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Abstract: This paper presents the static mechanical behavior and the dynamic thermomechanical
properties of four market-available reinforced and non-reinforced thermoplastics and photopolymer
materials used as precursors in different additive manufacturing technologies. This article proposes
a characterization approach to further address development of aeronautic secondary structures
via 3D-printed composite materials replacing conventional manufactured carbon fiber reinforced
polymer (CFRP) composites. Different 3D printing materials, technologies, printing directions, and
parameters were investigated. Experimental results showed that carbon-reinforced ONYX_R material
exhibits a transition point at 114 ◦C, a 600 MPa tensile strength, and an average tensile strain of 2.5%,
comparable with conventional CFRP composites manufactured via autoclave, making it a suitable
candidate for replacing CFRP composites, in the aim of taking advantage of 3D printing technologies.
ONYX material exhibits higher stiffness than Acrylonitrile-Butadiene-Styrene Copolymer (ABS), or
conventional Nylon 6/6 polyamide, the flexural modulus being 2.5 GPa; nevertheless, the 27 ◦C
determined transition temperature limits its stability at higher temperature. Daylight High Tensile
(further called HTS) resin exhibits a tensile strength and strain increase when shifting the printing
direction from transversal to longitudinal, while no effect was observed in HighTemp DL400 resin
(further called HTP).

Keywords: additive manufacturing; FDM/FFF; CFF; DLP; tensile; three-point bending TMA; DMA;
thermomechanical analysis

1. Introduction

Industrial production is currently driven by global competition and the need for
fast adaptation of production. Innovation and technological development are at the core
of the economic growth process, with industry evolution being linked to cutting-edge
research outputs related to manufacturing processes, materials, and product design. These
requirements can be met by radical advances in traditional manufacturing technology or,
as it was seen over the last 10 years, by the raising of emerging additive manufacturing
technologies that present continuous growth and represent high interest for engineering
due to undeniable major advantages related to increased automation level, production
of complex geometries, low material usage, and design freedom. Understanding the
key principles of each mainstream AM process is essential to design parts, products,
and business strategies that leverage AM. More concretely, this information enables the
user to select AM processes for specific applications, and design-integrated operations
(e.g., including printing and post-processing), to meet application specific needs. AM
methods have been used in different industries such as the aerospace industry [1,2], medical
applications [3], automobile industries [1,2], construction [4], and so forth. The increased
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use of 3D printing as a learning tool and to generate functional end-use parts has brought
out the need for a better understanding of the thermomechanical behavior of 3D-printed
parts and the development of analytical tools and design guidelines for engineers [5,6].
There is a broad spectrum of AM processes, materials, and related technologies. The
ISO/ASTM 52900 [7] standard ranks additive manufacturing technologies into seven
classes. Additive manufacturing does not refer strictly to the 3D printing process. The
processes that are part of additive manufacturing involve the post-processing and heat
treatment of the components. Moreover, for reinforced composite materials intensively used
in the aerospace industry, there is some complexity in the certification of these components
developed using AM technologies due to their undeniable advantages in simplifying the
manufacturing stages, compared to conventional methods (e.g., autoclave or VA-RTM).
In this frame, two AM technologies that are gaining ground in the aerospace industry
are FFF/CFF technology that brings continuous fiber reinforcement to the plastic matrix
3D-printed parts, exhibiting benefits of shrinkage [8] and mechanical strength close to the
aluminum used in aerospace [9], and the DLP technology which offers rapid prototyping
with great mechanical characteristics.

This study focuses on the two abovementioned AM technologies. The Markforged
X7 has, in addition to the capacity to print thermoplastics, a second nozzle that adapts the
CFF process to print non-plastics. In CFF manufacturing, an FFF printer with a second
nozzle places continuous carbon fiber, fiberglass, or Kevlar® in one final part, but instead
of melting the entire filament, the heat of its nozzle is used for “integration” into the
thermoplastic layer. The fibers do not melt; instead, they are captured by the thermoplastic
matrix in a similar way to thermoset-type adhesives, as the fibers are captured by the epoxy
matrix in traditional methods of making composite laminates. Turner et al. [10,11] provide
an extensive review on FFF process modelling, including the flow and thermal dynamics
of the melt, the extrusion process, and the bonding process between successive layers of
material. Temperature, viscosity, and surface energy of the melt play an important role in
how the material flows through the nozzle and, more importantly, how the final interface
between the beads is formed. One of the major process variables is the raster angle, which
leads to different properties across the principal material directions [12–14], similar to the
orthotropic behavior of fiber composites.

Latest studies on the technology offered by Markforged focus on the mechanical
characterization of the thermoplastic (ONYX) and mainly the continuous carbon fiber and
glass fiber reinforcement and the effect that infill geometry has on the final 3D-printed
part [5–8,15,16].

Less of the encounter research focused on specific applications for aerospace. Chen et al. [17]
focused on using Markforged technology to transition from traditional manufacturing of
molding processes to 3D printing such molds for an antenna. Their finding suggests that
the coefficient of thermal expansion (CTE) of their 3D-printed configuration is mostly
anisotropic due to the bad adhesion between 3D-printed layers and the aligned short
carbon fiber along the printing pattern. They further suggested an inclined mode of 3D
printing that could uniform the CTE of the antenna mold and solve the problems of larger
printing steps. Jacob Chekal [9] focused his work on identifying and designing a new
service access door for a Boeing airliner based on 3D printing materials available. As for
the DLP 3D printing, the investigated research papers follow mostly a transition of AM to
obtain 3D-printed injection molds. Lozano et al. [18] offered a thorough review, whose main
findings concern polymer molds obtained through AM, in comparison to conventional
(metal) molds obtained by subtractive manufacturing. They reported that information
on specific topics is scarce or nonexistent. Such an example is on the characterization of
the most commonly injected materials and molds used in this type of technology, their
mechanical properties, for both the part and the mold and even a lack of the designs for all
types of geometries, and costs.

This paper’s aim is to take the two technologies and further investigate their potential
in the additive manufacturing of aeronautic secondary structures, such as OGVs (outer
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guiding vanes) and substitute conventional molds for use in the manufacturing of CFRP
via autoclave technology; both applications require high thermal dimensional stability and
mechanical strength. As the photopolymers used in 3D printing are different from one
manufacturer to another, there is an obvious opportunity to investigate this matter. The
Photocentric LC Magna 3D printer stays at the core of the DLP technology investigation
of this paper, the manufacturer providing a photopolymer resin that can maintain a good
thermomechanical behavior up to 230 ◦C. At the same time, the Markforged technology
has the potential of providing the means to develop aeronautic secondary structures such
as OGVs and molds up to a temperature of 140 ◦C. The study focuses on obtaining the
required thermomechanical behavior for such 3D-printed parts by investigating a sandwich-
like internal structure (ONYX/carbon fiber/ONYX) which can be further optimized by
increasing the number of ONYX and carbon fiber interlayers.

2. Materials and Methods
2.1. Materials and Fabrication Methods

The materials used from Photocentric in the case of LCD printing for experimental
test samples were HighTemp DL400 resin (further called HTP) and Daylight High Ten-
sile (further called HTS) resin. In the case of FDM technology, the material used was
ONYX (further called ONYX) while for CFF printing technology, carbon-fiber-reinforced
ONYX (further called ONYX_R) was used, both supplied by Markforged (Watertown, MA,
USA). For a comparative analysis, flexural and tensile specimens manufactured by LCD
technology (LC Magna 3D printer model) were printed both on transversal and longitu-
dinal directions as shown in Figure 1, in order to assess the effect of printing direction on
mechanical performances.
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Figure 1. (a) Static mechanical test specimens’ printing directions on (a) LC Magna; (b) Markforged X7.

Prior to performing thermomechanical analysis and static regime mechanical tests, all
HTP and HTS samples were fully post-cured and cleaned according to the instructions in
the datasheet. HTP material was post-cured for 1 h at 60 ◦C and HTS material for 2 h at
60 ◦C. Post-curing enabled parts to reach the highest possible strength and to become more
stable. However, each resin behaved slightly differently when post-cured, and required
different amounts of time and temperature to arrive at the material’s optimum properties.
When a resin 3D-printed part finished printing, it remained on the build platform in a
“green state”. This means that while parts have reached their final form, polymerization
was not yet fully completed, and the part has yet to attain maximum mechanical properties.
Post-curing with light and heat was key in unlocking this last mile of material properties
for DLP 3D prints.
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The Photocentric group provided in the corresponding datasheet the post-cure opti-
mized settings for each individual resin marketed by them.

For the specimens manufactured by DLP technology, the internal structure was not
shown, being an isotropic printing process. Instead, for the CFF manufactured specimens,
the printing process was highly anisotropic. Thus, the internal structure is illustrated in
Figure 2, extracted from Markforged X7 3D printing Eiger software used for slicing. For
the ONYX specimens, the nozzle heating temperature was 275 ◦C, the thickness layer
was 0.1 mm, and a 100% filling 32 layers printed at ±45 degrees according to Figure 2a
were used. In the case of continuous carbon-fiber-reinforced ONYX_R samples, the nozzle
heating temperature was 252 ◦C, the thickness layer was 0.125 mm, and one perimeter was
applied in each tested specimen. For the tensile samples, 8 layers comprising 2 surface
layers of ONYX ±45 degrees and 6 carbon fiber isotropic infill layouts were used as shown
in Figure 2b (lower image) with the blue color, the fiber volume fraction being 87%. For the
3-point bending test samples, 32 layers comprising 2 surface layers of ONYX ±45 degrees
and 30 carbon fiber isotropic infill layouts were used as shown in Figure 2b (upper image)
with the blue color, the fiber volume fraction being 37%. The overall geometries for
mechanical tests along with parameters optimized for the best printing results by using the
Eiger software are summarized in Figure 2, as well as Tables 1 and 2, respectively.
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Table 1. Reinforced ONYX Specimen printing parameters.

Reinforced ONYX Specimens

ONYX Nozzle
Temperature

Carbon Fiber
Nozzle Temperature

Layer
Thickness Infill ONYX Layer

Orientation
Carbon Fiber
Orientation

275 ◦C 252 ◦C 0.125 mm 100% ±45◦ 0◦

Table 2. ONYX Specimen printing parameters.

ONYX Specimens

ONYX Nozzle
Temperature Layer Thickness Infill ONYX Layer

Orientation

275 ◦C 0.1 mm 100% ±45◦

The nozzle temperatures and ONYX layer orientation were locked in for every printing
process. When using continuous reinforcement, the layer thickness was also locked in,
depending on the type of fiber used. This was done to ensure optimum results in the final
printed part. For this reason, the number of layers was given by the sample thickness
imposed by the ASTM standard. In the case of the DLP 3D printing technology, the printing
parameters were also locked in, depending on the type of photopolymer resin used.

The tensile tests were performed on (L ×W) 165 × 25 mm dog bone samples with
3.2 mm thickness, according to ASTM D638-14 for ONYX material, and rectangular samples
of (L ×W) 250 × 15 mm with 1 mm thickness, for the continuous reinforced composite



Materials 2022, 15, 5069 5 of 18

(ONYX_R), according to ASTM D 3039 standard. A detailed drawing is available in Figure 3
for the flexural and tensile specimens.
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test—plastic; (c) tensile test—composite (reinforced ONYX).

Thermomechanical analysis (TMA) was performed on disc samples of 5 mm height
and 9.8 mm diameter. The sample geometry, the internal architecture for the ONYX samples
3D printed using Markforged X7 by means of FDM (fused deposition modeling) technology,
and carbon-fiber-reinforced ONYX_R samples 3D printed using Markforged X7 by means
of CFF (continuous fiber fabrication) technology are shown in Figure 4a–c, respectively.
ONYX samples were XZ printed with±45◦ infill angle and 2 perimeters. Two samples were
printed using layer thickness of 0.125 mm (40 layers) and 2 samples using 0.250 mm layer
thickness (20 layers). The reinforced ONYX_R specimens were XZ printed 2 perimeters,
4 layers ±45◦ infill angle of ONYX and carbon fiber isotropic infill (layer thickness of
0.125 mm).
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Dynamic mechanical analysis (DMA) experiments were performed on (L×W) 60× 9 mm
rectangular samples with 3 mm thickness. The internal architecture for the ONYX samples
and for the carbon-fiber-reinforced ONYX_R samples are shown in Figure 5a,b, respectively.
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2.2. DMA, TMA Analysis and Static Mechanical Test Methods

Dynamic mechanical analysis (DMA) experiments were performed according to ASTM
D5023 standard [19] using a TA Instruments Discovery Series 850 dynamic mechanical
analyzer, from TA Instruments, New Castle, USA. The elastic and viscoelastic behavior
was determined in ”3-point bending mode” with the oscillation frequency set to 1 Hz, the
amplitude set to 10 µm, using a preload force of 0.1 N, and on a temperature range from
30 ◦C to 200 ◦C using a heating rate of 2 ◦C/min.

Thermomechanical analyses (TMA) were performed following the procedure specified
in the ASTM E831 standard [20] on the 3D-printed materials being studied, with the aim
of measuring dimensional changes of solid materials as a function of temperature, time,
or applied force. Coefficient of thermal expansion (CTE) and glass transition temperature
(Tg) were determined and compared with DMA and CTE analyzer results. Analyses were
performed using a TA Instruments Discovery TMA 450 analyzer, on a temperature range
from 30 to 200 ◦C for HTS and HTP 3D-printed materials and from 30 to 160 ◦C for ONYX
and ONYX_R using the same heating rate of 5 ◦C/min and a load of 0.1 N.

Static mechanical tests (tensile and 3-point bending) were performed using an Instron
3369 with 10 kN cell force, at room temperature. Extensometers were used to measure
the strain in longitudinal and transverse directions to measure Poisson’s ratio for tensile
samples. For the three-point bending test, the ASTM D790 standard was followed, using
a 102.4 mm support span, depth of beam/support span ratio of 1/30, radius of 10.2 mm,
crosshead rate of 5.46 mm/min, and midspan deflection 27.3 mm. All specimens were
preloaded with 10 N to assure contact between the specimen and the force application
device. The same parameters were used for the reinforced specimens as for the unreinforced
ones, the only difference being that for the reinforced specimens, a greater opening of the
supports was used to reduce the effects of the interlayer shearing forces that could cause



Materials 2022, 15, 5069 7 of 18

the failure of the specimen. For the tensile tests, two standards were used. ONYX, HTP,
and HTS samples were tested using the ASTM D638-14 standard, using a length of 250 mm,
an overall width bigger than the minimum specified (25 mm instead of 19 mm) in the
considered standard because the clamping zone was enlarged to avoid failure in the
clamping region, a length of 57 mm, and a width of 13 mm of the narrow section, with a
gage length of 50 mm, using a 5 mm/min strain rate.

The carbon-fiber-reinforced ONYX_R samples were 165 mm by 25 mm by 1 mm, and
tested following the ASTM D3039 standard, at room temperature, with displacement rate
of 2 mm/min.

3. Results and Discussions
3.1. DMA Results

Figure 7 shows the average storage modulus E′, loss modulus E”, and tan δ of four
samples for each of the four analyzed 3D-printed materials as a function of temperature.

Table 3 presents the statistical data obtained on the DMA samples.

Table 3. DMA statistical data.

Material/Sample ONYX ONYX_R HTP HTS

Tan δ

0.1413
0.1785

-
-

0.5208
0.4993

-
-

0.1594
0.1589
0.1563
0.1482

0.2554
0.1467
0.2614
0.2527

Storage modulus
[MPa]

2120.1
2487.1

-
-

25,447
25,011

-
-

6186.4
5466.4

55,439.4
5328

5597.1
5717.4
5370.8
5418

Loss modulus
[MPa]

269.16
387.21

-
-

4537.4
4562.7

-
-

538.92
332.17
358.95
346.35

515.36
623.43
515.96
487.56

Just before ONYX material reached 30 ◦C, it exhibited a stiffness higher than ABS, or
conventional Nylon 6/6 polyamide [21]; the flexural modulus was 2.5 GPa, which also
confirmed the datasheet value from the Markforged producer [22]. The loss modulus curves
of ONYX show three different peaks corresponding to ά, α, and β transitions in order of
decreasing temperature [21]. Current study results confirm the α transition just before 30 ◦C
determining the Tg for ONYX material of 27 ◦C, coinciding with a significant decrease in
modulus. This value matches with previously reported Tg for ONYX [23] and the datasheet,
and was attributed to long-chain segmented motion within the main polymer chain [24].
The β transition occurring at negative temperatures between −60 ◦C and −70 ◦C [23]
and the ά relaxation were previously observed in ONYX material, being associated with
the mobility of interfacial amorphous phase in fiber-reinforced Nylon 66 composites [25].
Moreover, due to the presence of short carbon fibers, ONYX exhibits a higher storage
modulus than Nylon 66 [23,26]. Dynamic mechanical analysis results for ONYX_R material
are also displayed in Figure 7. For fiber-reinforced polymer composites, the dynamic
mechanical properties depend on the fiber type, length, orientation loading, dispersion
in matrix, and interaction between fiber and matrix. Continuous carbon-fiber-reinforced
ONYX thermoplastic composite material (ONYX_R) presented a significantly higher storage
modulus due to influence of continuous fibers, and hid the thermal properties of polymer
matrices as it can be seen on the thermogram in Figure 7. The 25 GPa value is, nevertheless,
lower than the one reported in the technical datasheet due to different design of the
structural samples’ architectures (presence of walls, upper and lower ONYX layer, infill,
and fiber orientation) within the preset study.
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However, the ONYX_R showed completely different behavior. The storage modulus
abruptly fell off at around 114 ◦C, corresponding to the maximum of the loss modulus and
just after that of the tanδ curve, which confirmed the amorphous nature of the matrix of
the ONYX_R material. This glass transition point at 114 ◦C was consistent with the one
reported in [23] and was the only event recorded on the investigated temperature range
with no melting or crystallization peaks. No literature data were reported previously for
this HTP material, to our knowledge. The working temperature was above 23 ◦C since,
below this temperature, the resin crystalizes. A peak of tan δ appeared around 173 ◦C for
all four HTP material samples, marking the glass transition region where the material loses
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its stiffness. Furthermore, according to the manufacturer datasheet, the flexural modulus
is 3.3 GPa, while in the present study, a higher 5 to 5.5 GPa was recorded for all tested
samples. Across the Tg, the measured storage modulus (E′) decreased from the glassy
plateau at approximately 5 GPa to the high-temperature rubbery plateau at about 500 MPa.
The thermograms of HTP material were typical for an amorphous thermoplastic polymer,
and showed the different states of the polymer behavior, as well as the beta transition
temperature Tβ entering a glassy state, and the glass transition temperature Tg around
173 ◦C, followed by a decrease in both loss factor and storage modulus, possibly trailed
by a rubbery elastic plateau and flow region. As for HTP material, no literature data were
reported previously for this HTS material, to our knowledge. The working temperature
was above 30 ◦C since, below this temperature, the resin crystalizes. Analyzing the loss
factor curve, the transition temperature for entering a glassy state of Tβ was determined;
furthermore, it was followed by the peak of tan δ corresponding to the glass transition
temperature Tg around 157 ◦C, defined by a decrease in the storage modulus and material
stiffness. The storage modulus evolution over the temperature range was similar to the
one recorded on HTP material: it started at 5.5 GPa and achieved about 500 MPa at the
glass transition region, and was lower than the 2.2 GPa stated by the material supplier in
the datasheet.

3.2. TMA Results

Figure 8 shows the CTE mean curves of all the 3D-printed samples. Regarding ONYX
material, based on nylon impregnated with short-chopped carbon fiber, the addition of
these 2D fillers aims at maximizing the mechanical properties, the filament being more
flexible and less brittle, and provides it with a means to adhere to the substrate. Never-
theless, these additions further complicate the thermal response of the material due to
the filler’s ability to preferentially align along the print path. Therefore, understanding
the thermomechanical response in terms of thermal relaxation/mobility, transitions (e.g.,
Tg), elastic modulus, and CTE for 3D-printed materials, both with and without filler and
both with and without continuous reinforcement, is an important design parameter to
achieve dimensionally accurate parts along with expected mechanical performances. There
remain important areas in the design process that are less understood, such as the materials’
behavior and dimensional accuracy at elevated temperatures.
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Table 4 presents CTE measurements for ONYX material obtained on the TMA-tested
samples. The CTE values obtained on ONYX specimens printed in ZX orientation using
±45◦ infill angle (for both 125 µm and 250 µm layer thicknesses, respectively) was not
highly dependent on temperature, averaging 3.13 × 10−5 1/◦C. Nevertheless, the layer
thickness has influenced the dimensional behavior over the investigated temperature range.

Table 4. Overall TMA statistical data of CTE measurements for ONYX material (over 30 to 160◦

temperature range).

Material/Sample ONYX HTP HTS

CTE [10−6 1/◦C]

318.4 (125 µm)
296 (125 µm)

308.4 (250 µm)
330 (250 µm)

147.4
144.5
141.3

-

271.7
265.3
177.3

-

Mean 313.2 144.4 238.1

SD 14.47 3.05 52.75

Std. Error 7.23 1.76 30.45

The aim of these thermomechanical analyses on ONYX samples printed in ZX ori-
entation with ±45◦ infill angle (the standard print setting in the Eiger Software is XY
orientation) using two different 125 µm and 250 µm layer thicknesses, respectively, was to
determine the influence of the printing layer thickness on the CTE. TMA results provided
in Figure 9 display the values for the two series of ONYX material 3D printed using 125 µm
and 250 µm layer thicknesses, clearly indicating a different evolution of the CTE over the
investigated temperature range.
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Nevertheless, both types of 3D-printed ONYX materials presented an increase in
CTE after 30 ◦C and the same inflection point between 40 and 60 ◦C. Within this study,
it was observed that CTE of ONYX (125 µm thickness layer) 3D printed was not highly
dependent on temperature, averaging a 3.6 × 10−5 1/◦C value on the temperature range
from 30 to 160 ◦C, confirming previously reported results [27,28]. Two distinct slopes in
CTE measurements, typical for polymers, were observed for ONYX material; the linear
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coefficient of thermal expansion first slightly raised after 30 to 60 ◦C, from a value of
1.4 × 10−5 1/◦C to a peak of 3.5 × 10−5 1/◦C, where it remained almost constant up to
160 ◦C. On the contrary, ONYX samples developed using 250 µm thickness layer, showed a
significant reduction in thermal expansion above 60 ◦C, from a value of 3 × 10−5 1/◦C to
3.5 × 10−5 1/◦C. These differences can be attributed to the lower number of interfaces and
lower chopped carbon fiber content (associated to half of the number of layers compared
to ONYX (125 µm layer) with a 3D-printed configuration), but also to stress relief after
printing and improvements in crystallinity from the heat treatment [28].

ONYX_R material’s TMA curve from Figure 8 exhibited two inflection points. One
was around 50 ◦C, where a slight increase in CTE was observed from 10.34 × 10−6 1/◦C
(at 30 ◦C) to 1.49 × 10−5 1/◦C. A second transition point was recorded between 110 and
115 ◦C, where an increase in CTE was observed (1.72× 10−5 1/◦C at 114 ◦C). This point also
confirms the glass transition temperature Tg of 114 ◦C determined for ONYX_R material by
means of DMA analysis. No clear softening points were detected as a negative deflection
in dimension change on investigated materials. An overall CTE of 1.43 × 10−5 1/◦C was
recorded over the temperature range from 30 ◦C to 120 ◦C. Nevertheless, a significant
increase in CTE was observed after 120 ◦C from 31.9 × 10−5 1/◦C to 242.3 × 10−6 1/◦C at
156 ◦C. As mentioned earlier, ONYX_R samples were XZ printed isotropic with four upper
and four lower ONYX layers of 45/−45◦ infill angle, and, additionally, four perimeters,
using a 125 µm thickness layer. CTE of carbon fiber in the longitudinal direction was close
to zero or negative; however, the overall CTE of the final part will be dependent on the
infill orientation of the internal layers. Another factor that may contribute to enhanced
expansion in the cross-flow direction was the potential for micro-porosity between adjacent
printed beads, providing a buffer zone where the material can freely expand, mitigating
the overall expansion observed at the macro scale [28].

3.3. Tensile and Three-Point Bending Mechanical Results

The average stress–strain curves of the three-point bending tests are illustrated in
Figure 10 below, while Table 5 reports the values obtained for each three-point bending
sample tested for each 3D-printed material investigated.

Three-point bending test results for the tested ONYX_R material specimens showed a
mean flexural strength of 175 MPa with a standard deviation (SD) of 1.58 MPa. All flexural
tested ONYX_R specimens elastically deform and fracture before deforming plastically:
behavior specific to brittle polymers. All ONYX_R specimens had a brittle fracture char-
acterized by a low elongation at the break and a sudden increase in stress during failure.
The failure of the tested carbon-fiber-reinforced ONYX_R material specimens occurred
suddenly, highlighted on the graph by a discontinuity (a sudden stress increase). This
corresponds to the release of carbon fibers. The datasheet supplied by Markforged indicates
a 540 MPa maximum flexural stress for the carbon fiber filament. It was mentioned that the
specimens tested were particularly manufactured to obtain maximum values. For exam-
ple, they were manufactured without the matrix layouts, by depositing carbon filament
exclusively; this option was not accessible to general users.

Table 5. Maximum flexural strength results.

Material/Sample ONYX ONYX_R HTS_L HTS_T HTP_L HTP_T

Flexural Strength
[MPa]

42.06 174.37 77.13 68.39 75.591 82.205
41.47 176.08 77.48 64.84 68.976 70.866
39.65 176.81 79.25 64.61 74.528 75.118
39.32 - 82.56 64.84 72.165 -
38.32 - 78.54 - - -

Mean 40.16 175.75 78.99 65.67 72.81 76.06

SD 2.42 1.58 4.69 3.3 8.6 32.81

CV [%] 6.03 0.9 5.94 5.03 11.81 43.14
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Likewise, the maximum flexural stress was measured by a method similar to ASTM
D790, requesting that the specimens were not tested up to failure before the end of the
flexural test. In addition, previous reported results reveal that all printable materials have
the tendency to absorb water from the environment, up to 8% of their weight [21,29]. During
the printing process, the absorbed water creates bubbles and voids in the deposited filament,
which weakens interlayer bonding of the final part. Hence, including a pre-drying step
before printing might enhance mechanical performance of the final parts [30]. Furthermore,
in all flexural tested ONYX_R specimens, it was observed that reinforced filament cross
sections exhibit a high degree of inhomogeneity, with alternate polymer-rich and fiber-rich
regions, most likely due to the filament fabrication method (Figure 11). The significant
variation of fiber volume fraction could also lead to significant stress concentrations that
can trigger premature failure of the materials. Nevertheless, this discrepancy, with respect
to the producer’s datasheet, was previously reported by several studies. Parmiggiani
et al. [31] reported an average 340.7 MPa maximum flexural stress for specimens with
56% continuous carbon fiber infill. Ghebretinase et al. [32] stated a value of the average
maximum flexural stress of 270.7 MPa, where a test was performed according to the D7264
standard. Thus, for 14% infill decrease, the average maximum flexural stress decreased by
20.5%. In this paper, the average maximum flexural stress obtained for ONYX_R material
was 175.75 MPa, which represents a 35% decrease for 5% less infill than reported in [32], and
compared to the value provided by the Markforged datasheet, there was a 67% difference,
but for 63% less infill, with differences attributed to all potential reasons mentioned above.
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The failure of the ONYX test specimens did not occur until the test midspan deflection
had been reached; therefore, the values presented are not actual breaking values. The
values of the maximum stresses varied between 38 and 42 MPa, and showed good repeata-
bility. The HTS resin shows a clear change in the average flexural strength depending on
the printing direction as shown in Figure 10, from 78 MPa for the longitudinal printed
specimens to 65 MPa for transversal printed specimens. In Figure 10 below, it is illustrated
that the rupture occurred before the maximum value of the midspan deflection was reached.
For HTP and HTS materials, no literature data were reported previously to our knowledge;
nevertheless, results are slightly lower than values reported in the datasheet. The experi-
mental data did not show large differences from one specimen to another, which indicated
good repeatability of the additive manufacturing processes used in the production of the
test specimens.

Regarding the continuous carbon-fiber-reinforced ONYX_R samples subjected to the
flexural test, all the sources cited [31,32] present method differences such as higher infill
percent, different testing method, different printing orientation and fiber direction, etc.
Thus, these differences explain the lower value obtained for the average maximum flexural
stress. Other factors that could affect/influence the obtained value are the temperature
and humidity of the environment during the process (during manufacture, storage, and
testing), since generally not all the parameters are measured and reported. A future study
shall be conducted in order to determine the extent to which these factors may affect
material properties. For example, in [33], it was exposed that the moisture and the print
orientation considerably affect material properties. The material studied was ONYX FR,
which was a flame-retardant variation of ONYX, with slightly better mechanical properties.
The averaged stress–strain curves of the tensile test are illustrated in Figure 12 below, while
Table 6 reports the values obtained for each tensile sample tested for each 3D-printed
material investigated.



Materials 2022, 15, 5069 14 of 18

Materials 2022, 15, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 12. Stress–strain curves in the tensile test. 

The specimens fractured near the clamping section at both tab ends, but within the 
gauge length (Figure 13b). Thus, a double failure was observed on all samples, corre-
sponding to MAT and MAB failure codes type according to the ASTM D 3039 standard. 
The carbon-fiber-reinforced ONYX_R specimens manufactured by CFF technology poten-
tially present a weak bonding between the layers, especially between the matrix and rein-
forcement filaments; the printing orientations led to anisotropic material properties, as 
observed in this tensile test campaign, compared to other additive manufacturing tech-
nologies. 

Table 6. Maximum tensile strength results. 

Material/Sample ONYX ONYX_R HTS_L HTS_T HTP_L HTP_T 

Tensile Strength 
[MPa] 

46.23 621.9 61.16 58.06 27.36 36.61 
44.97 615.24 67.48 61.87 27.62 43.32 
49.84 622.63 68.77 52.54 23.79 35.06 
44.54 628.356 63.93 52.40 - - 
44.51 - - 53.65 - - 

Mean 46.02 622.03 65.33 55.7 26.26 38.33 
SD 5.05 28.83 11.94 17.17 4.58 19.28 

CV [%] 10.98 4.64 18.28 30.82 17.44 50.29 

By examining the graph in Figure 12, it can be easily seen that, in the case of ONYX, 
the fracture occurred after it reached a level of plastic flow specific to the polymeric ma-
terials. The composition of ONYX (a mix of nylon and micro carbon fiber) was responsible 
for the results in the uniaxial tensile test graph. It was clear that local discontinuous rein-
forcement provided lower strength and stiffness compared to continuous reinforcement. 
ONYX samples showed a significantly lower behavior compared to reinforced ONYX_R 
specimens. The analysis of the obtained values led to an average value of 46 MPa for the 
maximum tensile test: higher than the value provided by the Markforged datasheet (37 
MPa). This datasheet’s underestimation has been also noticed in other papers [31,36]. The 

Figure 12. Stress–strain curves in the tensile test.

Table 6. Maximum tensile strength results.

Material/Sample ONYX ONYX_R HTS_L HTS_T HTP_L HTP_T

Tensile Strength
[MPa]

46.23 621.9 61.16 58.06 27.36 36.61
44.97 615.24 67.48 61.87 27.62 43.32
49.84 622.63 68.77 52.54 23.79 35.06
44.54 628.356 63.93 52.40 - -
44.51 - - 53.65 - -

Mean 46.02 622.03 65.33 55.7 26.26 38.33

SD 5.05 28.83 11.94 17.17 4.58 19.28

CV [%] 10.98 4.64 18.28 30.82 17.44 50.29

The average maximum tensile strength obtained from the tensile samples of the carbon-
fiber-reinforced ONYX_R was 600 MPa with a standard deviation (SD) of 28.83 MPa and
the average yield strain of approximately 0.025 mm/mm. The results are higher than other
reported results for this type of material [32,34,35], but lower than the 800 MPa tensile
strength indicated by the datasheet supplied by Markforged for the carbon fiber filament.
It was mentioned that the specimens were specially prepared to obtain maximum values,
but these fabrication options are not accessible to general users. M.J. Sauer observed in [16]
that material properties are directly related to the number of carbon fiber strands loaded
in tension within the part, and that the increase in material properties is linear. From the
author’s best knowledge, there are no published papers that attained values close to the
ultimate tensile strength provided by the Markforged datasheet. A reasonable explanation
could be that the samples were manufactured entirely from carbon filament (100% carbon
fiber reinforcement infill), as specified in datasheet. The stress increased because part of
the load was taken from the reinforcing carbon fiber in ONYX_R specimens showing a
brittle fracture behavior, characterized by a low specific elongation at break, observed at
2.5% strain, which is usual for reinforced composite materials.

The specimens fractured near the clamping section at both tab ends, but within the
gauge length (Figure 13b). Thus, a double failure was observed on all samples, correspond-
ing to MAT and MAB failure codes type according to the ASTM D 3039 standard. The
carbon-fiber-reinforced ONYX_R specimens manufactured by CFF technology potentially



Materials 2022, 15, 5069 15 of 18

present a weak bonding between the layers, especially between the matrix and reinforce-
ment filaments; the printing orientations led to anisotropic material properties, as observed
in this tensile test campaign, compared to other additive manufacturing technologies.
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By examining the graph in Figure 12, it can be easily seen that, in the case of ONYX, the
fracture occurred after it reached a level of plastic flow specific to the polymeric materials.
The composition of ONYX (a mix of nylon and micro carbon fiber) was responsible for the
results in the uniaxial tensile test graph. It was clear that local discontinuous reinforcement
provided lower strength and stiffness compared to continuous reinforcement. ONYX
samples showed a significantly lower behavior compared to reinforced ONYX_R specimens.
The analysis of the obtained values led to an average value of 46 MPa for the maximum
tensile test: higher than the value provided by the Markforged datasheet (37 MPa). This
datasheet’s underestimation has been also noticed in other papers [31,36]. The composite
laboratory of Aarhus University provided an extended datasheet of ONYX, based on their
research [37]. It was interesting to observe how the tensile properties of ONYX were
affected by the part printing direction. The specimens printed on the XY axis (longitudinal)
obtained a lower tensile strength value (34.2 MPa) compared to the specimens printed on
the XZ axis (53.6 MPa) [37]. The longitudinally printed specimen’s tensile strength [37]
was slightly lower than the one provided by Markforged, and significantly lower than the
results from this study. All tested ONYX specimens yielded after a separation plane, the
tensile failure mode corresponding to AGM (angled gauge middle) according to the ASTM
D3039 standard [38] (Figure 13). Such failure modes occurring at the gage region were
previously reported for ONYX materials [30].

The values for the proportionality limit were close to those of the maximum tensile
stress; materials exhibit a fragile behavior.

HTP and HTS 3D-printed materials showed reasonable performances in both tensile
and three-point bending static regimes, higher than previously reported values for similar
photopolymer resins [36]. Photocentric’s HTS 3D-printed material confirms the tensile
elongation at break of 4.8% from the datasheet, although the ultimate tensile strength
is 20% lower than reported values, possibly due to different printing parameters and
testing methods. The flexural modulus was confirmed and the flexural strength was nearly
the same as the value reported in the datasheet. HTS 3D-printed material displays high
tensile strength and elongation comparable to acrylics and polyimides, providing minimal
shrinkage and high-accuracy printed parts. HTP 3D-printed material is a temperature-
resistant resin, with experimentally determined transition temperature around 175 ◦C and a
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deflection temperature around 230 ◦C, assuring both high strength and stiffness compared
to other photopolymers [36,39]. Likewise, compared with ONYX material, both printing
directions for HTP and HTS 3D-printed materials were stronger and stiffer under static
mechanical solicitations. Regarding the effect of printing direction, no significant change
was observed in HTP material between transversally and longitudinally printed samples
in tensile regime. Nevertheless, for HTS material, the effect was visible, the tensile strength
increasing from 45 MPa to around 65 MPa, the tensile strain from 2 to 4.8%, and the flexural
strength rising from 65 MPa to 80 MPa while flexural strain stayed constant, when shifting
the printing direction from transversal to longitudinal.

4. Conclusions

Both FFF and DLP additive manufacturing technologies investigated in this study
showed great potential to be used as replacement for conventional methods (e.g., autoclave,
VA-RTM) highly used in the aerospace industry for primary structures (e.g., fuselage),
secondary structures (e.g., Outer Guide Vanes), or technological mold manufacturing.
Likewise, the experimental data did not show a large dispersion, indicating good repeata-
bility of the additive manufacturing processes used in the production of tested specimens.
Within all investigated materials, the highest strength values were recorded by carbon-fiber-
reinforced ONYX_R material regardless of the type of static testing regime. In addition,
ONYX_R exhibited a glass transition point at 114 ◦C, which was consistent with previously
reported values and comparable with usual CFRP composites developed by the abovemen-
tioned conventional methods. Thus, ONYX_R can be a potential candidate for aeronautic
secondary structures by means of FFF additive manufacturing technology. Regarding the
investigated photopolymers, results showed that HTS can be used for manufacturing low-
temperature curing cycle molds (by means of DLP additive manufacturing technology),
while HTP proved to be a good candidate for manufacturing molds necessary in the CFRP
composite parts that are to be cured at higher temperatures, up to 230 ◦C, via conventional
autoclave technology.
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