general protective treatment in AKI. On the other

hand aminoaldehydes such as 3-aminopropanal, acetyl- 3-aminopropanal and acrolein are

exclusively or predominantly generated as a result of polyamine oxidation [34, 46, 47]. The

maladaptive roles of the aforementioned metabolites in the mediation of cerebral ischemia are

well documented [34, 46, 47]. These biogenic amines accumulate in and disrupt the integrity

of lysosomal membranes leading to the release of proteolytic enzymes; this in turn damages

the mitochondria and induces apoptosis. Studies by Ivanova et. al. [30, 33] and Wood et. al.

[34, 46, 47] indicate that 3-aminopropanal is a mediator of cell injury and that in a model of

ischemic brain injury compounds that specifically target 3-aminopropanal impart protection

against ischemia induced cerebral injury [34]. Coupled with the published reports, our data

Fig 8. The impact of neutralization of toxic products of polyamine degradation on the induction of

ERSR and onset of apoptosis. A) The expression levels of BiP and CHOP increased in the kidneys of

cisplatin-treated mice compared to saline treated animals. The expression levels of BiP and CHOP were

reduced in the kidneys of cisplatin-treated mice that were subjected to daily treatment with PEG-Cat/N-

2-MPG or PLZ. The results are representative of 3 independent experiments. B) The activation of caspase 3

(arrows) was more robust in the kidneys of Wt cisplatin-treated mice receiving vehicle compared to the mice

treated with cisplatin and subjected to daily PEG-Cat/N-2-MPG or PLZ treatment.

https://doi.org/10.1371/journal.pone.0184570.g008
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establish the role of aminoaldehydes produced as a result of degradation of polyamines as

important mediators of tissue damage in injuries of varying etiologies in different organs.

Our data indicated that enhanced polyamine catabolism results in the activation of ERSR

through generation of oxidative molecules (e.g. aminoaldehydes and H2O2) and/or a reduction

in hypusinated-eIF5A levels consequent to polyamine depletion, and plays a critical role in cis-

platin AKI. It has been demonstrated that depletion of polyamines reduces the hypusynation

of elF5A, interferes with protein synthesis and leads to ER stress [10, 48]. Induction of ERSR in

response to elevated levels of aldehydes and H2O2, products that are generated as a result of

polyamine degradation, has also been demonstrated both in vitro and in vivo [39, 40]. Our pre-

vious studies indicated that the degradation of H2O2 by catalase modifies the severity of oxida-

tive stress and reduces cellular damage in SSAT over-expressing cells [32].

The current work strongly suggests that the toxic byproducts of polyamine catabolism are

important mediators of kidney injury in cisplatin-treated animals (Fig 5). Whether polyamine

depletion per se (e.g. reduction in the inherent free radical scavenging properties of Spm) and

reduced activity of eIF5A (through its reduced hypusination) are also important to cisplatin-

induced renal injury could not be excluded. However, the protection against cisplatin AKI in

SMOX KO mice, which exhibit similar alterations in tissue polyamine levels to that of Wt

mice, argues against a major role for polyamine depletion in the mediation of kidney injury by

cisplatin.

The induction of DNA damage, ERSR, mitochondrial dysfunction, growth arrest and

apoptosis in SSAT over-expressing cells indicate that enhanced polyamine catabolism affects

multiple pathways that are critical to the mediation of cell injury. Enhanced polyamine cat-

abolism has also been demonstrated in I/R, infection, sepsis, toxic and traumatic insults in kid-

ney, liver, gastrointestinal tract and brain [20–25]. The ablation or inhibition of enzymes

involved in polyamine catabolism reduces the severity of renal and hepatic I/R and toxic

injuries [23, 27–29]. Furthermore, a number of studies indicate that neutralization of toxic

products of polyamine degradation can reduce the severity of ischemic brain injury [30, 33, 34,

46, 47].

The maladaptive role of polyamine catabolism and its byproducts in the mediation of tissue

injury is well documented; however, the molecular mechanisms through which enhanced

catabolism of polyamines contributes to the induction of tissue damage had not been eluci-

dated. In the current studies we demonstrate that polyamine catabolism is enhanced in

response to cisplatin treatment and leads to the onset of ERSR and induction of apoptosis con-

sequent to the generation of toxic molecules. We propose that treatments aimed at blocking

the catabolism of polyamines or enhancing the removal and/or sequestering of its toxic metab-

olites will provide significant protection against cisplatin induced AKI.
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S1 Fig. Generation and genotyping of SMOX-KO mice. A) Diagram of the vector created for

the generation of Smox knockout mice. A Neomycin marker (Neo) was introduced into the

murine Smox gene by restriction digest. The addition of the Neo cassette also resulted in the

removal of Smox exons IV, V, and VI resulting in a truncated sequence lacking the coding

region for the catalytic domain in exon V. Blue rectangles represent exons; yellow rectangle

within exon V represents the FAD binding region; green dashed lines indicated homologous

recombination of the vector into the mouse genome. B) Genotyping of SMOX mice. Mice

were genotyped as outlined in S1 Table. Mice that are wild-type (658bp) or homozygous

Smox-KO (300bp) will have bands as above; heterozygous mice will have both bands.
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S6 Fig. Western blots for Fig 8. Uncropped pictures of western blots used in Fig 8.
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S1 Table. Primers for Smox-KO genotyping. Standard hot-start (95˚C for 5-minutes) PCR

conditions with a 5-minute extension (72˚C) time (30 cycles: 95˚C- 30 sec, 60˚C- 30 sec, 72˚C-

5 minutes) were used for the amplification of genomic DNA. Mice that are wild-type (658bp)

or homozygous Smox-KO (300bp) will have bands as above; heterozygous mice will have both

bands (S1 Fig).
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