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Abstract
Background: Hepatocellular carcinoma (HCC) is the most common histological sub-
type of liver cancer and the third leading cause of death from cancer globally. Recent 
studies suggested cell death is also a key regulator of tumour progression. The pur-
pose of this study was to generate a new predictive signature for HCC patients based 
on a complete analysis of necroptosis- associated genes.
Methods: We	 extracted	 the	 mRNA	 expression	 profiles	 of	 HCC	 patients	 from	 the	
TCGA	and	ICGC	databases	and	their	clinical	data.	In	addition,	we	used	the	IMvigor210	
cohort to validate our model molecule's ability to predict the effect of immunother-
apy.	In	the	TCGA	cohort,	a	seven-	gene	risk-	prognostic	model	was	constructed	using	
univariate	cox-	Lasoo	regression.	External	validation	was	conducted	using	the	 ICGC	
cohort.	The	ssGSEA	algorithm	is	used	to	determine	the	degree	of	immune	function	
response.	The	CMAP	databases	are	used	for	chemotherapy	drug	analysis	and	screen-
ing for drugs that reduce the expression of high- risk genes. The cbioportal database 
was used to explore mutations in model genes.
Results: Survival analysis shows shorter survival for high- risk patients. Immune func-
tion analysis revealed significant differences in the activity of immune pathways 
between risk subgroups. Varied risk scores result in dramatically diverse immune infil-
tration	and	tumour	growth,	as	well	as	significantly	different	chemotherapeutic	sensi-
tivity.	In	addition,	Apigenin	and	LY-	294002	reduced	the	expression	of	high-	risk	genes,	
while	Arecoline	had	the	opposite	effect.	In	the	immunotherapy	IMvigor210	cohort,	
risk scores were significantly different between the objective responder and non- 
responder	groups.	By	comparing	the	models	constructed	with	published	literature,	it	
is suggested that our model has better predictive power.
Conclusions: We created a new prognostic signature of necroptosis- related genes 
that can be used as potential prognostic biomarkers to guide effective personalized 
therapy for hepatocellular carcinoma patients.

K E Y W O R D S
biomarkers,	drug	screening,	hepatocellular	carcinoma,	necroptosis,	prognosis

www.wileyonlinelibrary.com/journal/jcla
mailto:￼
https://orcid.org/0000-0002-3499-1493
https://orcid.org/0000-0003-4633-1000
http://creativecommons.org/licenses/by/4.0/
mailto:hangyang1999@163.com


2 of 18  |     YANG ANd JIANG

1  |  INTRODUC TION

Ninety percent of primary liver cancers are caused by hepatocel-
lular	 carcinoma	 (HCC),	 the	 third	 most	 common	 cause	 of	 cancer-	
related	death	globally.	According	 to	 the	American	Cancer	Society,	
in	 2021	 liver	 cancer	 is	 expected	 to	 cause	 approximately	 30,230	
American	 deaths.1	 Genetics,	 epigenetic	 alterations,	 chronic	 hep-
atitis	 B,	 are	 the	 main	 risk	 factors	 for	 hepatocellular	 carcinoma.	
Hepatocellular carcinoma has a poor prognosis because of its pro-
pensity	 for	 recurrence	 and	 dissemination.	 Genetics,	 epigenetic	
alterations,	chronic	hepatitis	B,	are	the	main	risk	factors	for	hepa-
tocellular carcinoma. Hepatocellular carcinoma has a poor prognosis 
because of its propensity for recurrence and dissemination.

Immune checkpoint inhibitors (ICIs) have become an effective 
therapy option for patients with advanced HCC in recent years due 
to their increased clinical use. Clinical agents for treating HCC with 
checkpoint	 inhibitors	 include	 anti-	CTLA-	4	 and	 anti-	PD-	1	 drugs.	
Anti-	PD-	1	drugs	have	demonstrated	significant	effects	in	improving	
tumour response and patient survival.2	 However,	 immune	 check-
point inhibitors (ICIs) only benefit one- third of cancer patients and 
have significant limitations.

The	majority	of	cancers	are	very	resistant	to	apoptosis,	and	in-
duced	cell	death	processes	can	be	a	brand	new	cancer	 treatment,	
and numerous recent research has established a link between vari-
ous cell death mechanisms and anticancer immunity. Recent studies 
have revealed that pyroptosis and ferroptosis combined with im-
mune cell infiltration can affect the progression of different cancers 
and have developed some novel prognostic molecules.3,4	However,	
few studies have explored how necroptosis affects the progression 
of hepatocellular carcinoma and the immune infiltration of hepato-
cellular carcinoma cells.

Necroptosis	 occurs	 downstream	 of	 PRK1	 and	 RIPK3,	 which	
form oligomeric complexes known as necrosomes.5	 MLKL	 me-
diates the release of cell contents by necrosome- promoted cell 
swelling	and	plasma	membrane	collapse,	 resulting	 in	 the	spillage	
of intracellular organelles and biomolecules into the extracellu-
lar environment. Necroptosis has been shown to inhibit tumour 
progression,	but	it	can	also	promote	cancer	metastasis	and	immu-
nosuppression by eliciting an inflammatory response.6,7	However,	
the mechanism of necroptosis's role in hepatocellular carcinoma 
remains	unknown,	so	this	study	used	bioinformatics	to	investigate	
the prognosis of necroptosis- related molecules as well as the im-
munological role.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition and collation

The	TCGA	database	(https://portal.gdc.cancer.gov/)	was	utilized	to	
download	 transcriptome	 datasets	 (FPKM)	 and	 clinical	 information	
for	 424	 samples	 of	 hepatocellular	 carcinoma	 (50	 normal	 and	 374	
tumour	 samples).	 As	 a	 training	 set,	we	 use	 the	 TCGA	 cohort.	We	

also downloaded the Japanese cohort's transcriptome and clinical 
information gleaned from the ICGC database (https://dcc.icgc.org/
proje	cts/LIRI-	JP)	and	obtained	231	samples	with	survival	time,	out-
come and pathological stage as the validation cohort by collating and 
merging	the	transcriptome	and	clinical	data	(Appendix	S1	and	S2).	In	
addition,	we	gathered	62	genes	related	to	the	necroptosis	pathway	
for	inclusion	in	this	study	by	searching	the	literature.	In	addition,	the	
immunotherapy	IMvigor210	cohort	was	derived	from	the	literature.8 
Because	TCGA	and	ICGC	are	open	source	databases,	there	are	no	
ethical concerns or conflicts of interest.

2.2  |  Differentially expressed necroptosis- related 
genes with prognostic effects

We extracted the expression of 62 genes associated with necroptosis 
from	the	TCGA	transcriptome	as	a	new	matrix	for	subsequent	analy-
sis,	and	identified	42	genes	differentially	expressed	between	the	tu-
mour and normal groups using the ‘limma’ package9 [logFold change 
>1,	false	discovery	rate	<0.05]. Screening of necroptosis genes asso-
ciated	with	prognosis	by	univariate	COX	analysis	(Appendix	S1	and	
S2). Prognosis- related differentially expressed genes were identified 
by taking intersections using the Venn package. (PR- DEGs).

2.3  |  Gene ontology and KEGG analysis of 
differentially expressed genes

We used ‘clusterProfiler’ package10,11 to transform IDs of DEGs and 
performed gene ontology and Kyoto Encyclopedia of Genes and 
Genomes	 analysis,	 and	 ‘ggplot2’,	 ‘enrichplot’	 packages	 to	 visualize	
the obtained data.

2.4  |  Development of the necroptosis- related gene 
prognostic model

Screening	 of	 PR-	DEGs	 by	 the	 LASSO	 algorithm	 of	 the	 ‘glmnet’	 R	
package to identify genes for model building. Seven genes' expres-
sion levels and regression coefficients were used to determine the 
risk	scores	for	HCC	patients	(Table	1).	The	equation	employed	was:

TA B L E  1 Coefficients	of	prognostic	genes	obtained	based	on	L	
asso algorithm

Gene Coef

TRAF2 0.105398580022597

PGAM5 0.385771773843994

ATG16L1 0.100232667095849

CARD9 0.330982332251438

PCYT1A 0.161666550305379

TLR2 0.020691625065588

PARP2 0.193368483419255

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/projects/LIRI-JP
https://dcc.icgc.org/projects/LIRI-JP
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Patients were classified as high-  or low- risk depending on the 
TCGA	 training	 set's	 median	 risk	 scores.	 The	 expression	matrix	 of	
the ICGC validation set is also log2 (X + 1)-	normalized,	and	the	TCGA	
training set's median risk score is used as the criteria for grouping 
the	 ICGC	 cohort.	 (Appendix	 S1	 and	 S2).	 To	determine	 the	 predic-
tive	accuracy	of	the	risk	scores,	ROC	curves	were	constructed	using	
the ‘Survival’ and ‘Time ROC’ packages. The ‘Rtsne’ and ‘ggplot2’ 
packages	were	 used	 for	 PCA	 and	 t-	SNE	 analysis	 and	 visualization	
to explore whether our risk model can better distinguish between 
different patients. We collected immunohistochemical profiles of 
the corresponding necroptosis- related genes through the Human 
Protein	 Atlas12- 14 database(https://www.prote inatl as.org/) to 
identify trends in differential gene expression in different tissues. 
The	 Single	 Cell	 Expression	 Atlas	 (SCEA)	 database	 project	 was15 
used to explore the expression of key genes in hepatocellular car-
cinoma	 at	 the	 single-	cell	 level.	 In	 addition,	 the	 immunotherapy	
IMvigor210	cohort	was	used	to	validate	the	model's	ability	to	predict	
immunotherapy.

2.5  |  Risk prognostic model independent 
prognostic analysis

We analysed whether a risk- prognosis model for two independ-
ent cohorts could be distinguished from traditional clinicopatho-
logical characteristics as an independent prognostic indicator 
for patients by univariate Cox and multivariate Cox . Based on 
the results of multivariate COX analysis we built the Nomogram 
(Appendix	S1	and	S2)	and	then	labelled	a	patient's	score	informa-
tion	for	clinical	use.	Calibration	curves	occur	at	1,	2	and	3	years.	
Multi-	indicator	 ROC	 curves	 and	 decision	 curve	 analysis	 (DCA)	
curves and calibration curves are used to assess the accuracy of 
the Nomogram.

2.6  |  Identifying differences in gene 
enrichment and pathological features between 
risk subgroups

We analysed the differences in the enrichment pathways between 
the different risk subgroups by the gene set enrichment analysis 
(GSEA)	 algorithm.16 Patient expression data were combined with 
clinical data to observe differences in clinical characteristics be-
tween	the	high-		and	low-	risk	groups	of	the	two	cohorts	of	TCGA	and	
ICGC	by	chi-	square	test(Appendix	S1	and	S2).

2.7  |  Differential analysis of immune cells and 
function in different risk subgroups

We	obtained	the	immune	score	using	the	ssGSEA	algorithm	in	the	
GSVA	 package17 and visualized the differences in immune cells 
and function in different risk subgroups by plotting box plots. We 
included	 19	 immune	 checkpoint-	related	 genes,	 extracted	 signifi-
cantly differentially expressed between risk subgroups using the 
Wilcox	 test,	 and	 visualized	 gene	 expression	 differences	 using	 box	
plots(Appendix	S1	and	S2).

2.8  |  Drug sensitivity analysis and CMAP 
drug screening

The drug sensitivity files were downloaded by accessing the NCI- 
60	 database	 through	 CellMine	 (https://disco	ver.nci.nih.gov/cellm	
iner),	and	Pearson	correlation	analysis	was	used	to	 investigate	 the	
relationship between model gene expression and drug sensitivity to 
correlate	 the	efficacy	of	FDA-	approved	drugs	 (Table	2)	 (Appendix	
S1 and S2).

We obtained different genes by differential analysis of high- risk 
and low- risk subgroups. In order to reduce the risk of patients and 
improve	survival,	we	performed	drug	screening	through	the	CMAP	
database (https:/portals.broadinstitute.org/cmap/) and searched 

Riskscore =0.10539×TRAF2+PGAM5×0.38577+ATG16L1×0.10023

+CARD9×0.33098+PCYT1A×0.16166+TLR2×0.02069

+PARP2×0.19336

TA B L E  2 CMAP	database	top	10	drug	screening	results

Rank Cmap Name Mean N Enrichment p value Specificity
Percent 
non- null

1 Verteporfin −0.896 3 −0.993 0 0 100

2 Apigenin −0.834 4 −0.952 0 0 100

3 Tanespimycin −0.524 62 −0.44 0 0.0924 79

4 Trichostatin	A −0.397 182 −0.267 0 0.6238 71

5 Phenoxybenzamine −0.838 4 −0.932 0.00002 0.0091 100

6 Adiphenine 0.735 5 0.925 0.00002 0 100

7 LY−294002 −0.441 61 −0.325 0.00002 0.2883 73

8 Biperiden 0.702 5 0.852 0.00018 0.0061 100

9 Alprostadil 0.443 7 0.739 0.00022 0 71

10 Pheneticillin 0.644 4 0.877 0.00034 0 100

https://www.proteinatlas.org/
https://discover.nci.nih.gov/cellminer
https://discover.nci.nih.gov/cellminer
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F I G U R E  1 Identification	of	genes	differentially	expressed	in	different	tissues	in	relation	to	prognosis.	(A)	Univariate	COX	analysis	of	
prognosis-	related	genes.	(B)	The	intersection	portion	of	the	Wayne	plot	shows	18	differentially	expressed	genes	associated	with	prognosis.	
(C) Heat map showing differential expression of genes. (D) Correlation graph between genes
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F I G U R E  2 Gene	enrichment	and	pathway	analysis.	(A,B)	Gene	ontology	enrichment	analysis.	(C,D)	KEGG	analysis	with	these	differential	
genes	was	enriched	in	Necroptosis,	TNF	signalling	pathway.	(E,F)	Circle	diagram	for	GO	and	KEGG	analysis
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the PubChem website (https:/pubchem.ncbi.nlm.nih.gov/) for two- 
dimensional	and	three-	dimensional	structural	formulas	of	drugs(Ap-
pendix S1 and S2).

2.9  |  Mutation analysis of model genes

We visualized mutations in different risk subgroups using the 
maftools	package,	analysed	the	relationship	between	tumour	muta-
tion	burden	(TMB)	and	risk	score,	and	examined	mutations	in	model	
genes with corresponding amino acid structural domain mutations 
using the cbioportal (http://www.cbiop ortal.org/) database.

2.10  |  Comparison between prognostic risk models

We	collected	literature	on	hepatocellular	carcinoma,18-	20 extracted 
the genes they used to construct predictive models and performed 
survival curve and ROC curve analysis to compare the predictive 
power of our constructed models.

2.11  |  Statistical analysis

All	statistical	analyses	including	Kaplan–	Meier	survival	analysis	and	
univariate multivariate COX analysis were done in R language ver-
sion	4.1.1,	and	p values <0.05 were considered statistically signifi-
cant in different comparisons.

3  |  RESULTS

3.1  |  Identification of genes differentially 
expressed in different tissues in relation to prognosis

Through	 univariate	 COX	 analysis,	 we	 identified	 22	 genes	 with	
prognostic	 significance.	 (Figure	 1A).	 18	 PR-	DEGs	 were	 obtained	
by taking intersections of differentially expressed genes with 
prognosis- related genes (Figure 1B). Heatmap demonstrates the 
difference	in	expression	of	18	PR-	DEGs	in	tumour	and	non-	tumour	
tissues (Figure 1C). Correlation diagram showing the different asso-
ciations	between	the	18	PR-	DEGs	(Figure	1D).

3.2  |  Gene ontology and KEGG analysis of DEGs

We have used gene ontology to analyse the three components 
of	 gene	 involvement:	 cellular	 components,	 molecular	 functions	

and biological processes. We found that DEGs are mainly en-
riched	 in	 the	 biological	 process	 of	 stress-	activated	 MAPK	 cas-
cade	 at	 the	 BP	 level.	 In	 terms	 of	 cellular	 components,	 they	
mainly	 constitute	 membrane	 rafts,	 which	 are	 microstructural	
domains enriched in cholesterol- saturated lipids (e.g. sphingolip-
ids)	but	insoluble	in	Triton	X-	100.	In	addition,	for	molecular	func-
tions DEGs are concentrated in protein serine/threonine kinase 
activity(Figure	2A,B,E).	 In	 addition,	KEGG	analysis	 revealed	 that	
DEGs were mainly enriched in Necroptosis and NOD- like receptor 
signalling	pathways(Figure	2C,D,F).

3.3  |  Risk prognostic modelling and external 
cohort validation

Seven genes involved in the construction of the model were identi-
fied by univariate cox and lasso analysis. The sum of the coefficients 
of the seven genes and the product of their respective expressions 
was	 the	 patient's	 risk	 score	 (Figure	 3A,B;	 Table	 1).	 The	 single-	cell	
clustering plots demonstrate the differences in expression of dif-
ferent	model	genes	in	different	clusters,	and	most	genes	are	highly	
expressed	in	cluster	7	(Figure	3C,D).	Immunohistochemistry	map	of	
the	HPA	database	illustrating	gene	expression	trends	in	various	tis-
sues.	Significantly	high	expression	of	TRAF2,	PGAM5	and	ATG1621	
in	the	tumour	group	was	an	unfavourable	prognostic	factor.	PCYTIA	
and	CADR9	are	not	 differentially	 expressed.	The	 results	 obtained	
from	the	HPA	database	KM	survival	analysis	and	our	analysis	were	
consistent as an unfavourable prognostic factor (Figure 3E).

The	Kaplan–	Meier	 survival	 curve	 results	 showed	 that	 the	 sur-
vival	rate	was	significantly	lower	in	the	high-	risk	group	of	the	TCGA	
cohort (p = 0.002) and ICGC cohort (p =	0.016)	(Figure	4A,B).	The	
area	under	the	ROC	curve	for	the	TCGA	cohort	at	1,	2	and	3	years	
was	 0.741,	 0.717	 and	 0.648.	 In	 the	 ICGC	 cohort,	 the	 AUCs	were	
0.687,	0.691,	0.611.	The	AUC	values	of	the	ROC	curves	for	the	two	
cohorts revealed the predictive power of our constructed model in 
different	 datasets.	 PCA	 and	 t-	SNE	 analyses	 demonstrate	 that	 risk	
models can more accurately distinguish between patients with vary-
ing	degrees	of	risk	(Figure	4C,D).

3.4  |  Independent prognostic 
analysis of risk prognostic models and comparison 
with multiple indicators

In	 both	 the	 TCGA	 and	 ICGC	 cohorts,	 univariate	 and	 multivariate	
cox analyses revealed that stage of risk score and pathological char-
acteristics	were	 significant	 predictors	 (Figure	5A,B).	 In	 addition,	 to	
better utilize patient information and reduce the errors associated 

F I G U R E  3 Participate	in	the	screening	and	identification	of	construct	model	genes.	(A,B)	LASSO	coefficient	plots	and	10-	fold	
cross-	validation	plots	for	seven	model	genes.	(C,D)	In	the	SCEA	database,	all	hepatocellular	carcinoma	monocytes	were	clustered	into	
31	subgroups	after	setting	the	appropriate	parameters.	Most	of	the	model	genes	can	be	used	as	marker	genes	for	group	7.	(E)	Differences	in	
expression	trends	of	model	genes	in	different	tissues	in	the	HPA	database

http://www.cbioportal.org/
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with	the	prognosis	of	individual	indicators,	we	combined	the	patient's	
stage,	gender,	grade,	age,	 risk	 information	to	develop	a	nomogram.	
We randomly labelled the corresponding clinical information and the 
patient's total score on the graph (Figure 5C). The calibration curve 
shows the stability of the Nomogram (Figure 5D). The ROC curve 
demonstrates the specificity and sensitivity of the predictive ability of 
each	prognostic	indicator	(Figure	5E).	The	DCA	curve	shows	the	best	
predictive ability of our constructed Nomogram model (Figure 5F).

3.5  |  Differences in clinical characteristics and 
gene enrichment among different risk subgroups

Gene set enrichment analysis results found that the high- risk group 
was	 associated	 with	 cell	 cycle,	 base	 excision	 repair	 and	 cytokine	
receptor	 interaction	 pathway	 (Figure	 6A).	 The	 low-	risk	 group	was	
enriched in drug metabolism cytochrome - P450 (Figure 6B). The 
rectangular plots show the differences between the clinicopatho-
logical characteristics stage between different risk subgroups in two 
independent cohorts. The stage was significantly different between 
different	risk	subgroups	in	the	TCGA	(p = 0.004) and similarly in the 
ICGC (p =	0.007),	and	in	addition,	we	explored	the	different	clinico-
pathological	 characteristics	between	different	 risk	 subgroups,	 and	
we	marked	the	indicators	with	significant	differences	(Figure	6C,D).

3.6  |  Differences in immune cells and function in 
different risk subgroups

Tumour	 stem	 cell	 correlation	 analysis	 was	 performed	 by	 mRNA	
expression	and	DNA	methylation	data.	There	 is	a	statistically	sub-
stantial	correlation	between	risk	scores	and	RNA	stemness	scores	
(RNAss),	but	risk	score	was	not	correlated	with	DNA	stemness	score	
(DNAss)	(p =	0.55)	(Figure	7A,B).	We	aimed	to	discuss	whether	the	
risk	 groupings	 we	 constructed	 differed	 between	 subtypes,	 and	
the results of the analysis showed significant differences between 
subtypes except for C3 and C4 where the risk scores did not differ 
significantly (p =	 0.097)	 (Figure	7C).	Using	 the	SSGSEA	algorithm,	
we obtained immune scores for each patient and explored the dif-
ferences in immune function based on the previous risk subgroups. 
aDCS,	 macrophages	 and	 treg	 immune	 cells	 were	 significantly	
more infiltrated in the high- risk group than in the low- risk group 
(Figure	7D).	In	addition,	the	Type	II	IFN	Response	cytolytic	activity	
functional pathway was more active and significantly different in the 
low-	risk	group	than	in	the	high-	risk	group	(Figure	7E).	We	included	
19 immune checkpoint- associated genes to explore the differences 
between	high-		and	low-	risk	subgroups	(Figure	7F).

3.7  |  Drug sensitivity analysis and 
screening of drugs

We investigated the expression of model genes involved in risk 
prognosis in the NCI- 60 cell line by looking at which model genes 
affect the sensitivity of drugs through sensitivity analysis. The cor-
relation	graphs	show	these	results,	where	cor	values	greater	than	
0 and p values <0.05 indicate that higher gene expression is more 
sensitive to the drug and vice versa. For example as the expres-
sion	 of	 the	 PGAM5	 gene	 increases,	 the	more	 sensitive	 the	 cells	
are	to	Cytarabine,	the	better	the	treatment	effect	 (Figure	8A).	 In	
the	above	GSEA	analysis	study,	the	low-	risk	group	was	enriched	in	
the process of drug metabolism P450. We conducted a differential 
analysis based on risk groups to identify high- risk genes and con-
ducted	drug	screening	through	the	CMAP	database	to	select	drugs	
to reduce patient risk and improve patient survival. Enrichment 
score <0 and p- value <0.05 were considered drugs that could in-
hibit the expression of high- risk genes. We searched for the two- 
dimensional and three- dimensional structures of related drugs 
through the Pubchem website to help us better understand the 
drugs	(Figure	8B-	D).

3.8  |  Model gene mutation analysis

Waterfall	 plots	 show	 the	 mutations	 in	 different	 risk	 subgroups,	
where	 TP53,	 CTNNB1,	 TTN	 gene	 mutations	 are	 more	 frequent	
(Figure	9A,B).	There	was	no	significant	correlation	between	tumour	
mutation	burden	and	risk	score,	and	the	difference	in	TMB	was	not	
significant	in	different	risk	subgroups	(Figure	9C,D).	The	cbioportal	
database	demonstrates	mutations	in	model	genes	in	TCGA	samples	
(Figure	9E),	and	also	demonstrates	mutations	in	amino	acid	structural	
domains,	but	most	genes	are	not	significantly	mutated	(Figure	S1).

3.9  |  Comparison between different risk 
prognostic models

The ROC curve results suggest that our model has better predic-
tive	 power,	 especially	 in	 predicting	 the	 survival	 of	 patients	 in	 the	
second	year	(Figure	10A),	as	demonstrated	by	the	results	of	the	sur-
vival curve when compared with the prognostic models constructed 
by	 the	 other	 three	 authors	 (Figure	 10B,C).	 In	 addition,	 using	 the	
IMvigor210	cohort,	we	found	that	our	model	could	also	predict	to	
some	extent	 the	effect	of	 immunotherapy	 in	patients,	with	statis-
tically significant differences in risk scores between the objective 
responder	and	non-	responder	groups	(Figure	10D,E).

F I G U R E  4 Construction	of	a	risk	prognostic	model	with	external	cohort	validation.	(A)	Construction	of	a	risk-	prognosis	model	using	the	
TCGA	cohort	as	the	training	set.	(B)	ICGC	cohort	for	validating	the	prognostic	value	of	risk	prognostic	models.	(C,D)	Analyses	of	the	receiver	
operating	characteristic	curves	for	risk	scores,	and	PCA	and	T-	SNE	analysis	revealed	that	our	model	was	more	capable	of	discriminating	
between patients with varying levels of risk
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F I G U R E  5 Independent	prognostic	analysis	of	risk	prognostic	models.	(A,B)	COX	analysis	on	a	univariate	and	multivariate	basis	in	the	
TCGA	and	ICGC	cohorts	(C)	Predictive	nomogram	for	predicting	patients	at	1,	3	and	5	years.	(D)	Calibration	curve	showing	the	stability	of	
the	nomogram.	(E)	Multi-	Indicator	ROC	Curve.	(F)	Decision	curve	analysis(DCA)
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F I G U R E  6 Differences	in	clinical	characteristics	and	gene	enrichment	among	different	risk	subgroups.	(A,	B)	GSEA	enrichment	
analysis	results.	(C)	Analysis	of	the	relationship	between	risk	and	stage	in	TCGA	cohort	and	ICGC	cohort.	(D)	Significantly	different	clinical	
characteristics in different risk subgroups
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F I G U R E  7 Immune	cell	and	functional	differential	analysis	based	on	different	risk	subgroups.	(A,	B)	Tumour	stem	cell	correlation	analysis.	
(C)	Differences	in	RiskScore	between	different	immunophenotypes.	(D,	E)	Immune	function	analysis	of	the	TCGA	cohort.	(F)	Immune	
checkpoints express differently in different risk subgroups
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F I G U R E  8 Drug	sensitivity	analysis	and	drug	screening.	(A)	Correlation	analysis	of	chemotherapeutic	drug	sensitivity	and	different	gene	
expressions.|	Identification	of	drugs	that	reduce	and	promote	the	expression	of	high-	risk	genes.	(B)	Apigenin.	(C)	LY-	294002.	(D)	Arecoline
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F I G U R E  9 Genetic	mutation	landscape.	(A-	B)	TP53,	CTTNB1	and	TTN	had	the	highest	number	of	mutations	in	both	groups.	(C,D)	
Relationship	between	tumour	mutation	burden	and	risk	score.	(E)	Mutation	of	model	genes	between	samples
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4  |  DISCUSSION

Identification	 of	 necrotizing	 apoptosis	 often	 requires	multiple	 ap-
proaches because no specific molecular markers have been identi-
fied	 to	 date	 for	 detecting	 necroptosis.	 Additionally,	 the	 impact	 of	
necrosis	on	 tumour	progression	 remains	unknown,	although	some	
reports indicate that necrosis may have an anti- tumour effect in can-
cer.	However,	necrosis	has	been	shown	 to	promote	 tumorigenesis	
and	metastasis	by	inducing	an	inflammatory	response,	as	Liu	et	al.21 
reported that it has been reported that silencing RIPK1 and RIPK3 
in cancer cells decreases the pathogenic capacity of cancer cell 
lines and increases their sensitivity to chemotherapy. Seifert et al.6 

demonstrated that silencing RIPK1 in mice slowed tumour progres-
sion	in	animal	experiments,	suggesting	that	necroptosis-	related	fac-
tors promote cancer development.

In	 this	 study,	we	collected	previous	 literature	on	necroptosis	
and included 62 genes related to necroptosis for bioinformatic 
analysis,	 and	 we	 identified	 18	molecules	 with	 prognostic	 value.	
We observed that the HR values of these genes were all greater 
than	1	as	risk	factors,	and	the	results	of	immunohistochemical	pro-
files	support	this	conclusion.	Upregulation	of	expression	of	genes	
involved	 in	 model	 constructs	 promotes	 cancer	 progression,	 im-
plying that trends in the expression of necroptosis molecules are 
inconsistent across cancer types. We constructed a risk- prognosis 

F I G U R E  1 0 Comparison	and	analysis	between	models.	(A-	C)	Comparison	of	the	three	authors	with	our	model,	ROC	curve	and	KM	curve	
demonstrates the predictive power metrics of different models. (D) Survival curve analysis of the immunotherapy cohort. (E) Variability 
between risk scores among different response groups
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model	based	on	the	lasso	algorithm,	and	all	genes	involved	in	the	
construction of the model were unfavourable prognostic factors. 
The	KM	survival	curve	of	the	TCGA	cohort	revealed	a	lower	sur-
vival	rate	in	high-	risk	patients,	and	this	conclusion	was	validated	in	
the	ICGC	cohort.	We	used	ROC	curves,	calibration	curves	and	de-
cision curves to evaluate the predictive power of the nomogram. 
This reduces the error introduced by the prognostic risk model as 
a	single	prognostic	 indicator.	 In	addition,	we	observed	 the	prog-
nostic	 role	 of	 traditional	 clinicopathological	 features	 in	 cancer,	
which is necessary from the molecular to the clinical level of ap-
plication.	 Therefore,	we	 analysed	 and	 visualized	 the	 differences	
in	clinicopathological	characteristics	between	risk	subgroups,	but	
the	ICGC	cohort	only	contains	information	in	the	stage	column,	so	
our analysis is limited in depth. We have also applied our model 
gene	to	the	IMvigor210	immunotherapy	cohort,	and	survival	curve	
analysis suggests that high- risk patients have more prolonged sur-
vival	after	 immunotherapy.	 In	a	previous	analysis,	we	found	that	
the immune checkpoint gene expression was much higher in the 
high-	risk	 group	 than	 in	 the	 low-	risk	 group,	 demonstrating	 that	
our model can predict the effect of immunotherapy in patients. 
Unfortunately,	 the	 lack	 of	 expression	of	 our	 target	 genes	 in	 the	
GEO database and the small number of samples did not allow us 
to	validate	our	 results	 further,	and	we	will	use	more	datasets	 to	
validate our findings in the future.

TRAF2	 (TNF	 receptor-	associated	 factor	 2)	 expression	 was	
found to be significantly increased in cancer tissues and was asso-
ciated	with	tumour	metastasis	in	previous	studies,22 but has rarely 
been reported in hepatocellular carcinoma. By inhibiting apoptotic 
signalling,	PGAM5	 (PGAM	family	member	5)	has	been	 shown	 to	
be a poor prognostic factor for patients with hepatocellular carci-
noma,23	which	is	consistent	with	our	findings.	ATG16L1	(autoph-
agy related 16 like 1) was discovered to be an apoptotic molecule 
in	HCC	 cells.	 J.	 iaranai	 Peantum	 reported	 that	ATG16L1	 protein	
was upregulated in tumour cell lines and promoted apoptosis in 
HepG2 cells.24	CARD9	(caspase	recruitment	domain	family	mem-
ber	 9)	 promotes	metastasis-	associated	macrophage	 polarisation,	
thereby promoting tumour metastasis. There is a high correlation 
between histopathological staging and metastasis of upregulated 
CARD9	expression.25	Alec	E	Vaezi	et	al.26	reported	that	PCYT1A	
(phosphate	cytidylyltransferase	1A,	choline)	has	biomarker	value	
in	patients	with	lung	cancer	and	that	high	PCYT1A	expression	im-
plies	longer	survival,	but	there	is	a	lack	of	studies	in	hepatocellular	
carcinoma.	The	positive	correlation	between	TLR2	(toll-	like	recep-
tor 2) expression and other proliferation and angiogenesis markers 
in	hepatocellular	 carcinoma	 suggests	 a	possible	 role	 for	TLR2	 in	
the pathogenesis of HCC.27	PARP2	(poly(ADP-	ribose)	polymerase	
2) is associated with different functions of cells in the innate im-
mune response.28

According	 to	 the	 GSEA	 results,	 genes	 in	 the	 low-	risk	 group	
were enriched in the drug metabolism- cytochrome P450 path-
way,	which	 is	a	key	point	of	cancer	treatment.	They	are	 involved	
in the inactivation and activation of anticancer drugs and mediate 
the metabolic activation of many procarcinogens.29	 In	 addition,	

we performed sensitivity analyses of chemotherapeutic agents. 
The differential expression of our different prognostic genes in-
fluenced	the	effects	of	different	agents.	For	example	TRAF2	ex-
pression was positively correlated with the therapeutic effect of 
Cladribine,	and	Cladribine	was	reported	to	have	an	anticancer	ef-
fect on human hepatocellular carcinoma HepG2 cells.30	Apigenin	
inhibits the expression of high- risk genes and acts as an anticancer 
agent to induce apoptosis in hepatocellular carcinoma cells by in-
hibiting	the	P13K/Akt/mTOR	pathway.31,32	Conversely,	Arecoline	
promotes	the	expression	of	high-	risk	genes,	and	Arecoline	is	a	car-
cinogen that enhances the risk of cancer in patients.33,34	However,	
we cannot conclude that patients are necessarily sensitive to these 
drugs and more clinical trials are needed to verify this idea. While 
the	 high-	risk	 group	 had	more	 immune	 cells,	 they	 also	 expressed	
more	immune	checkpoint	genes,	implying	that	the	high-	risk	group's	
immune function was more suppressed and that tumour cells had 
more opportunities to metastasize.

We further explored the mutations in the seven model genes 
and correlated them with the tumour mutation burden. We found 
that there were few mutations in the samples in our genes and few 
mutations in the structural domains of amino acids in seven of the 
genes.	In	addition,	the	correlation	between	risk	score	and	TMB	was	
not statistically significant. We encompassed previously published 
literature by extracting their model genes compared to our model. 
The	survival	of	patients	with	hepatocellular	carcinoma	in	the	TCGA	
database	 was	 mainly	 located	 at	 1–	3	 years.	We	 used	 ROC	 curves	
and	KM	curves	for	analysis	and	comparison,	and	we	found	that	our	
model was superior to other models in predicting the second- year 
survival of patients.

Our study has some limitations. Experiments in vivo and in vitro 
are needed to confirm our findings and to do more in- depth studies 
in the field of immunotherapy.

In	conclusion,	our	study	determined	the	prognostic	and	 immu-
nological	 roles	 of	 necroptosis-	related	 molecules	 such	 as	 TRAF2,	
PGAM5,	 ATG16L1,	 CADR9,	 PCYT1A,	 PARP2	 and	 TLR2	 in	 hepa-
tocellular	 carcinoma.	 In	 addition,	 we	 developed	 a	 new	 predictive	
model for hepatocellular carcinoma to assess the efficacy of immu-
notherapy. This study identified novel biomarkers for hepatocellular 
carcinoma.
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