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Abstract

Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter
asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous
fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and
mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy.
Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for
all four categories of trees. A predicted protein – protein interaction network identified HLB-regulated genes for sugar
transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role
of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-
transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected
leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism
(upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in
photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks
between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-
specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70)
was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally
considered the sites where most new infections occur.
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Introduction

Huanglongbing (HLB) or ‘‘citrus greening’’ is the most

destructive citrus disease worldwide [1] and no cure is currently

available. It is caused by three species of Gram-negative, phloem-

inhabiting a-proteobacteria, Candidatus Liberibacter spp. ‘‘Ca. L.

asiaticus’’ (CaLas), ‘‘Ca. L. africanus’’, and ‘‘Ca. L. americanus’’. The

pathogen is transmitted by two species of phloem-feeding citrus

psyllids, Diaphorina citri and Trioza erytreae. The disease affects most

citrus species although different responses have been observed for

different genotypes and species in the Citrus genus [2–4]. HLB

symptoms include yellow shoots, blotchy mottled leaves, and

lopsided fruits with poor and inverted coloration and aborted

seeds. Moreover, swelling of middle lamella between cell walls

surrounding sieve elements, starch accumulation in leaves, and

phloem damage are observed [5,6]. Disease incubation times are

long and quantitative PCR detection is unreliable before

symptoms appear [7]. Secondary infection spreads quickly because

the insect vector shows high incidence of CaLas before symptom-

atic plants can be discerned.

Although substantial research efforts have been made to detect

the pathogen with quantitative RT-PCR [7] or microarrays [8],

little is known about the physiological mechanisms of this disease.

Efforts have been undertaken to culture the bacteria in vitro [9].

The genome sequence of CaLas was obtained using a metage-

nomic approach from plant vascular tissues [10] and infected

psyllids [11]. Since no toxins, cell wall degrading enzymes, or

specialized secretion systems were found in the genome, it is

believed that the disease results from host metabolic imbalances

due to nutrient depletion or interference with nutrient transport

[12]. Microarrays have been used to characterize some host

responses to HLB infection in mature leaves [6,12] and to discover

key genes in tolerant and susceptible citrus genotypes [3,13,14].

Recently, the isobaric tags for relative and absolute quantitation

(iTRAQ) technique was used to characterize proteome changes in

CaLas-inoculated citrus, identifying potential targets of early

infections [15]. Next-generation sequencing technologies can

enable a deeper analysis of the RNA population than microarrays,

including rare and unknown transcripts, offering a more precise

and accurate picture of the transcriptome [15,16]. Metabolomics

has proven effective for studying metabolic changes [17] in

response to agronomic treatments and environmental stresses

including CaLas infection [18–21].
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Previously we presented an RNA-Seq transcriptome analysis of

mature fruit of infected field trees at different disease stages [22].

Here, we expand this analysis to source and sink tissues (fruits and

leaves) of naturally infected trees in orchards, seeking to determine

the gene regulatory networks underlying the metabolic disorder of

the disease and to dissect pathogen-induced dysfunctions in

source-sink relationships and hormone crosstalk. We have

dissected the citrus host responses, integrating different functional

methods including principal component analysis (PCA), gene set

and pathway enrichment, and protein-protein network analyses to

identify key genes that may potentially serve as targets for short-

term therapeutic treatments.

Results

Transcriptome and functional analysis
In addition to the previous transcriptome data from the mature

fruit peel [21], RNA-Seq was performed on other three tissues

from each of four HLB phenotypes (Table 1), RNA-Seq data from

all four tissues were analyzed together using the new reference

dataset [23]. For the 16 cDNA libraries, a total of 889 million

85 bp paired-end raw reads were obtained with the Illumina

Genome Analyzer II. These reads were trimmed and aligned to

the Citrus sinensis genome produced by the US Department of

Energy Joint Genome Institute (http://www.jgi.doe.gov) in

collaboration with the user community (http://www.phytozome.

net/citrus). Expressed genes and transcript isoforms were

identified and annotated on the C. sinensis genome v.1 assembly

consisting of 12,574 scaffolds [23]. A list of the differentially

regulated transcripts with corresponding Arabidopsis orthologs was

obtained for three pairwise comparisons for each tissue (Data-

set S1). In separate principal component analysis and differential

expression analysis of count data, three clusters of overall

expression profiles were found among the 16 sample types, where

mature and immature fruits comprise two clusters, and all leaf

samples comprise the third cluster (Figure S1). Due to potential

confounding environmental and agronomic disparities between

orchards, our analysis primarily focuses on trees from the same

location, comparing apparently healthy (AH) and symptomatic

(SY) samples in each of the four tissues. AH trees were growing at

the same location as the SY trees, showed no symptoms, but were

PCR-positive for the pathogen at the time of sampling.

Gene set enrichment analysis (GSEA), based on a sparse

principal component analysis (sPCA) technique, clearly showed

that transport-related pathways in leaves and fruits were affected

differently by HLB (Figure 1). In fruits, Gene Ontology (GO)

terms related to ion transport (particularly sulfate, selenate, and

copper) were strongly upregulated. In mature infected leaves,

more transcripts related to oligopeptide, zinc, and nitrate transport

were upregulated. Genes related to cell wall organization,

biogenesis, and catabolism were upregulated in young leaves and

downregulated in mature fruits. In young leaves, aminoglycan,

polysaccharide, and chitin catabolism were induced by the disease.

Cell wall modification and restructuring are key processes in signal

transduction of biotic responses. They would logically be more

affected in newly infected tissues where pathogen load could be

higher.

Brassinosteroid signaling components were upregulated in

fruits. A complete list of significantly enriched GO terms in the

AH vs SY comparison is presented in Dataset S2. In pathway

enrichment analysis, sucrose and starch metabolism were the most

significantly differentially regulated pathways in all four tissues

(Table 2). Secondary metabolism was more affected by the disease

in immature fruits while primary metabolism was significantly

regulated in ripe ones.

The pattern of gene expression in mature leaves was compared

with previous studies on responses to biotic stresses such as citrus

bacterial canker disease (CBCD) [24] and citrus tristeza virus

(CTV) [25]. Interestingly, host sucrose and starch metabolism

were altered in both HLB and CBCD while CTV affected other

pathways such as pentose phosphate, glutathione, ascorbate, and

aldarate metabolism (Table S1). Comparing GSEA results be-

tween AH or AS and SY categories reveals citrus responses as

symptoms appear. Interestingly in leaves, genes related to starch

were mainly upregulated while minor carbohydrate genes were

downregulated (Figure S2). MapMan metabolic overviews show

expression changes in specific genes (Figs. S3, S4, S5).

HLB alteration of fruit transcriptome
Several HLB-regulated genes were involved in primary metab-

olism: invertase (sucrose degradation), ADP glucose pyropho-

sphorylase large subunit (starch biosynthesis), a- and b-amylase

(starch metabolism), glucose-6-phosphate dehydrogenase 1 (oxida-

tive pentose phosphate), galactinol synthase, and stachyose synthase

(raffinose metabolism; Figure 2). Interestingly, several genes

involved in lipid metabolism, ammonia metabolism, sulfate

assimilation, C1-metabolism, and nucleotide metabolism were

overexpressed in response to HLB. Secondary metabolism was

highly affected by the disease, with HLB-regulated genes involved in

terpene metabolism, flavonoids, and phenylpropanoids (Figure S3).

HLB alteration of leaf trancriptome
In young leaves, the site of most primary infections, we observed

a general downregulation of genes involved in photosynthesis, the

Calvin cycle (fructose bisphosphate aldolase, glyceraldehyde-3-

phosphate dehydrogenase, and rubisco activase), and photorespi-

ration (glycine cleavage H system, glycerate dehydrogenase).

Conversely, genes involved in sucrose and starch metabolism

were upregulated: a-glucan water dikinase, a-glucan phosphory-

lase 2, invertases, glucose-1-phosphate adenylytransferase 3

(APL3), and starch branching enzyme. Several genes involved in

cell wall modification and degradation were induced by HLB, as

were others involved in flavonoid, terpenoid, phenylpropanoid,

and amino acid metabolism (aspartic acid, glutamate, tryptophan,

and tyrosine metabolism; Figure S3).

In mature leaves, HLB disease severely affects sucrose and

starch metabolism, the Calvin cycle, glycolysis, pentose phosphate,

and mitochondrial electron transport (Figs. S3, S4). Secondary

metabolism was also affected, especially upregulation of anthocy-

anin-5-aromatic-acyltransferases, naringenin chalcone synthase,

UDP-glucosyl transferases, flavonoid-3-monooxygenase, myrcene

synthase, laccase 7, and O-methyltransferase genes.

Table 1. Abbreviations used for 16 sample types.

disease status AH apparently healthy

AS asymptomatic

SY symptomatic

CO HLB-free orchard (control)

tissue type IF immature fruits

MF mature fruits

YL young leaves

ML mature leaves

doi:10.1371/journal.pone.0074256.t001
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Light reaction genes
Most photosynthesis-related genes were downregulated in

young infected leaves, including those of light harvesting complex

B5 (LHCB5) and B2.1 (LHCB2.1) (Figure S3). Conversely, in

fruit, several genes were upregulated: photosystem I light

harvesting complexes 1 and 2, photosystem I PSI-N, chloroplast,

PSI-N, (PSAN), photosystem I P, photosystem I subunit O, and

cytochrome b6f complex subunit (petM).

Transcription factors
HLB disease drastically affects expression of important classes of

transcription factors (TFs) in both leaf and fruit tissues. In young

leaves, several AP2-EREBP, bHlH proteins, MYB domain factors,

zinc finger C2H2-type factors, and WRKY members were

upregulated. Conversely, CAL1, AGL14, LBD37, ERF23,

SHN2, and ERF26 TFs were less abundant when symptoms

appeared. In mature leaves, HLB affected transcription of genes

belonging to several families: AP2-EREBP (Rap 2.6L, CRF4),

MYB (MYB62), bZIP (ZIP5, ABI5), AS2 (LBD11 and LBD25),

bZIP (NTT, C2H2-type), ABI3/VP1, CCAAT-HAP2, and

WRKY (WRKY23, WRKY31, WRKY42, and WRKY47).

In immature fruit, changes in genes encoding CCAAT box

binding factor, trihelix, nucleosome assembly, and G2-like proteins

were observed. Several WRKY transcripts were more abundant at

the symptomatic stage: WRKY6, WRKY18, WRKY50,

WRKY53, WRKY54, and WRKY70.

HLB regulation of hormone crosstalk
Hormone signaling pathways strongly affect the timing and

intensity of disease responses in plants. The overall hormone

crosstalk network was strongly affected by HLB disease (Figure 3).

The methylsalicylic acid transferase gene, coding for the long

distance signal for the salicylic acid (SA) mediated defense

response, was upregulated in young, HLB-infected leaves and

downregulated in mature ones. Unchanged expression of NPR1

(nonexpressor of PR genes1) suggested that SA signaling was

insufficiently activated in response to HLB. SA-mediated defense

response-related genes were not activated, except for PR5 and

DIR1. More WRKY TFs were induced in fully ripe fruits than in

young leaves. The jasmonic acid carboxyl methyltransferase gene,

responsible for long distance signaling in the ISR (induced-

systemic response) was induced in young leaves and to a lesser

degree in mature fruits. Several jasmonic acid metabolism genes

were upregulated in fruits: lox1, opr2, jaz10, and jar1. In ripe

infected fruits, several genes involved in ethylene biosynthesis and

response were affected: ACO4, ACS1, ERF2, and ERF6. ABA,

auxin, gibberellin, and brassinosteroid pathways were affected by

HLB in leaf and fruit tissues (Figure 3). Interestingly, auxin-related

genes were highly induced in immature fruit. Gibberellin-related

genes showed an opposite pattern of expression: mainly downreg-

ulated in fruits, but upregulated in leaves. The expression of key

brassinosteroid genes was affected in both leaf and fruit tissues:

Figure 1. Gene Set Enrichment Analysis based on sparse principal component analysis (sPCA). GO terms representing differentially
regulated functional classes of genes in at least two of the four tissues (p,0.05). Color values correspond to p-values, as indicated by color bars. Total
genes in each gene set (more than ten genes) are given in parentheses. Each column represents one of four tissues: IF, immature fruits; MF, mature
fruits; YL, young leaves; ML, mature leaves. Complete GSEA results, including sets with ,10 genes, and enriched in one tissue only, are given in
Dataset S2.
doi:10.1371/journal.pone.0074256.g001

Huanglongbing Disease Mechanism
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BRS1 was upregulated in mature fruits while ST1 was downreg-

ulated in young and mature leaves.

Amino acid metabolism
Amino acids play important roles in plant responses to stresses.

Of the ten gene families of interest, six were not regulated by HLB

disease in any of the four tissues (Figure S6). In addition, overall

downregulation of arginine transport genes was seen in young

leaves (Dataset S2).

qRT-PCR validation
Gene expression analyses using qRT-PCR were performed to

corroborate RNA-Seq data (Dataset S3). In young leaves, acidic

cellulose and terpene synthase cyclase genes were significantly

induced in SY tissues. Interestingly, several ethylene-responsive

transcription factors and auxin-related genes (GH3.1 and GH3.4)

were induced in fruits. Starch-related genes were induced in

leaves while invertase was upregulated in infected fruits.

WRKY70 transcription factor was highly induced in mature

fruit peel. The glucose-phosphate transporter (GPT) was strongly

upregulated in SY leaves. In mature fruits, several genes were

induced at the AS stage: MYB factors, PDR11 transporter, and

ring family protein.

Protein-protein network analysis
A protein-protein interaction network (PPI) was deduced

between proteins encoded by HLB-regulated genes and their

predicted interactions (Figure 4; Figure S7). The overall PPI

networks differed markedly between the four tissues. Different

developmental stages within same tissue were more similar

(Dataset S4). In young leaves, several small hub proteins involved

in transcription and DNA replication were observed. Several

proteins involved in signaling (i.e. CAM7) and sugar transport

were observed only in mature leaves. HLB regulation of HSP82

drastically affected the fruit PPI network at both developmental

stages. At the immature stage, several HLB-regulated proteins

were involved in transcription: L18e/L15, RPB2, DEA (D/H)-

box, KRR1, and SAM transferase. When fruit ripened, several

interactive proteins were involved in sugar transport (STP3,

STP14, and INT2).

Table 2. Differentially regulated* pathways in response to
HLB disease.

Fruits Leaves

Pathway Imm. Mature Young Mature

Starch and sucrose metabolism 9.5*10–7 0.01 0.04 2*10–4

Phenylpropanoid biosynthesis 0.003 n.s. 0.03 0.01

Indole, ipecac alkaloid biosynth. 0.03 n.s. n.s. n.s.

a-Linolenic acid metabolism 0.03 0.02 n.s. n.s.

Anthocyanin biosynthesis 0.04 n.s. n.s. n.s.

Metabolism of xenobiotics 0.04 n.s. n.s. n.s.

Carotenoid biosynthesis 0.05 n.s. 0.06 n.s.

Phenylalanine metabolism 0.05 n.s. n.s. n.s.

Carbon fixation n.s. 0.004 0.004 0.09

Glycerolipid metabolism n.s. 0.01 0.01 0.04

Glycolysis/Gluconeogenesis n.s. 0.03 n.s. 0.05

Galactose metabolism n.s. 0.04 n.s. n.s.

Pentose, glucuronate interconv. n.s. 0.07 n.s. n.s.

Riboflavin metabolism n.s. 0.1 n.s. n.s.

Indole and ipecacalkaloid
biosynthesis

n.s. n.s. n.s. 0.02

*Based on genes with log fold ratio ,21.5 and .1.5 between AH and SY
samples; p-values are shown for GSEA using Pathexpress web tool, with p,0.1
considered to be significantly HLB-regulated; n.s. = not significant.
doi:10.1371/journal.pone.0074256.t002

Figure 2. HLB-regulation of photosynthesis and carbohydrate metabolism. Overview of changes induced by HLB in the expression of
genes affecting photosynthesis and small carbohydrate metabolism (AH vs. SY samples; see Table 1 for a key to abbreviations for sample types).
doi:10.1371/journal.pone.0074256.g002
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Discussion

Previous studies have focused on mature leaf tissues, using

plants artificially infected with CaLas, or on mature fruit in

orchard conditions [21]. These did not examine the link between

host responses in source and sink tissues, where mature leaves

comprise the source, and young leaves along with immature fruits

comprise the sink. Although these studies identified HLB-

regulated genes involved in key host pathways, the experiments

were conducted under a variety of conditions: graft or natural

infections, greenhouse or orchard conditions, which may under-

mine the validity of conclusions regarding mechanisms of

symptom appearance at whole plant level. The results in the

present study were derived from a unified transcriptome analysis

in different plant organs (leaves and fruits) at different develop-

mental stages (immature and mature) in naturally infected trees.

Physiological mechanisms of HLB disease are poorly under-

stood. Since no toxins, extracellular degrading enzymes, or

specialized secretion systems were found in the CaLas genome

[11], a pathogen-induced host source-sink metabolic imbalance is

likely to be the main cause of disease symptoms.

Transcriptomic analysis of infected plants in orchards allows

observation of host responses to psyllid-transmitted infections

under natural conditions to augment controlled environment

experiments. To gain insight into the disease mechanisms at a

deeper level than previous studies, this study functionally analyzed

the transcriptome of four tissue types representing the main

metabolic changes (Figure 3, Figure S8). Using integrated methods

of analysis (PCA, GSEA, pathway enrichment, MapMan func-

tional categorization, and PPI network analysis), we dissected

disease mechanisms, focusing on key HLB-regulated pathways

such as carbohydrate metabolism and hormone-mediated plant

immune responses. We believe that a general ‘‘citrus stress status’’

can be identified, similar to the ‘‘inflammatory response’’ in

animals and consisting of pathways commonly regulated in host

responses to HLB, CBCD [24], or CTV [25]. Heat shock proteins

and dehydrin preserve protein structural integrity, stabilizing

proteins and membranes through chaperone activity [26]. Results

presented here confirm that altered expression of these highly

interactive proteins could be a key aspect of general stress status.

Secondary metabolism was severely affected, illustrated by the

upregulation of genes for biosynthesis of phenylpropanoids, which

have potent acidity and peroxynitrite scavenging capacity [27].

However, we focused on two key metabolic pathways: primary

metabolism, particularly sucrose and starch metabolism, and

hormone biosynthesis, signaling, response, and crosstalk.

HLB alters source-sink relationships
HLB causes starch accumulation in leaves [1], an observation

supported by transcriptomic studies [6,12]. Our data from young

leaves confirm these findings: several starch-related biosynthetic

genes such as APL3 and starch branching enzyme were

upregulated. This suggests that starch accumulation may start

early after CaLas infection and young leaves are the typical CaLas

infection sites. Starch metabolism genes (a-glucan phosphorylase

2, a-amylase) were also upregulated in immature leaves as

expected. We observed many HLB-downregulated genes involved

in light reactions in young leaves, such as genes encoding PSI and

PSII subunits of light harvesting complexes I and II. Although

mature leaves showed typical HLB symptoms, they remain

partially green and actively photosynthesizing. Indeed, infected

mature leaves did not drastically decrease light reaction-related

transcripts. In fruits, light reaction genes were upregulated by HLB

while starch biosynthesis was downregulated. Of particular

interest, different isoforms of AGPase had opposite expression

patterns (APL1, upregulated; APL3, downregulated), suggesting

that different isoforms play tissue-specific roles. Sucrose metabo-

lism was another key pathway affected by the disease (Table 2).

Sucrose is the major end product of photosynthetic carbon

metabolism and is the predominant carbohydrate transported in

phloem sieve tubes from mature leaves to sink organs. Its use relies

on invertase activity for hydrolysis into glucose and fructose. Genes

for several vacuolar invertases were strongly induced in infected

mature fruits. These genes could drastically affect cell osmotic

potential and sucrose concentrations in sink tissues, in agreement

Figure 3. HLB-induced modulation of hormone-mediated immune responses. Four AH vs. SY tissues were analyzed. Regulatory interactions
between pathways [30] are shown. See Table 1 for a key to abbreviations for sample types.
doi:10.1371/journal.pone.0074256.g003
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with the lower concentration of sucrose observed in mature, HLB-

infected fruits [28,29].

Perhaps related to these changes in invertases, several raffinose

metabolism genes were upregulated in fruit, including galactinol

synthase, DIN10 (raffinose synthase 6), and stachyose synthase

(Figure 3). In leaves with symptoms, sucrose remained more

abundant than in healthy leaves, consistent with the unchanged

expression of invertase in mature leaves and with our hypothesis

that HLB diminishes sucrose flow to sink tissues (Figure 5). Phloem

blockage caused by callose is typically detected as symptoms

appear and after starch accumulates in leaves [5]. These findings,

together with the transcriptomic data presented here, support the

hypothesis that the imbalance in sugar partitioning may result not

only by a physical phloem dysfunction, but also from transcrip-

tional regulation mechanisms. Sugars such as sucrose and glucose

are not only metabolic resources and structural constituents of

cells, but they also act as signaling compounds that alter gene

expression during plant growth and development [30,31]. The

downregulation of genes related to light reactions observed in

young HLB-infected leaves corroborates this hypothesis.

GSEA based on sparse PCA (Figure 1; Dataset S2) showed that

HLB affects long distance signaling and transport between sink

and source tissues. Functional analysis suggests that concentrations

of several ions such as sulfate, selenate, and copper are altered in

fruits. In leaves, CaLas induced the expression of genes related to

oligopeptide, zinc, and nitrate transport. It is possible that the

altered pattern of expression of some of these transport-related

genes was partially caused by vascular blockage due to callose

accumulation induced by the pathogen [5].

GPT, a gene involved in glucose intracellular transport, was

strongly upregulated in infected leaf tissues (Figure 5). This gene is

a key regulator of starch accumulation in chloroplasts [32].

GPT plays a key role in providing energy-rich metabolites to

pathways supplying plastids with metabolic energy, such as lipid

respiration and the energy-rich, glycolytic-intermediate metabolite

phosphoenolpyruvate (PEP). We hypothesize that strong GPT

upregulation in young leaves represses photosynthesis while

inducing starch metabolism pathways in chloroplasts. The

abundance of GPT2 mRNA may alter sugar-sensing pathways.

Indeed, GPT upregulation may suggest a reduced sucrose flow

from leaf to fruit that disrupts the source-sink relationships.

Conversely, light reaction transcripts were abundant in ripe

infected fruits, a metabolism more characteristic of a source than a

sink tissue. Activation of genes involved in sucrose degradation

might consequently disrupt the photosynthate gradient between

leaves (source) and fruit (sink) (Figure 5). Sucrose loading to the

phloem from source leaves involves an apoplastic step. We

observed HLB-upregulation of invertase and sucrose synthase

genes in young leaves, although further studies are needed to

clarify in which cellular compartment. Interestingly, several genes

involved in glycolysis and the TCA cycle were upregulated in

mature infected leaves. The eventual increase in high-energy

compounds induced by HLB supports the hypothesis that CaLas is

an energy parasite [11]. However, this must be confirmed by

measuring enzyme activities.

HLB alteration of the hormone-mediated immune
response

Current knowledge regarding hormone crosstalk in the plant’s

immune system has been reviewed by Pieterse et al. [33]. The

backbone of the plant immune response consists of salicylic acid

(SA), jasmonic acid (JA), and ethylene (ET), assisted by other

hormones including ABA, auxins, cytokinins, and brassinosteroids.

Recently, the roles of key regulatory proteins in SA-JA crosstalk

have been identified. These include MPK4, EDS1, and PAD4

[33]. Interestingly, salicylic acid methyl transferase was induced in

young citrus leaves in response to CaLas, although SA signaling

and SA-mediated defense responses were scarcely activated

(Figure 3). Although SA-mediated defense response genes PIR5

and DIR1 were slightly induced by CaLas in young leaves,

transcription of other PR-related proteins was unchanged.

The WRKY family of transcription factors and their responses

to biotic and abiotic stress are well known [34]. WRKY70 is a key

point of convergence between SA- and JA-dependent defense

pathways and is also required for R gene-mediated resistance.

WRKY70 and other members were more abundant in mature

fruits (Figure 3). It is possible that WRKY upregulation in fruits is

due to induction of long distance signaling molecules such as

methysalicylate in young leaves. NPR1 plays a central role in SA

signal transduction. It acts downstream of EDS1 and regulates SA-

Figure 4. Predicted protein-protein interaction networks of
Citrus responses to HLB disease. Four citrus tissues were analyzed
using the dataset of HLB-regulated genes in SY versus AH samples
based on an Arabidopsis knowledgebase. HLB-regulated proteins are
represented by the larger nodes. (Fold ratio .1 or ,21). See Table 1 for
a key to abbreviations for sample types.
doi:10.1371/journal.pone.0074256.g004

Huanglongbing Disease Mechanism
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mediated expression of GRX480 and WRKY70, proteins that

suppress JA-dependent gene expression [35]. A differential role of

cytosolic and nuclear NPR1 in regulating JA/ET- and SA-

dependent signaling has been demonstrated [36]. In our samples,

NPR1 was not induced by HLB in either leaf or fruit tissues. This

reinforces the hypothesis of a feeble and insufficient SAR response

at the infection site. Interestingly, a homolog of salicylate

hydroxylase (sahA) was found in the genome of CaLas [8]. SA

breakdown mediated by sahA might help suppress host defenses

against pathogen infection (Figure 5).

Increased ethylene bypasses the need for NPR1 in SA-JA

crosstalk, resulting in potentiated expression of the SA-responsive

marker gene PR-1, which is EIN2-dependent [37]. However, our

transcriptomic data showed that both EIN2 and PR-1 expression

were unchanged in response to HLB. SY fruits produced less

ethylene than AS or healthy ones, independent of maturity [28].

Decreased ethylene in SY fruits could assist retention of green

color and fruit aroma. Jasmonic acid is responsible for induced

systemic resistance, typically activated in response to necrotroph

attacks. Jasmonic acid methyltransferase was induced in young

leaves, probably as a response to psyllid attacks. The roles of SCF-

COI, JAZ, JA, MYC2, ERF1, and ORA59 have been described

by Pieterse et al. [33]. We observed no differences in transcript

abundance of these genes, although several jasmonic acid defense

response genes were HLB-regulated in all analyzed tissues,

especially ripe fruits (Figure 3). Though the SA, JA, and ET

response pathways form the backbone of the induced defense

signaling network, other hormones clearly modulate crosstalk

Figure 5. Transcriptional regulation of fruit and leaf metabolism and sugar transport during HLB disease. qRT-PCR data compared AH
and SY tissues. White triangles within filled squares indicate up- and down-regulated genes. Arrows pointing up and down likewise indicate increased
and decreased metabolite concentration. In each bar graph, AH appears on the right, and SY on the left, where vertical axis units are relative ratios of
the test gene and housekeeping gene abundance.
doi:10.1371/journal.pone.0074256.g005
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among them, as demonstrated in Arabidopsis [30]. ABA is

connected to the SA-JA-ET network, affecting JA biosynthesis,

resistance against JA-inducing necrotroph pathogens, and antag-

onizing the onset of SA-dependent defenses [38]. Interestingly,

ABA in SY fruits was higher than in healthy or AS fruits [28]. This

agrees with the upregulation of several ABA-responsive genes

(GRAM-domain containing protein and CED3; Figure 3). Auxins

play a key role in every stage of plant development and the auxin

response pathway is connected to the SA-JA-ET signaling network

in various ways. The antagonistic effect of SA on auxin signaling is

an intrinsic part of SA-dependent resistance against (hemi)

biotrophs. Interestingly, auxin-responsive genes were downregu-

lated in young leaves but in immature fruits, GH3.1, GH3.17 and

other auxin-responsive proteins were induced, agreeing with the

previous IAA analysis of HLB-affected fruits. In particular, auxin-

related genes were induced earlier than other hormone-related

genes in immature fruit, suggesting that they may be induced at an

early stage of HLB. High IAA concentration is associated with cell

enlargement and fruit expansion. Localized elevated IAA levels

have been linked with development of misshapen fruit [28]. The

latter finding may be closely related to HLB-modulation of auxin-

responsive genes reported in this study. Brassinosteroids also play a

key role in cell expansion and division, differentiation, reproduc-

tive development, and fruit ripening. GSEA based on sparse PCA

highlighted their key role in fruit symptom appearance. When

applied exogenously, they induce broad-spectrum disease resis-

tance [39]. BAK1, involved in brassinosteroid signal transduction,

also interacts with receptors that recognize PAMPs such as

bacterial flagellin, initiating innate immunity [40]. We observed

upregulation of BRS1 signaling in fruits and downregulation of

ST1 (involved in brassinosteroid metabolism) in leaves. However,

their connections to HLB regulation of SA-ET-JA crosstalk remain

to be determined.

Transcriptional changes in amino acid metabolism
Amino acids play important roles in stress response. Arginine

and arginine-rich proteins serve as a reservoir for organic nitrogen

in many plants [41]. Proline accumulation has been observed

during conditions of abiotic and biotic stresses. Proline biosynthesis

may occur in either cytosol or plastids, while arginine biosynthesis

is constitutively localized in plastids. The two pathways are

connected by a complex regulatory network that allows plants to

optimize growth and environmental adaptation [42]. Proline

accumulated significantly in HLB-infected leaves [43]. This result

partially agrees with a slight increase observed in expression of d1-

pyrroline-5-carboxylate synthetase in HLB-infected leaves, but is

not consistent with P5CS enzymatic activity. Argininosuccinate

lyase, a key arginine biosynthesis gene, was strongly downregu-

lated in young infected leaves. Early diagnosis of HLB disease is

still based on symptom observation followed by PCR-based

verification. Novel, in-field detection methods based on simulta-

neous analysis of induced volatiles, metabolites, and transcripts

have been previously proposed [44].

The results presented here can be exploited to develop a test

using host genes that change in response to HLB infection which

could complement PCR detection of the pathogen. PCR-based

detection is problematic due to long incubation times and uneven

pathogen distribution in the plant. Rigorous validation will be

necessary in controlled environments (infecting the same tissues

with different pathogens) to confirm the specificity of potential

biomarkers for HLB disease. The discovery of pre-symptomatic

biomarkers, along with cost-effective and robust methods,

promises not only more effective ways to detect primary sources

of infection, but also for validation of the effects of the therapeutic

strategy. If a therapeutic strategy is effective, the biomarkers

should revert to expression characteristic of healthy tissues. In-field

analysis of these transcripts can be enhanced through development

of novel devices such as LFM technology to enable rapid,

hybridization-based nucleic acid detection using an easily visual-

ized colorimetric signal.

Based on these findings, we propose several possible short-term

therapeutic approaches for already infected trees. The first

approach aims to restore a normal source-sink relationship by

modulating the expression of key genes in young leaves such as

GPT and invertase. The application of compounds having a

negative effect such as potassium nitrate (KNO3), GA4, 6-

benzyladenine [43] might confer a beneficial effect countering

starch accumulation in plastids and the decrease in photosynthesis

(Figure S9). Data from the Genevestigator database suggest that

these compounds downregulate the expression of GPT in

Arabidopsis leaves [45].

The second approach could focus on boosting the plant immune

response using arginine and enhancing the expression of PR

proteins. L-Arginine is the precursor of nitric oxide (NO).

Endogenous NO concentrations were positively correlated with

PAL, PPO, CHI, and GLU activities in response to Botrytis cinerea

in tomato fruits [46]. Since auxin-responsive genes are the earliest

induced hormone-related genes when fruits are still immature, a

worthwhile experiment would be a test of auxin inhibitor

compounds targeted to the small fruits of infected trees. A forth

possible strategy might use sugar sensing by applying sucrose. This

would involve Zinc Finger, AP2-EREBP and WRKY70 to

upregulate detoxifying genes such as GSTF8 and FSD8 known

to play roles in xenobiotic and oxidative stress [47]. The

combination of sucrose with atrazine might be investigated since

previous data have suggested important synergistic interactions

between the two compounds for xenobiotic resistance through

ROS signaling induction [48].

Conclusions
We have presented a broad picture of the metabolic changes in

mature and immature leaves and fruits (both sink and source

tissues). In addition, we have identified early and late responses to

HLB infection by comparing apparently healthy, infected but

asymptomatic, and symptomatic trees. The timing of changes

suggested which HLB-regulated pathways could be involved in

causes or effects of the disease. The field analysis of gene

expression was critical to distinguish the complexity of signalling

networks involved in plant-microbe interactions against the

background noise of other environmental and agronomic factors.

This level of analysis is essential to complement controlled studies

limited to only a few factors. Our results highlight how the

pathogen differentially affects sugar and starch metabolism in

young and mature leaves and fruits. The upregulation of GPT in

young leaves was key to inducing starch accumulation, with a

consequent decrease in photosynthesis. The upregulation of

sucrose metabolism added to the source-sink metabolic dysfunc-

tion that, in our opinion, is the most probable cause of the disease.

The important HLB-induced changes in hormone networks surely

also play a pivotal role in the metabolic disorder. Upregulation of

some key genes in jasmonic acid synthesis could confound the

salicylic acid response, considered the appropriate counterattack to

biotrophs. This explains the lack of bacterial clearance leading to a

chronic infection. Consistent with this hypothesis, WRKYs (i.e.

WRKY70) were unexpectedly expressed at higher levels in fruit, a

tissue not believed to be a primary site of infections. These findings

may lead to improved detection methods based on host responses,

and enable the validation of short-term therapeutic strategies.
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Using hormones and other small molecules holds promise to

reverse the metabolic dysfunction and improve the innate immune

response to this devastating disease of Citrus.

Materials and Methods

Plant material and experimental design
The transcriptome expression analysis compared the expression

of each transcript in the symptomatic (SY) category with

apparently healthy (AH), asymptomatic, (AS) and healthy control

tissues (CO) for each of the four analyzed tissues from ‘Valencia’

sweet orange (C. sinensis L. Osb.): immature leaves (YL) in apical

shoots (length .3 cm, open but not fully expanded), mature leaves

(ML) which were fully expanded, immature fruit peel (IF) which

were green and not fully expanded, and mature fruit peel (MF)

which were fully expanded (Table 1). The four HLB categories

were defined based on phenotype and presence of the pathogen.

SY and AS samples were collected from the same infected trees

located at the USHRL-USDA farm in Fort Pierce (St. Lucie

County, FL). All trees at this location tested positive for the

pathogen by PCR at the time of collection. AS and SY, the first

two categories of fruit peel, were collected from trees with typical

HLB disease symptoms on leaves (blotchy mottle and chlorosis)

and fruit (small, green, and irregular in shape). Trees were tested

by PCR assay for the presence of CaLas using petioles from four to

six leaves collected from different areas in the canopy. AH trees at

the same location were PCR-positive but did not display

symptoms at the time of sampling. The fourth category was

healthy fruit from ‘‘Valencia’’ PCR-negative trees at a disease-free

location, the Citrus Research and Education Center (Lake Alfred,

FL). A pool of five to ten different leaves or fruits were collected

from each of five different trees per treatment group, representing

five biological replicates. Tissue samples were stored at 220uC for

PCR detection of CaLas. Fruit peel segments were cut and mixed,

immediately frozen in liquid nitrogen, and stored at 280uC. Juice

sacs were removed before extraction.

PCR detection of CaLas
Petioles and peduncles were ground in liquid nitrogen with a

mortar and pestle and 100 mg ground tissue was used for DNA

extraction. DNA was extracted using the Plant DNeasyH Mini Kit

(Qiagen, Valencia, CA) according to manufacturer’s instructions,

yielding 20 to 30 ng DNA per extraction. Real-time PCR assays

were performed using primers HLBas (59- TCGAGCGCG-

TATGCAATACG -39) and HLBr (59- GCGTTATCCCGTA-

GAAAAAGGTAG -39) and probe HLBp (59- AGACGGGT-

GAGTAACGCG -39) [49]. Amplifications were performed using

an ABI 7500 real-time PCR system (Applied Biosystems, Foster

City, CA) and the QuantiTect Probe PCR Kit (Qiagen) according

to manufacturer’s instructions. All reactions were carried out in

duplicate in a 20-mL reaction volume using 5 uL cDNA reaction.

Plants or fruits were considered PCR-positive when Ct (cycle

threshold) values were below 32.

RNA extraction
Total RNA from each biological replicate was isolated using

phenol/chloroform/isoamylalcohol (25:24:1) extraction followed

by two extractions with chloroform/isoamylalcohol and precipi-

tation of RNA with isopropanol at 220uC overnight [12]. RNA

was further purified using the RNeasy MinElute Cleanup kit

(Qiagen) according to the manufacturer’s instructions. RNA

concentrations were determined using a NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies, Wilmington, DE).

RNA quality and purity were assessed by an Agilent Bionalyzer

(Folsom, CA).

cDNA library construction and high throughput
sequencing

RNA from the five biological replicates was equally pooled to

10 mg and then used to construct one cDNA library for each of the

four HLB status categories for each tissue. The cDNA libraries

were constructed following the Illumina mRNA-sequencing

sample preparation protocol (Illumina Inc., San Diego, CA). Final

elution was performed with 16 mL RNase-free water. The quality

of each library was determined using a BioRad Experion (BioRad,

Hercules, CA). Each library was run as an independent lane on a

Genome Analyzer II (Illumina, San Diego, CA) to obtain read

lengths of up to 85 bp per paired end.

Sequence data processing and analysis
For the 16 cDNA libraries, a total of 889 million 85 bp paired-

end raw reads were obtained with the Illumina Genome Analyzer

II. These reads were trimmed to remove low-quality regions using

custom scripts. The trimmed paired-end reads from each library

were aligned to the Citrus sinensis genome scaffolds using Bowtie

[50] and TopHat [51]. The C. sinensis genome sequence data were

produced by the US Department of Energy Joint Genome

Institute (http://www.jgi.doe.gov) in collaboration with the user

community, as a collaborative effort led by 454 Life Sciences,

University of Florida and JGI [22], http://www.phytozome.net/

citrus

The Cufflinks software suite was used for reference annotation-

based transcript assembly [52] to identify expressed genes and

transcript isoforms already annotated on the 12,574 C. sinensis

genome v.1 assembly scaffolds [23] and to discover previously

unannotated genes and splice variants. This generated new

transcriptome sequences to which all of the Illumina reads were

mapped with the BWA short read aligner [53]. A table of raw

counts, generated with a custom script, was then used as input for

differential gene expression analysis.

A list of differentially regulated transcripts was obtained for

three pairwise comparisons (CO vs. SY, AH vs. SY, AS vs. SY) for

each tissue. For each pairwise comparison, the raw count data was

normalized to control for different sequencing depths across

samples, using the DESeq Bioconductor package [54].

RNA-Seq and differential expression data were deposited in the

SRA and GEO databases of NCBI, with accession number

SRP022979.

Sparse principal component analysis
A sparse principal component analysis (sPCA) technique [55]

was used to determine which genes contribute the most to the

differences across the SY, AS, and AH samples. This PCA-based

approach was chosen to avoid the complexity of a multiple

pairwise comparison approach, and to determine which genes

explain the most variation across the four tissue samples

simultaneously.

The sPCA technique was applied across the variance-stabilized,

normalized counts of the SY, AS, and AH samples for each tissue

(leaf or fruit) and maturity (young/immature or mature). The

normalization approach of DESeq was also used to correct for

library size differences. A variance-stabilizing transform (VST)

from the DESeq Bioconductor package [7] was used to correct for

the higher variance of many genes due to the count nature of the

data. For each sample, the thresholding parameter was increased

until 40% of the variance was explained, resulting in different
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numbers of genes with non-zero coefficients in each sample given

in Table 3.

Preliminary validation of this novel application of the sPCA

technique to unreplicated VST RNA-Seq data was performed

initially, as tuning the thresholding parameter was not possible

against other criteria.

Sparse PCA was used to identify genes with expression that

most strongly distinguishes three of the samples: AH, AS, and SY;

CO was excluded. Using the list of genes from sparse PCA, a gene

set enrichment analysis was performed, considering only AH vs.

SY in the four tissues, restricted to plant-specific GO terms in the

file ATH_GO_GOSLIM.txt from www.arabidopsis.org.

Sequencing using the Illumina platform was carried out at the

UC Davis Genome Center, DNA Technology Core Facility.

Processing and assembly of raw sequence reads and sPCA analyses

were carried out at the UC Davis Genome Center, Bioinformatics

Core Facility.

Functional categorization of predicted transcripts
Blast2GO [56] was used to assign annotations and Gene

Ontology (GO) terms to the predicted transcripts of Citrus sinensis,

produced by the Cufflinks suite. Arabidopsis orthologs were

determined for transcripts by blastx (e-value ,10–4) to the TAIR

database of predicted proteins in Arabidopsis (TAIR10_-

pep_20101028; [57]). Blastx output was processed using custom

scripts to calculate the best correspondence between individual

citrus assembly sequences and Arabidopsis proteins, based on

alignments over the entire length of each sequence. Lists of

predicted transcripts that were differentially expressed at a

significant level (p,0.01, absolute value of log fold change .1.5)

in the pairwise comparisons. These were used as input for one-

tailed Fisher’s Exact Test in Blast2GO to identify enriched GO

terms. Functions of differentially expressed genes (as Arabidopsis

orthologs) were visualized using MapMan [58]. Gene set

enrichment analysis was also performed using Pathexpress [59],

again for Arabidopsis orthologs of differentially expressed transcripts

(p,0.01, absolute value of log fold change .1.5). The PageMan

visualization tool [60] was also used for GSEA with Wilcoxon test,

no correction and 1.0 as ORA cutoff.

Protein-protein interaction (PPI) network
A predicted protein interactome was constructed for Citrus based

on PPIs in Arabidopsis [61] for each of the four tissues studied.

Networks were identified and visualized using Cytoscape software

[62]. Nodes of the network represented proteins encoded by HLB-

regulated genes (fold ratio .1.0 and ,21.0; comparison between

SY and AH) and their functional partners in the predicted pairwise

interaction network.

Real time TaqManH PCR system
Real time TaqManH PCR analysis was conducted to validate

the RNA-Seq data. Three biological replicates of five to ten fruits

or leaves for each tissue type from trees of each HLB status (AH,

AS, SY, CO) were pooled. For each target gene, PCR primers and

a TaqManH probe were purchased as an assay mix from Applied

Biosystems (Foster City, CA). DNase treatment and cDNA

synthesis were performed in a combined protocol following the

Quantitect Reverse Transcription Kit (Qiagen) instructions. A

standard curve to determine the linearity of amplicon quantity vs.

initial cDNA quantity was generated for each gene. Amplifications

used 25 ng cDNA in a 20 mL final volume with TaqMan

Universal PCR Master Mix and Taqman Assay ABI mixes

(Applied Biosystems). Amplications were performed on a StepOne

Real Time PCR system (Applied Biosystems) using standard

amplification conditions: 1 cycle of 2 min at 50uC, 10 min at

95uC; 40 cycles of 15 s at 95uC; and 60 s at 60uC. All PCR

reactions were performed in duplicate. Fluorescent signals were

collected during the annealing temperature and CT values

extracted with a threshold of 0.04 and baseline values of 3 to

10. Citrus sinensis elongation factor 1 alpha (EF-1a, accession

AY498567) was used as an endogenous reference and DDCT was

calculated by subtracting the average EF-1a CT from the average

CT of the gene of interest. Real time TaqManH PCR analysis was

conducted to assess CTV presence in fruit and leaf samples.

Primers designed on CTV CP reference sequence T36 (M76485)

were used with the same protocol used for the analysis of citrus

genes.

Supporting Information

Figure S1 Transcriptome principal component analysis
of 16 different citrus samples.
(PDF)

Figure S2 PageMan gene set enrichment analysis.

(PDF)

Figure S3 Gene expression changes caused by HLB in
four tissues seen in MapMan metabolism overview.
(PDF)

Figure S4 Expression changes caused by HLB in
transcripts encoding starch and sucrose metabolism.

(PDF)

Figure S5 Visualizations of gene expression changes
caused by HLB in small carbohydrate metabolism and
hormonal signaling.
(PDF)

Figure S6 HLB-modulation of arginine and proline
pathways.

(PDF)

Figure S7 Predicted interaction networks between pro-
teins encoded by HLB-regulated genes.

(PDF)

Figure S8 Overview of principal transcriptional chang-
es induced by HLB.

(PDF)

Figure S9 Proposed short-term therapeutic strategy to
mitigate the source-sink metabolic dysfunction.

(PDF)

Dataset S1 Predicted transcripts and differential ex-
pression. (A) Arabidopsis orthologs corresponding to citrus HLB-

Table 3. Numbers of genes with non-zero coefficients in each
tissue type in Sparse Principal Component Analysis.

tissue type number of genes with non-zero coefficients

IF 10361

MF 8002

YL 3920

ML 10419

doi:10.1371/journal.pone.0074256.t003

Huanglongbing Disease Mechanism

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e74256



regulated transcripts in three pairwise comparisons for each tissue.

(B) HLB-differentially regulated genes grouped by pathways for

MapMan analysis. Fold ratio for three pairwise comparisons

(CO_vs_SY, AH_vs_SY, AS_vs_SY) for each of the four tissues

are indicated.

(XLSX)

Dataset S2 GO categories of transcripts significantly
affected by HLB, based on sparse principal component
analysis.
(XLSX)

Dataset S3 qRT-PCR data for 109 transcripts in the four
HLB categories for each tissue.
(XLSX)

Dataset S4 HLB-regulated genes in citrus encoding
interactive proteins.
(XLSX)

Table S1 Pathway enrichment analysis of mature leaf responses

to HLB, CTV, and CBCD using Pathexpress.

(DOC)

Acknowledgments

The authors wish to thank Dawei Lin and the staff of the Bioinformatics

Core Facility of the UC Davis Genome Center, Monica Britton and Joseph

Fass for conducting the processing, alignment and annotation pipelines for

the transcriptome data, Vincent Buffalo for statistical programming and

analysis; and Mary Lou Mendum for her editorial review of the

manuscript.

Author Contributions

Conceived and designed the experiments: AMD FM. Performed the

experiments: FM SLU MLP. Analyzed the data: FM RLR WZ CED.

Contributed reagents/materials/analysis tools: UA KDB. Wrote the paper:

FM AMD.

References

1. Bove JM (2006) Huanglongbing: A destructive, newly-emerging, century-old

disease of citrus. J Plant Pathol 88: 7–37.

2. Folimonova SY, Robertson CJ, Garnsey SM, Gowda S, Dawson WO (2009)
Examination of the Responses of Different Genotypes of Citrus to Huanglongb-

ing (Citrus Greening) Under Different Conditions. Phytopathology 99: 1346–

1354.

3. Albrecht U, Bowman KD (2011) Tolerance of the Trifoliate Citrus Hybrid US-
897 (Citrus reticulata Blanco 6 Poncirus trifoliata L. Raf.) to Huanglongbing.

Hortscience 46: 16–22.

4. Albrecht U, Bowman KD (2012) Transcriptional response of susceptible and
tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Sci 185:

118–130.

5. Folimonova SY, Achor DS (2010) Early Events of Citrus Greening (Huan-

glongbing) Disease Development at the Ultrastructural Level. Phytopathology
100: 949–958.

6. Kim J-S, Sagaram US, Burns JK, Li J-L, Wang N (2009) Response of Sweet

Orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ Infection:
Microscopy and Microarray Analyses. Phytopathology 99: 50–57.

7. Manjunath KL, Halbert SE, Ramadugu C, Webb S, Lee RF (2008) Detection of

‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the
management of Citrus huanglongbing in Florida. Phytopathology 98: 387–396.

8. Sagaram US, DeAngelis KM, Trivedi P, Andersen GL, Lu S-E, et al. (2009)

Bacterial Diversity Analysis of Huanglongbing Pathogen-Infected Citrus, Using

PhyloChip Arrays and 16S rRNA Gene Clone Library Sequencing. Appl
Environ Microb 75: 1566–1574.

9. Sechler A, Schuenzel EL, Cooke P, Donnua S, Thaveechai N, et al. (2009)

Cultivation of ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L.
americanus’ Associated with Huanglongbing. Phytopathology 99: 480–486.

10. Tyler HL, Roesch LFW, Gowda S, Dawson WO, Triplett EW (2009)

Confirmation of the Sequence of ‘Candidatus Liberibacter asiaticus’ and
Assessment of Microbial Diversity in Huanglongbing-Infected Citrus Phloem

Using a Metagenomic Approach. Mol Plant Microbe Interact 22: 1624–1634.

11. Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, et al. (2009) Complete

Genome Sequence of Citrus Huanglongbing Bacterium, ‘Candidatus Liberi-
bacter asiaticus’ Obtained Through Metagenomics. Mol Plant Microbe Interact

22: 1011–1020.

12. Albrecht U, Bowman KD (2008) Gene expression in Citrus sinensis (L.) Osbeck
following infection with the bacterial pathogen Candidatus Liberibacter asiaticus

causing Huanglongbing in Florida. Plant Sci 175: 291–306.

13. Fan J, Chen C, Yu Q, Khalaf A, Achor DS, et al. (2012) Comparative

Transcriptional and Anatomical Analyses of Tolerant Rough Lemon and
Susceptible Sweet Orange in Response to ‘Candidatus Liberibacter asiaticus’

Infection. Mol Plant Microbe Interact 25: 1396–1407.

14. Fan J, Chen C, Yu Q, Brlansky RH, Li Z-G, et al. (2011) Comparative iTRAQ
proteome and transcriptome analyses of sweet orange infected by ‘‘Candidatus

Liberibacter asiaticus’’. Physiol Plantarum 143: 235–245.

15. Boccara M, Sarazin A, Billoud B, Jolly V, Martienssen R, et al. (2007) New
approaches for the analysis of Arabidopsis thaliana small RNAs. Biochimie 89:

1252–1256.

16. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, et al. (2009)

Deep-sequencing of plant viral small RNAs reveals effective and widespread
targeting of viral genomes. Virology 392: 203–214.

17. Martinelli F, Uratsu SL, Reagan RL, Chen Y, Tricoli D, et al. (2009) Gene

regulation in parthenocarpic tomato fruit. J Exp Bot 60: 3873–3890.

18. Tosetti R, Martinelli F, Tonutti P, Barupal DK (2012) Metabolomics Approach
to Studying Minimally Processed Peach (Prunus persica) Fruit. In: Cantwell MI,

Almeida DPF, editors. Xxviii International Horticultural Congress on Science
and Horticulture for People. 1017–1021.

19. Martinelli F, Basile B, Morelli G, d’Andria R, Tonutti P (2012) Effects of

irrigation on fruit ripening behavior and metabolic changes in olive. Sci Hortic
144: 201–207.

20. Cevallos-Cevallos JM, Futch DB, Shilts T, Folimonova SY, Reyes-De-Corcuera

JI (2012) GC-MS metabolomic differentiation of selected citrus varieties with
different sensitivity to citrus huanglongbing. Plant Physiol Bioch 53: 69–76.

21. Martinelli F, Remorini D, Saia S, Massai R, Tonutti P (2013) Metabolic
profiling of ripe olive fruit in response to moderate water stress Scientia

Horticulturae 159: 52–58.

22. Martinelli F, Uratsu SL, Albrecht U, Reagan RL, Phu ML, et al. (2012)
Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease.

Plos One 7(5): e38039. doi:10.1371/journal. pone.0038039.

23. Gmitter FG Jr, Chen C, Machado MA, de Souza AA, Ollitrault P, et al. (2012)

Citrus genomics. Tree Genet Genomes 8: 611–626.

24. Cernadas RA, Benedetti CE (2009) Role of auxin and gibberellin in citrus
canker development and in the transcriptional control of cell-wall remodeling

genes modulated by Xanthomonas axonopodis pv. citri. Plant Sci 177: 190–195.

25. Gandia M, Conesa A, Ancillo G, Gadea J, Forment J, et al. (2007)

Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza

virus. Virology 367: 298–306.

26. Natali L, Giordani T, Lercari B, Maestrini P, Cozza, et al. (2007) Light induces

expression of a dehydrin-encoding gene during seedling de-etiolation in
sunflower (Helianthus annuus L.). J Plant Physiology 164: 263–273.

27. Minnocci A, Iacopini P, Martinelli F, Sebastiani L (2010) Micromorphological,

biochemical and genetic characterization of two ancient late bearing apple
varieties. Eur J Hortic. Sci. 74: 1–7.

28. Rosales R, Burns JK (2011) Phytohormone Changes and Carbohydrate Status in
Sweet Orange Fruit from Huanglongbing-infected Trees. J Plant Growth Regul

30: 312–321.

29. Slisz AM, Breksa AP III, Mishchuk DO, McCollum G, Slupsky CM (2012)
Metabolomic Analysis of Citrus Infection by ‘Candidatus Liberibacter’ Reveals

Insight into Pathogenicity. J Proteome Res 11: 4223–4230.

30. Smeekens S (2000) Sugar-induced signal transduction in plants. Ann Rev Plant

Phys 51: 49–81.

31. Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends in Plant Sci 2:
208–214.

32. Kunz HH, Haeusler RE, Fettke J, Herbst K, Niewiadomski P, et al. (2010) The
role of plastidial glucose-6-phosphate/phosphate translocators in vegetative

tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant

Biol 12: 115–128.

33. Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009)

Networking by small-molecule hormones in plant immunity. Nat Chem Biol
5: 308–316.

34. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in

defense signaling. Curr Opin Plant Biol 10: 366–371.

35. Ndamukong I, Al Abdallat A, Thurow C, Fode B, Zander M, et al. (2007) SA-

inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses
JA-responsive PDF1.2 transcription. Plant J 50: 128–139.

36. Dong XN (2004) NPR1, all things considered. Curr Opin Plant Biol 7: 547–552.

37. Bisson MMA, Groth G (2011) New paradigm in ethylene signaling: EIN2, the
central regulator of the signaling pathway, interacts directly with the upstream

receptors. Plant Sign Behav 6: 164–166.

38. Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin

accumulation and the expression of multiple genes, in Arabidopsis infected with

Pseudomonas syringae pv. tomato. Funct Integr Genomic 7: 181–191.

39. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, et al. (2003)

Brassinosteroid functions in a broad range of disease resistance in tobacco and
rice. Plant J 33: 887–898.

Huanglongbing Disease Mechanism

PLOS ONE | www.plosone.org 11 September 2013 | Volume 8 | Issue 9 | e74256



40. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nuernberger T, et al. (2007)

A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant
defence. Nature 448: 497–U412.

41. Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, et al. (2004) Innate

immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide
synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101: 15811–

15816.
42. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends in

Plant Sci 15: 89–97.

43. Cevallos-Cevallos JM, Garcia-Torres R, Etxeberria E, Reyes-De-Corcuera JI
(2011) GC-MS Analysis of Headspace and Liquid Extracts for Metabolomic

Differentiation of Citrus Huanglongbing and Zinc Deficiency in Leaves of
‘Valencia’ Sweet Orange from Commercial Groves. Phytochem Analysis 22:

236–246.
44. Dandekar AM, Martinelli F, Davis CE, Bhushan A, Zhao W, et al. (2010)

Analysis of Early Host Responses for Asymptomatic Disease Detection and

Management of Specialty Crops. Curr Opin Plant Biol 30: 277–289.
45. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004)

GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox.
Plant Physiol 136: 2621–2632.

46. Zheng Y, Sheng J, Zhao R, Zhang J, Lv S, et al. (2011) Preharvest L-Arginine

Treatment Induced Postharvest Disease Resistance to Botrytis cinerea in Tomato
Fruits. J Agric Food Chem 59: 6543–6549.

47. Sulmon C, Gouesbet G, El Amrani A, Couee I (2006) Sugar-induced tolerance
to the herbicide atrazine in Arabidopsis seedlings involves activation of oxidative

and xenobiotic stress responses. Plant Cell Rep 25: 489–498.
48. Ramel F, Sulmon C, Cabello-Hurtado F, Taconnat L, Martin-Magniette M-L,

et al. (2007) Genome-wide interacting effects of sucrose and herbicide-mediated

stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-
induced tolerance. BMC Genomics 8.

49. Li WB, Hartung JS, Levy L (2006) Quantitative real-time PCR for detection and
identification of Candidatus Liberibacter species associated with citrus

huanglongbing. J Microbiol Meth 66: 104–115.

50. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol

10.

51. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions

with RNA-Seq. Bioinformatics 25: 1105–1111.

52. Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel

transcripts in annotated genomes using RNA-Seq. Bioinformatics 27: 2325–

2329.

53. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25: 1754–1760.

54. Anders S, Huber W (2010) Differential expression analysis for sequence count

data. Genome Biol 11.

55. Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis.

J Comput Graph Stat 15: 265–286.

56. Conesa A, Gotz S (2008) Blast2GO: A comprehensive suite for functional

analysis in plant genomics. Int J Plant Genomics 2008: 619832–619832.

57. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. (2012) The

Arabidopsis Information Resource (TAIR): improved gene annotation and new

tools. Nucleic Acids Res 40: D1202-D1210.

58. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, et al. (2004) MAPMAN: a

user-driven tool to display genomics data sets onto diagrams of metabolic

pathways and other biological processes. Plant J 37: 914–939.

59. Goffard N, Weiller G (2007) PathExpress: a web-based tool to identify relevant

pathways in gene expression data. Nucleic Acids Res 35: W176-W181.

60. Usadel B, Nagel A, Steinhauser D, Gibon Y, Blaesing OE, et al. (2006)

PageMan: An interactive ontology tool to generate, display, and annotate

overview graphs for profiling experiments. BMC Bioinformatics 7.

61. Geisler-Lee J, O’Toole N, Ammar R, Provart NJ, Millar AH, et al. (2007) A

predicted interactome for Arabidopsis. Plant Physiol 145: 317–329.

62. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: A

software environment for integrated models of biomolecular interaction

networks. Genome Res 13: 2498–2504.

Huanglongbing Disease Mechanism

PLOS ONE | www.plosone.org 12 September 2013 | Volume 8 | Issue 9 | e74256


