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Terahertz spoof plasmonic neural network
for diffractive information recognition and
processing

Xinxin Gao 1,2,3, Ze Gu2,3, Qian Ma 2,3 , Bao Jie Chen1, Kam-Man Shum 1,
Wen Yi Cui 2, Jian Wei You 2, Tie Jun Cui 2 & Chi Hou Chan 1

All-optical diffractive neural networks, as analog artificial intelligence accel-
erators, leverage parallelism and analog computation for complex data pro-
cessing. However, their low space transmission efficiency or large spatial
dimensions hinder miniaturization and broader application. Here, we propose
a terahertz spoof plasmonic neural networkon aplanar diffractive platform for
direct multi-target recognition. Our approach employs a spoof surface plas-
mon polariton coupler array to construct a diffractive network layer, resulting
in a compact, efficient, and easily integrable architecture. We designed three
schemes: basis vector classification, multi-user recognition, and MNIST
handwritten digit classification. Experimental results reveal that the terahertz
spoof plasmonic neural network successfully classifies basis vectors, recog-
nizes multi-user orientation information, and directly processes handwritten
digits using a designed input framework comprising a metal grating array,
transmitters, and receivers. This work broadens the application of terahertz
plasmonic metamaterials, paving the way for terahertz on-chip integration,
intelligent communication, and advanced computing systems.

Artificial neural networks (ANNs), driven by the development of arti-
ficial intelligence, have been explored for speech recognition1, image
sensing2, and computer vision3. For traditional digital computers,
power consumption will become a severe problem due to the intro-
duction of many transistors4. Moreover, the chip manufacturing pro-
cess will circumscribe the computers’ scalability. Various alternative
approaches to conventional digital hardwarehavebeen investigated to
implement ANNs, encompassing diffractive neural networks and
optical circuit neural networks5–18, to handle these problems. All-
optical diffractive deep neural networks, consisting of multiple layers
of diffractive surfaces, have been reported to perform various func-
tions at the speed of light and low power consumption6. More
importantly, the diffractive network enables parallel information pro-
cessing, significantly enhancing computational efficiency and speed.
Integrating active chips into suchnetworks gives rise toprogrammable

diffractive systems based on digital-coding metasurface array19,
effectively manipulating and sensing electromagnetic waves. After
that, such a diffractive network was widely explored to expand more
applications13,19–21. Meanwhile, the misalignment issue encountered by
three-dimensional diffractive neural networks could be mitigated by
adopting two-dimensional architectures22,23. Nonetheless, these archi-
tectures exhibit a relatively low utilization rate of radiation energy and
are also susceptible to interference with external devices.

Concurrently, optical neural networks based on planar circuits
have been explored for chip-integrated designs, featuring Mach-
Zehnder interferometers as their fundamental building blocks16,24,25.
The physical structure of this network necessitates a specific design
to facilitate matrix multiplication based on singular value
decomposition16. The above operation will limit the scalability of the
large-scale network26. Additionally, for a planar neural network tasked
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with classifying the handwritten digits, a preprocessing step in a tra-
ditional computer is typically used to transform the digit information
into the input phase and amplitude information10,23,26.

As a powerful candidate in compact systems, spoof surface plas-
mon polariton (SSPP) devices emerge, which can emulate the disper-
sion behaviors of natural optical surface plasmon polaritons (SPPs)27 at
the microwave and terahertz (THz) frequencies27–29. SSPPs exhibit
strong field confinement and can be manipulated by constructing
different metal patterns30. Significantly, SSPPs offer reduced
metal losses compared to their SPP counterparts, which suffer
from substantial metal loss. The SSPP devices have been shown to
provide distinct compactness compared to traditional microstrip
structures31,32. Additionally, the SSPP structures’ flexible dispersion
behaviors and easy integration have facilitated the creation of pro-
grammable spoof plasmonic neural networks (SPNNs), which have
programmable weight and nonlinear activation functions to process
and detect microwave signals33. Additionally, SSPP waveguides have
demonstrated the ability to transmit signals in parallel with minimal
crosstalk, highlighting their potential for next-generation wireless
and on-chip THz communications34. The THz spectrum offers
relatively high bandwidth, facilitating rapid data transmission and
processing35,36. This capability significantly enhances the neural net-
works by enabling faster training and inference times compared to
lower frequency ranges. Consequently, SSPP structures hold the
potential to serve as robust interconnections within large-scale
THz ANNs.

In this work, we propose a THz SPNN, which comprises multiple
hidden layers, incorporating SSPP diffractive layers and phase shift
layers, enabling the processing of THz waves on a planar platform.
Each diffractive layer comprises cascaded compact SSPP coupler
arrays and has high transmission efficiency to imitate the full-
connected architecture. Furthermore, the network exhibits scal-
ability through the expansion of coupler numbers both horizontally
and vertically. The proposed SPNN is beneficial for integrating THz
components into compact andplanar devices. By training thenetwork,
we derive the desired phase distributions inside the phase modulation
layers and construct the THz-SPNN. Experimental results show that a
five-layer fully connected SPNN can effectively perform vector classi-
fication tasks at 250–280GHz frequency range. We also experimen-
tally demonstrate the network capability for in-situ information
processing of different radiation targets in a wireless transceiver fra-
mework. Inparticular, we fabricated and experimentally demonstrated
a designed input framework for imagedata, such as handwritten digits.
This consists of a metal grating array, transmitters, receivers, and the
SPNN, capable of directly performing classification tasks for hand-
written digits.

Results
The fundamental architecture of THz-SPNN
Benefiting from the electromagnetic manipulation capabilities and
easy integration of the SSPP structures, we propose a fully connected
planar THz-SPNN comprising multiple hidden layers, incorporating
both SSPP coupler arrays (acting as diffractive layers) and phase
shift layers, as illustrated in Fig. 1a. To imitate the diffractive behaviors
in a homogenous medium layer (usually in the air or uniform sub-
strate), we use a series of cascaded SSPP couplers to achieve full-
connected weight distributions. Notably, SSPP couplers exhibit
superior compactness compared to traditional microstrip couplers
due to their strong field confinement. Meanwhile, the diffractive layer
based on the SSPP coupler array achieves higher transmission effi-
ciency than in air or other mediums (see Supplementary Note 1). This
substantial increase in efficiency contributes to further reductions in
power consumption and enhances measuring sensitivity, improving
classification accuracy. Phase shift structures of varying heights
are sequentially placed between the diffractive layers to ensure that

the pre-trained parameters can be accurately mapped to physical
structures. The fabrication of the THz SPNN is then carried out using
a photolithographic method. Experimental results demonstrate that
the proposed THz SPNN can successfully perform multiple target
recognition and processing by constructing different input config-
urations. 1) Basis vectors classification. We employ distinct input
structures tomimic four categories of basis vectors, and each category
is mapped to its respective channel, operating at a broad frequency
range. 2) Multiple users’ recognition. The users’ orientation informa-
tion is captured through the receiver. This received information is then
efficiently processed by the THz SPNN in the context of wireless
communication tasks, thus facilitating user recognition and differ-
entiation. 3) Handwritten digit patterns’ classification. Handwritten
digit patterns consisting of a metal grating array are integrated into a
diffractive platform consisting of transmitters, collectors, and the
THz SPNN. Unlike traditional recognition methods that rely on
extensive preprocessing steps, our proposed diffractive framework
directly processes the handwritten digit information. Due to the
varying scattering effect of each digit, the collector receives distinct
electromagnetic wave information, which is subsequently processed
by the THz SPNN. This approach leverages the inherent differences in
the scattering properties of each digit, enabling more intuitive
classification.

The fundamental SSPP unit of the THz SPNN is shown in Fig. 1b,
where the SSPP unit with an aluminum metal ground is depicted,
featuring structural parameters such as p = 25 µm, w = 10 µm, and
d = 32 µm. It is etched onto the benzocyclobutene (BCB) polymer with
a dielectric constant of 2.65 (details Supplementary Note 2 for more
details). The compact nature of the SSPP structure is evident from its
dispersion behaviors. As the groove depth (h) reaches 51 µm, with
increasing frequency, the dispersion curve gradually shifts away from
the light line, indicating stronger field confinement, as shown in Fig. 1c.
When the groove depth h decreases to 0 µm, the SSPP characteristic
vanishes, giving way to traditional surface waves represented by
microstrips. Consequently, in comparison tomicrostrip (h =0 µm), the
SSPP structure is expected to be more compact in size31. As a com-
parison, we designed the SSPP coupler and the traditional microstrip
coupler, as illustrated in Fig. 1d and Supplementary Fig. S2c, with their
structural parameters listed in Table S2. When the SSPP coupler is
excited at port 1, transmission signals are acquired at other ports, as
displayed in Fig. 1e. The transmission parameters of S21 and S41 are
nearly identical, with a phase difference of approximately 90° at
around 265GHz. This coupler exhibits sound isolation (S21) and low
reflection (S11). The SSPP coupler can achieve a reduction in size of
about 11% when compared to its traditional counterparts (see Sup-
plementary Note 2 for more details). Thus, the diffractive layer, com-
prising the SSPP coupler array, exhibits a reduced electric footprint
and minimized interference with other devices. Then, we design a
phase shift structure with a length (Lp) of 450 µm, enabling adjust-
ments of the network’s phase by varying the height (h1), as shown in
Fig. 1f. When h1 varies from 40 to 150 µm, the phase difference can
reach 390° and the amplitude only fluctuates by about 1.5 dB, as illu-
strated in Fig. 1g. Therefore, the phase shift layer shown in Fig. 1a
can be tailored by constructing the phase shift structure with
distinct height parameters. The fundamental SSPP coupler and
phase shifter lay the foundation for building andmeasuring the SPNN.
Before training the THz SPNN, we need to construct different inputs
configurable to verify its capacity for information recognition and
processing.

Information input configurations of three recognition tasks
1) Basis vector. Generally, the complex input data is represented by the
fundamental basis vectors that capture vital features, which are then
fed into neural networks to learn the necessary mappings or classifi-
cation rules, as shown in Fig. 2a. This method reduces dimensionality,
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extracts essential features, and can be applied to various tasks effi-
ciently. We employ four class basis vectors with approximate ampli-
tude and distinct phase differences for the classification task. The
phase differences of four categories are defined as follows: class 1 for
[0°, 0°, 0°, 0°]; class 2 for [0°, 90°, 180°, 270°]; class 3 for [0°, 180°, 0°,
180°]; class 4 for [0°, −90°, −180°, −270°]. Due to the limitation of
experimental conditions within the THz frequency, we use the various
input structures to simulate basis vectors for four categories. As
depicted in Fig. 2b, the input structure of class 1 is designed to incor-
porate cascaded microstrip couplers to ensure uniform output

amplitude. Different phase shift structures are combined to introduce
the designated phase difference. Moreover, to mitigate the reflection,
the matched load with nickel metal is introduced (see Supplementary
Note 3 for more details). The simulated results demonstrate an
approximate transmission amplitude and phase around 265GHz,
indicating category 1, as illustrated in Fig. 2c. The input structures of
the other three categories and their simulated results are detailed in
Supplementary Note 4. The structural configuration of basis vectors
provides a foundation for performing fundamental tasks in a THz
platform.
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Fig. 1 | Conceptual illustration of the THz planar SPNN’s multiple targets
recognition and processing. a The integrated architecture is capable of per-
forming classification tasks of basis vectors, multi-user recognition, and processing
of handwritten digit images in the THz platform using the proposed SPNN. The
integrated architecture mainly involves the transmitter, metal grating array,
receiver, and the THz SPNN. The received electromagnetic waves are directly
processed by the proposed THz-SPNN, consisting of one input layer, one output

layer, and multi-hidden layers composed of diffractive and phase shift layers.
b SSPP unit with structural parameters p = 25 µm, d = 32 µm, w = 10 µm, and
h = 51 µm. c Dispersion behaviors of SSPP unit versus the groove depth h varying
from 0 to 51 µm, where k and p are the wavenumber and period of the SSPP unit,
respectively. d SSPP coupler. e Simulated S-parameter for the SSPP coupler.
f, g Show the phase shift structure and the corresponding transmission and phase
results, respectively, with varying heights h1.
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2) Multiple users’ recognition. In wireless communications,
accurate user-orientation recognition is usually of great significance to
enhance communication channel quality and increase communication
efficiency, as shown in Fig. 2d. In the traditional communication
architecture37,38, this process typically involves a series of measure-
ments, sampling, and analog-to-digital conversion processes on
the computer side to achieve orientation recognition. However, the
entire process can be easily and swiftly implemented by deploying a
simple diffraction neural network on the RF front end, thereby elim-
inating the need for more complex system hardware and processes,
such as mixers and analog-to-digital converters. In this context, we
design a compact 4-input and 4-output communication structure
consisting of four transmitting users with different directions and four
receiving antennas, as illustrated in Fig. 2e. The receiving antennas
collect orientation information from the users, and the gathered
amplitude and phase data (depicted in Figs 2f and g) are subsequently
input into and directly processed by the SPNN.

3) Handwritten digits classification. In general, for a planar neural
network to classify the handwritten digits, a preprocessing step in a
traditional computer is typically used to transform the digit infor-
mation (Fig. 2h) into the input phase and amplitude data10,23,26. Here,
we present a diffractive architecture to process image data, such as
MNIST handwritten digits, in a planar diffractive network, as shown in
Fig. 2i, consisting of transmitters, recognition images consisting of a
metal grating array, and 12 receiving antennas. To comprehensively
collect the image information, three groups of antennas (each group
using a 1/4 power divider excitation) are employed to direct the
electromagnetic wave irradiation in various directions. The 12
receiving antennas then collect the amplitude and phase information
of handwritten digits, as shown in Fig. 2j and k. It can be observed that
the imagedata varies distinctlywhendifferent input ports are excited,

indicating that diverse data information can be collected from the
various excitation directions. For different digit patterns, their
structural variations significantly influence the scattering electro-
magnetic field distributions, resulting in distinct amplitude and phase
information (see Supplementary Note 9). This information can be
directly processed by the SPNN. For each classification task, the input
information for each category will bemapped to its respective output
port through the direct processing of the THz SPNN.

To verify the above schemes, we established a comprehensive
THz experimental setup and fabricated test samples via photo-
lithography, as illustrated in Fig. 3. The setup entails the utilization of
two GSG probes (as depicted in Fig. 3d), connected to two frequency
extenders operating within a frequency range from 220 to 325GHz.
This configuration serves to generate and capture THz signals from the
testing samples (Fig. 3b) by the vector network analyzer (VNA), as
shown in Fig. 3c.Oneof theGSGprobes is employed to excite the input
port of the sample, allowing the electromagnetic signals to propagate
along the input structure. The process generates diverse electro-
magnetic diffractive information. Following this, SPNN processes the
electromagnetic signals and maps them to the corresponding chan-
nels. Finally, the other GSG probe is utilized to capture the output
amplitude distribution at the output port. For the tasks involving basis
vectors and user recognition, the diffractive layer comprises
4-cascaded SSPP coupler arrays. Formore complex classification tasks,
such as handwritten digits, the diffractive layer is composed of
6-cascaded SSPP coupler arrays.

Basis vector classification by the THz SPNN
To verify the capacity of the THz SPNN to classify basis vectors, we
fabricate four 5-layer THz-SPNN samples, as shown in Fig. 4a and S6.
Meanwhile, the loadswith nickel are integrated into the corresponding

Fig. 2 | The different input structures to perform three recognition tasks.
a Basis vector classification.b The input structure of class 1, inwhich network input
ports are labeled as ports 2–5. c The transmission (S21, S31, S41, and S51) and phase
results of the input structure, in which the blue structure represents the designed
SSPP load featuring a nickelmetal42.dMulti-user communication application. eThe

input structure to mimic the user information. f, g The amplitude and phase
information between the input and output ports. h Handwritten digits’ classifica-
tion. iThediffractive architecture to directly recognize the image. j,kThe collected
amplitude and phase information by 12 receivers.
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ports of the SPNN to reduce the reflection.We predict the capability of
the proposed THz-SPNN through a customized vector classification
task, where each category in a dataset is defined by adding a basis
vector with Gaussian white noise. The proposed THz-SPNN is trained
using the gradient-based backpropagation algorithm39. Note that this
training is performed at a frequency of 265GHz (see Methods for
training details). The category accuracy of the SPNN with different
layers is depicted in Fig. 4b. As the number of network layers increases
from 3 to 5, the corresponding accuracy gradually improves, rising
from66% to99%.We select a 5-layer network inwhich the classification
reaches 99% accuracy, proving it is sufficient to accomplish the clas-
sification task. As expected, each category (class 1, class 2, class 3, and
class 4) can be accurately mapped to its respective output channel
(port4, port 7, port 10, andport 13) andhas a correspondingmaximum
amplitude distribution in each channel, as shown in Fig. 4c. The con-
fusionmatrix is calculated, and99% accuracy canbe achieved (Fig. 4d).
To further verify the classification performance, we simulate the
transmission amplitude distribution of the designed THz-SPNN, where
each category is mapped to its respective output port within the fre-
quency range of 250–280GHz (see Supplementary Note 5). This sug-
gests that the SPNN has the capability to perform classification tasks
across a wide frequency band.

Subsequently, the transmission parameters of the THz-SPNN are
measured, as presented in Fig. 4e–h. As expected, each category
exhibits maximum amplitude distribution at the respective output
port, operating at the frequency band of 250 to 280GHz. While there
are some disparities between measured and simulated results, likely
due to errors in fabrication andmeasurement, overall, these results are
in good agreement. Subsequently, we collect the amplitude distribu-
tions of the network at 250, 265, and 280GHz, as illustrated in
Figs. 4i–k. The majority of the energies for categories 1, 2, 3, and 4 are
distributed to the output ports 4, 7, 10, and 13, respectively. The cor-
responding confusion matrices further validate the mapped relations,

as depicted in Figs. 4l–n. At 250, 265, and 280GHz, the classification
accuracy can reach 95.8%, 99.9%, and 92.4%, respectively (see “Meth-
ods”). The classification performance of the SPNN is also demon-
strated at 260 and 270GHz (see Supplementary Note 6 for more
details). Therefore, the proposedTHz-SPNN successfully accomplishes
classification tasks within a frequency range of 250–280GHz.

In-situ information processing by the THz SPNN
We present an in-situ recognition scenario for different users’ direc-
tions, including the transmitter, receiver, and SPNN, as shown in
Fig. 5a. We show that the orientation information can be directly
obtained on the output interface after the signals are transmitted
through the networks without involvement of the additional devices.
To simulate real scenarios, we design a transceiver array including four
transmitting and four receiving SSPP antennas (see Supplementary
Note 7). The four transmitting SSPP antennas are defined as users 1, 2,
3, and 4 with different orientations. The corresponding orientation
information can be represented by collected amplitude and phase
distributions using the receiving antennas. Then, the information from
various users at the transmitter is efficiently detected and then pro-
cessed by the SPNN. Each user’s information is systematically mapped
to its corresponding output channel. For instance, upon exciting user
1, its information is transmitted to four received SSPP antennas. Sub-
sequently, the received information undergoes processing by the
SPNN, allowing us to extract the user’s information by analyzing the
amplitude distribution across the four output ports. In this scenario,
themaximumdistribution is detected at output port 4. Similarly, users
2, 3, and 4 correspond to the output ports 7, 10, and 13, respectively.
Measured results verify the inference mentioned above, as shown in
Figs. 5b–e. We observe that the information processing capability of
SPNN is not limited to a single frequency but can be extended across a
broad frequency range. Discrepancies between measured and simu-
lated insertion loss are analyzed (more details in Supplementary

Fig. 3 | Experimental measurement scheme to obtain the classification per-
formance of the THz-SPNN. a The schematic illustration of the measurement
setup. The frequency extendermodule (FEM) can extend the working frequency of
the vector network analyzer (VNA) to 220–325GHz. Then, the transmission

parameters of the THz SPNN can be obtained by using the ground-signal-ground
(GSG) probes. b Partial sample display under the microscope. c Photograph of the
experimental set-up. d GSG probe to excite the sample.
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Fig. 4 | Experimental results. aThe fabricated sample diagram of the 5-layer SPNN
for category 1 under magnified perspective. b Calculated classification accuracy of
different layers. c The output amplitude distributions at four classes. d The con-
fusion matrix of the 5-layer SPNN. Since some misidentified ports are not in the 4
categories, the complete confusion matrix of all ports is given in Supplementary
Fig. S5h. e–hMeasurement of transmission parameters of four categories at output

ports 4, 7, 10, and 13, respectively, in which each category has the maximum
transmission parameters at its respective output port at a broadband frequency
range. i–k are measured amplitude distributions at different categories when the
operating frequencies are 250GHz, 265GHz, and 280GHz, respectively. l–n are
confusion matrices for 250GHz, 265GHz, and 280GHz, respectively, corre-
sponding to 95.8%, 99.9%, and 92.4% accuracy.
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Note 7), primarily stemming from manufacturing and measurement
technologies. Nonetheless, we can still identify a suitable frequency
band to showcase the SPNN’s capacity for information processing and
recognition. As illustrated in Fig. 5f, it is evident that the amplitude
distribution for each user has a peak at the respective port when the
operating frequency is 276GHz. Similarly, the amplitude distribution
peaks occur at 279GHz and 282GHz, as depicted in Figs. 5g, h. This
observation indicates the robustness of the THz-SPNN. Additionally,
corresponding confusion matrices at these frequencies are calculated
andpresented inFigs. 5i–k,with achieved accuracies of 91%, 97.8%, and
91.7%, respectively (see Methods for more details). Consequently,
SPNN successfully processes and recognizes user information.

It is noteworthy that the users at different orientations in the
presented scheme are situated approximately 900 µm away from
the receiving antenna arrays, primarily constrainedby the sensitivity of
the THz measuring system. The proposed network exhibits the
potential to process signals at greater distances, as substantiated by
numerical simulations (refer to SupplementaryNote 8). In the realm of
physical neural networks, the principal factors influencing recognition
accuracy are signal distortion and noise interference.

Handwritten digits classification by the THz SPNN
Here, we present an input data method for image data, such as MNIST
handwritten digits in a planar diffractive network, as depicted in
Fig. 6a. This corresponding architecture comprises transmitters,
recognition images consisting of a metal grating array, collectors, and

an SPNN processing unit. Compared to a 5-layer network using clas-
sifying the basis vectors, this SPNN is scaled both horizontally and
vertically. It has been demonstrated that a 7-layer SPNN can success-
fully classify the 10 handwritten digits with an accuracy of 96.6%, as
shown in Fig. 6b, where its diffractive layer comprises a 6-cascaded
SSPP coupler array. Then, we verify the classification capacity of the
SPNN by the all-wave simulation, and each digit can be successfully
mapped to its respective output port (see Supplementary Note 9).
When the diffractive layer is reduced from 6 to 2-cascaded SSPP cou-
pler arrays, the classification accuracy decreases by 50.5% due to net-
work performance degradation (see Supplementary Fig. S20). This
classification accuracy can be improved by increasing the number of
network layers (see Supplementary Note 10).

However, due to THz experimental limitations (see Supplemen-
tary Notes 9 and 11), the SPNN was decreased to 5 layers and tasked
with classifying four categories of digits (“0”, “1”, “3”, and “7”), as shown
in Fig. 6c. Through training, the network achieves an accuracy of 95%
when configuredwith 5 layers, as shown in Fig. 6d ande (see “Methods”
for training details). Each digit (“0”, “1”, “3”, and “7”) can bemapped to
its respective output port (8, 11, 14, and 17) (see Supplementary
Note 9). Subsequently, we fabricated and measured samples with dif-
ferent digits. Due to the varying scattering effect of each digit, the
collector receives distinct electromagnetic diffractive information,
which serves as inputs to the THz SPNN and is then processed and
mapped to their respective channels, as depicted in Fig. 6f–i. While the
measured results exhibit some discrepancies compared to the
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Fig. 5 | Experimental results of users’ orientation recognition. a The fabrication
sample, where the transmitting SSPP antennas (users 1, 2, 3, and 4) can radiate
electromagnetic waves to the receiver consisting of four receiving SSPP antennas.
b–e Measurement transmission parameters of four users at output ports 4, 7, 10,

and 13, respectively. f–h Measured amplitude distributions of different users at
276GHz, 279GHz, and 282GHz, respectively. i–k Confusion matrices at 276GHz,
279GHz, and 282GHz, respectively, corresponding to classification accuracies of
91%, 97.8%, and 91.7%.
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simulated results (see Supplementary Fig. S16) due to manufacturing
tolerance and measurement errors, they are acceptable for classifica-
tion tasks performed by our proposed SPNN on the THz platform.

Discussion
Weproposed anSPNN formultiple diffractive information recognizing
processing in the THz frequencies. Leveraging the strong field con-
finements and flexible dispersion behaviors of SSPPs, we designed
the SSPP coupler as the compact fundamental unit of the diffractive
layer. Compared to the space transmission between the spatial dif-
fractive structures, the surface transmission between the proposed
diffractive layer has higher transmission efficiency. The THz SPNN can
successfully perform different tasks, such as processing vectors
and images directly from input information.When the input structures
with different phases are introduced into the network, the SPNN
can successfully classify the basis vectors at a wide frequency band
of 250–280GHz. Furthermore, we illustrate the SPNN’s capability
to recognize and process user information from the transmitting
end in a wireless transceiver framework. In particular, we propose
a diffractive architecture comprising transmitters, digit samples
with a metal grating array, collectors, and the SPNN in a planar
THz platform. The signals collected from the transmitter can be

directly processed by the SPNN, showcasing its ability to classify the
MNIST handwritten digits.

In comparison to optical MZI-based networks, the scalability of
the SPNN is notably more straightforward. For example, the network
size can be expanded by cascading SSPP couplers both horizontally
and vertically. We note that a 5-layer SPNN with the diffractive layers
consisting of four-cascaded SSPP coupler arrays has a 15 dB insertion
loss, in which the network can be extended to approximately 13 layers
at a −50 dB detector’s sensitivity (see Supplementary Note 11 for
details). Moreover, the input noise and analog computing noise influ-
ence the robustness and scalability of the THz SPNN. When classifying
handwritten digits, the network’s accuracy decreases slightly as the
input noise increases from 0.02 to 0.12, but it remains above 90%,
indicating significant robustness. However, since neural networks
process the analog signals, the noise will accumulate with the
increasing number of network layers, limiting the scalability. Despite
the inevitability of the analog computing noise, its impact can be
mitigated by improving the network’s transmission efficiency layer
(see Supplementary Note 12 for more details). The scalability can be
further improved by improving the network’s transmission efficiency,
such as using a substratewith smaller loss (e.g., cyclic olefin copolymer
(COC)40 and quartz), a metal material with high conductivity (e.g.,
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Fig. 6 | Experimental demonstration of MNIST handwritten digit recognition
on an integrated diffractive architecture. a The structural diagram consisting of
transmitters, recognition targets, collectors, and the processing information’s
SPNN. b The calculated confusion matrix when the 7-layer SPNN performs hand-
written digits. c The fabrication sample for a 5-layer SPNN. d, e are corresponding

accuracy and the confusion matrix when the THz SPNN performs the classification
tasks of four digits (“0”, “1”, “3”, and “7”). f–i are measurement transmission para-
meters of four digits at output ports 8, 11, 14, and 17, respectively, where the
maximum energy for each digit is allocated to its corresponding port at a certain
frequency band and the shading area indicates the operating frequency band.
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gold), and decreasing the length of the diffractive layer (details see
Supplementary Note 11).

We highlight the feasibility of reconfigurable amplitude/phase
and nonlinear control at the THz frequencies, addressing the need for
dynamic signalmodulation andenhancing theoverall systemflexibility
and performance. This control can be accomplished using techniques
such as two-dimensional materials and complementary metal oxide
semiconductor (CMOS) manufacturing technology. The amplitude
and phase modulations can be realized by changing the conductivity
of Vanadium (IV) oxide (VO2) loaded on the SSPP waveguide and
changing the capacitance of two-dimensional electron gas (2DEG)
materials integrated into the SSPP structure, respectively. Moreover,
mixers and multipliers in the RF circuits allow for the up-convert of
lower frequency signals into THz signals, facilitating the amplitude and
phase modulation through variable gain amplifiers and phase shifters
in CMOS manufacturing technology (see Supplementary Note 13 for
details). In particular, nonlinear activation functions at THz fre-
quencies are anticipated through the integration of metamaterial split
ring resonators on doped GaAs films41.

In the context of user recognition tasks performed by the
THz SPNN, the communication range can be extended by replacing
lower-gain antennas with higher-gain Vivaldi antennas or employing a
phased array37. On the other hand, the short communication lengths in
the THz range offer unique opportunities for on-chip and short-range
communications, supporting high-density device connections and
detailed surface scans of items (see Supplementary Note 14 for details).
The THz SPNN enhances THz technology’s performance and cap-
abilities in these scenarios by providing advanced in-situ information
processing.

Despite the high-speed computation and parallel processing
capabilities of space-diffractive neural networks, the THz SPNN offers
easier integration, higher transmission efficiency, and the capability
for on-chip communication fabrication. In comparison to planar dif-
fractive networks, the THz SPNN achieves notonly higher transmission
efficiency but also directly performs classification tasks for hand-
written digits using a designed diffractive architecture. Considering
the flexibility of the diffractive layer consisting of the SSPP coupler
arrays, the proposed THz SPNN can also establish novel calculation
models, such as convolutional neural networks (see Supplementary
Note 15 for more details). Owing to the flexible dispersion behaviors,
strong field confinement, and smaller metal loss than the optical
SPPs27, our work extends the application of plasmonic metamaterials
into the THz frequency range. It holds the potential to pave theway for
achieving fast and robust machine learning processes.

Methods
Training details
In the first experiment of basis-vector classification tasks, the dataset is
generated by introducing Gaussian noise with a normalized intensity
of 0.12 on the designated basis vector sets, constituting 20,000
datasets. We randomly selected 10,000 sets as the test set and the rest
of the data as the training set. For each category, the number of
training samples is around2500. The classificationperformance on the
testing dataset is nearly identical to the training dataset due to the
addition of white noise (see Supplementary Note 12). The training
process is carried out on the 10,000 samples, while the real experi-
ment (depicted in Fig. 4) is validated on basis vectors physically con-
structed through couplers.

In the second experiment of information processing, the dataset
is similarly extended from the basic vector sets by adding white noise
signals. Unlike the previous one, the basic vector sets in the second
experiment are generated from the transmission matrix between
transmitting and receiving antennas through the full-wave simulations.

The 10,000 training samples are fed into the network during the
training process, and the conducted experiment is performed on the
transmit-receive antenna, as shown in Fig. 5a.

In the third experiment of MNIST dataset classification via
sensing mechanism, the training and testing samples are all generated
through full-wave simulation in the first place. The received energy
at the corresponding ports is extracted through the CST simulation
software, and 100 samples are simulated. The simulated samples
are extended to 10,000 training samples and 10,000 testing
samples, again, using the white noise addition, with a normalized
intensity of 0.02. The accuracy on the training dataset is 94.77%
(Supplementary Fig. S25), and the validation accuracy is 95.08%
(Fig. 6d). We fabricated four samples, 1 for each category, with a digit
pattern engraved on the substrate. The experiment results are
demonstrated in Fig. 6f–i.

Sample fabrication
We employ the photolithographic method to fabricate the testing
samples, and the detailed process is as follows. First, a ground pattern
with a thickness of 0.3 µmcomposed of aluminumwas deposited onto
the quartz substrate. Next, BCB polymer with a thickness of 7 µm was
spin-coasted onto the aluminum film and subsequently cured at 270°
for a duration of 2 h. Finally, we used the same photolithography
process to deposit the SPNN and input structure patterns with alumi-
num films, as well as SSPP load patterns with nickel film onto the BCB
polymer.

Measurement method
To evaluate the classification capabilities of the proposed SPNN
operating within the 250–280GHz frequency range, we utilize the
frequency extender (V03VNA2-T/R). The frequency extender expands
the VNA (Agilent Technologies, N5245A), enabling us to conduct
millimeter-wave S-parametermeasurements in the 220–325 GHz band.
The two frequency extension modules connect to two ground-signal-
ground (GSG, 325B-GSG-50-BT) probes and leverage the inherent
performance and features of the microwave network analyzer to
measure the transmission parameters of the testing samples. More-
over, for the multi-user recognition task, different transmission
responses can be obtained by exciting the four users’ ports, respec-
tively. In this process, we use the VNA tomeasure the users’orientation
information. Finally, to illustrate the classification tasks involving four
handwritten digits, the proposed integrated diffractive architecture
incorporates three excited ports and four output ports, as depicted in
Fig. 6c. Each port excites four antennas through a one-to-four power
divider. When a GSG probe excites port 1, another GSG probe is con-
nected to an output port of the sample and manually shifted from the
first to fourth output ports. The same procedure is repeated for other
instances. Upon completion of the measurement, the results from the
three excitation ports are processed. Finally, the measurement results
are displayed in Fig. 6f–i. Therefore, we conduct measurements on
four samples, considering the complexity and limitations of the mea-
surement conditions. Nonetheless, the measurement results also
demonstrate the THz SPNN’s capacity for processing and recognizing
information.
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