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The time course of neuroanatomical structural and functional measures across the
lifespan is commonly reported in association with aging. Blood oxygen-level dependent
signal variability, estimated using the standard deviation of the signal, or “BOLDSD,”
is an emerging metric of variability in neural processing, and has been shown to be
positively correlated with cognitive flexibility. Generally, BOLDSD is reported to decrease
with aging, and is thought to reflect age-related cognitive decline. Additionally, it is well
established that normative aging is associated with structural changes in brain regions,
and that these predict functional decline in various cognitive domains. Nevertheless,
the interaction between alterations in cortical morphology and BOLDSD changes has
not been modeled quantitatively. The objective of the current study was to investigate
the influence of cortical morphology metrics [i.e., cortical thickness (CT), gray matter
(GM) volume, and cortical area (CA)] on age-related BOLDSD changes by treating
these cortical morphology metrics as possible physiological confounds using linear
mixed models. We studied these metrics in 28 healthy older subjects scanned twice at
approximately 2.5 years interval. Results show that BOLDSD is confounded by cortical
morphology metrics. Respectively, changes in CT but not GM volume nor CA, show a
significant interaction with BOLDSD alterations. Our study highlights that CT changes
should be considered when evaluating BOLDSD alternations in the lifespan.

Keywords: signal variability, BOLD fMRI, structural alterations, cortical morphology, aging, cortical thickness,
neural processing, biomarker

INTRODUCTION

Normal aging is associated with marked functional and structural neuroanatomical alterations
in cortical thickness (CT), gyrification, cortical surface area (CA), gray (GM), and white
matter volume (WM) (Salat et al., 2009; Thambisetty et al., 2010; McGinnis et al., 2011;
Hogstrom et al., 2013). Importantly, magnetic resonance imaging studies (MRI) show that
the magnitude and rate of change of these cortical morphometry metrics is not constant
across the cortex but rather it varies with age and brain region (Raz, 2005; Jiang et al.,
2014; Storsve et al., 2014; Dotson et al., 2016), and is reported to accelerate with increasing
age (Driscoll et al., 2009; Jiang et al., 2014). For example, a longitudinal study of
alterations in cortical morphometry in older adults found accelerated changes with increasing
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age in temporal and occipital cortices (Storsve et al., 2014).
Furthermore, other studies report that the temporal lobes are
most vulnerable to age-related morphometric changes, and that
these changes reflect age-related cognitive impairment (Singh
et al., 2006; Fjell et al., 2009; Pacheco et al., 2015). There is
considerable evidence that neuroanatomical alterations reflect
underlying functional alterations, especially in cognition (Fjell
et al., 2006; Rossini et al., 2007; Ziegler et al., 2010; Achiron
et al., 2013). In fact, functional magnetic resonance imaging
(fMRI) studies, which rely on the blood oxygen level-dependent
(BOLD) signal as a correlate of neuronal activity, report that
changes in cortical morphology across adult lifespan impact the
hemodynamic properties of the brain. For example, there are
cortical laminar differences in BOLD signal (Tian et al., 2010;
Huber et al., 2015), thicker cortical regions were reported to
have a lower relative oxygen extraction fraction (Zhao et al.,
2016). Therefore, since aging is associated with significant
neuroanatomical alterations, these should be considered when
assessing function (i.e., cognitive ability) using the BOLD signal.

The Standard Deviation of the BOLD signal can be
used to estimate variability (hereafter, “BOLDSD”), and is
believed to reflect the brain’s dynamic ability to undergo
fast moment-to-moment switching through network
reconfigurations (Garrett et al., 2010, 2014; Grady and Garrett,
2014). It is an emerging index of cognitive health in aging,
with higher regional BOLDSD being associated with enhanced
performance on certain cognitive tasks (i.e., task switching) but
not on others (i.e., distractor inhibition) (Armbruster-Genc et al.,
2016; Guitart-Masip et al., 2016). Generally, increased BOLDSD
is associated with younger age, faster and more consistent
performance on cognitive tasks, and cognitive flexibility (Garrett
et al., 2013a; Armbruster-Genc et al., 2016). The physiological
mechanisms underlying BOLDSD remain largely unknown. For
instance, decreased dopaminergic transmission is proposed to
be associated with decreased BOLDSD in subcortical areas in
older adults compared to younger ones (Guitart-Masip et al.,
2016). Another study reported that higher BOLDSD is associated
with superior pain coping capabilities (Rogachov et al., 2016).
However, there are few studies investigating the interaction
between age-related alterations in cortical morphology and
BOLDSD. One study reported that increased microstructural
integrity of WM pathways is associated with greater BOLDSD
(Burzynska et al., 2015). Given that neuroanatomical alterations
associated with normative aging are known to influence cognitive
performance, and that they influence the BOLD signal, their
impact as physiological confounds to BOLDSD should be
investigated. This is particularly relevant because there is a
considerable degree of inconsistency of methods used and results
across studies investigating BOLDSD. In fact, some studies report
greater regional BOLDSD in older adults (Garrett et al., 2010,
2011; Nomi et al., 2017), individuals with stroke (Kielar et al.,
2016), multiple sclerosis (Petracca et al., 2017), Alzheimer disease
(Makedonov et al., 2013, 2016; Scarapicchia et al., 2018) and
other neurological disorders (Zöller et al., 2017).

The objective of this study is to investigate the contribution of
cortical morphology (i.e., CT, CA, and GM volume) to age-related
BOLDSD changes in older adults. A longitudinal framework,

consisting of two scan points, should help reduce some of the
inter-individual variance in neuroanatomy by accounting for
external factors such as lifestyle, and various socio-economic
and demographic factors. To this end, we investigated global
and regional differences in BOLDSD in a group of older adults
scanned twice at an interval of approximately 2.5 years, and
regressed the effect of cortical morphology by introducing
CT, CA, and GM as covariates. We hypothesized that cortical
morphology metrics show an interaction with BOLDSD. We
predict that age-related neuroanatomical alterations in CT, CA,
GM are physiological confounds to BOLDSD measures, and that
consequently adjusting for these metrics may help “unmask” the
functional relevance of BOLDSD.

MATERIALS AND METHODS

Participants
All data obtained for the present study were obtained from the
longitudinal Geneva Aging Study, after approval by the ethics
committee of the Faculty of Psychology and Educational Sciences
of the University of Geneva and the Swiss Ethic committee. Older
subjects were initially recruited either from the University of
the Third Age of Geneva or through newspaper and association
advertisements for pensioners, as part of a larger longitudinal
study. All participants gave written informed consent and older
adults received a small amount of money as a compensation for
their transportation fees.

Our initial sample consisted of 31 older adults scanned twice
(mean age at first scan = 71.65 ± 6.03 years, mean age at
second scan = 74.06 ± 5.99 years; 9 males). These subjects were
chosen, within our pool, because they were the only ones that
had undergone two T1 structural images and task fMRI scans,
as well as other cognitive tests. Participants were screened for
health problems with a questionnaire. The structural MRIs were
inspected to rule out severe abnormalities (white matter changes,
ventricular enlargement, tumors etc.). Three of the participants
showed signs of Parkinson or lesion on their anatomical MRI,
so they were excluded from the final sample (n = 28). All
models and results in this current paper thus reflect 28 older
adults (mean age at first scan = 71.61 ± 6.21 years, mean age
at second scan = 74.07 ± 6.15 years; 7 males). The scans were
2.46± 0.69 years apart.

MRI Data Acquisition
Participants were scanned in a Siemens Trio 3T magnet.
A BOLD fMRI task-rest sequence was administered using a
reaction time paradigm, where the participant had to indicate
on which side a cross was changing into a square, as fast
as possible (Mella et al., 2013). The task consisted of eight
experimental blocks, interspersed with eight resting blocks
(respectively, 52–20 s). The BOLD activity was obtained using
an echo planar imaging acquisition (echo time, TE = 30 ms,
time repetition, TR = 2100 ms, flip angle = 80◦, field of view,
FOV = 205 mm). Then, a structural T1-weighted MRI was
acquired (TE = 2.27 ms, TR = 1900 ms, FOV = 256 mm, voxel
size 1.0 mm× 1.0 mm× 1.0 mm).
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Structural Data Processing
Structural T1-weighted MR images were analyzed using
Freesurfer version 6.0, a widely used and freely available
automated processing pipeline1, which allows surface-based
three dimensional reconstruction and quantification of cortical
morphology. The standard steps for analysis were implemented
(using “recon-all” pipeline with the default set of parameters).
Regional measures of GM, CT, and CA for each hemisphere were
obtained using the automated anatomic parcellation procedure.
Technical details are found in prior publications (Dale et al.,
1999; Fischl et al., 1999a,b, 2001; Fischl and Dale, 2000; Zhang
et al., 2001; Salat et al., 2004; Winkler et al., 2012). In brief,
T1-weighted images underwent preprocessing steps including
motion correction, brain extraction, intensity normalization, and
Talairach transformation (Sled et al., 1998; Smith, 2002; Ségonne
et al., 2004; Reuter et al., 2010). GM and WM surface boundaries
were reconstructed to estimate the distance between them across
the cortex (Fischl and Dale, 2000). The generated cortical models
were inflated into spheres to be registered to a spherical atlas and
parcellated into regions of interest using Destrieux atlas (Fischl
and Dale, 2000; Segonne et al., 2007; Destrieux et al., 2010).

Functional Data Processing
Processing of the functional data were performed using FSL
version 5.0 (Analysis Group, FMRIB, Oxford, United Kingdom
(Smith et al., 2004). Standard preprocessing were followed using
FSL’s FEAT and FSL’s Melodic for functional data (Jenkinson
et al., 2012). Briefly, for each participant preprocessing steps
included motion correction, slice timing, spatial normalization,
highpass temporal filtering (100 s), smoothing (kernel 5 mm
FWHM), and linear registration (12 degrees of freedom) of the
functional data to the high-resolution T1 structural image, and
from T1 to 1 mm standard space (MNI 152). Additionally,
FSL’s Melodic was used to correct each functional image
for artifacts using automatic dimensionality estimation via
independent component analysis (ICA) (Beckmann and Smith,
2004). Change in cortical morphology between the two scanning
sessions was determined as cortical morphology metrics GM
(delta.volume), CT (delta.thickness), CA (delta.area) at timepoint
2–at timepoint 1.

BOLD Signal Variability Calculation
As part of the Geneva Dataset, the subjects were performing
different cognitive tasks, and for the current study, only
the fixation/rest blocks from the block design task fMRI
were selected to calculate BOLDSD, as previously described
(Garrett et al., 2010). BOLDSD analysis was restricted to
the GM using participant specific GM mask obtained from
FSL’s FAST. First, fixation blocks were normalized so that the
overall four-dimensional mean across brain and block was
100. Next, for each voxel, the block mean was subtracted
to remove block-wise drift, followed by concatenation of all
blocks. The standard deviation of the normalized mean of
the concatenated fixation blocks was used to obtain BOLDSD
values for each brain region (n = 148) of each subject, as

1http://surfer.nmr.mgh.harvard.edu/

defined by the Destrieux Atlas (Destrieux et al., 2010), using
in-house MATLAB code. Change (delta.variability) in variability
between the two scanning sessions was calculated as variability
at timepoint 2–variability at timepoint 1. BOLDSD encompassing
both timepoints was introduced as “variability” (see section
“Regional Model”).

Statistical Analysis
Linear mixed effects models (LMMs) were used to investigate
the potential confounding effect of cortical morphology, GM,
CT, CA on BOLDSD (Bates, 2005; Zuur et al., 2011).The
LMMs allow estimation of the effects of explanatory variables
(“fixed effects”) and their interactions on the dependent variable
(i.e., BOLDSD), while statistically controlling for the effects
of randomly selected participants (“random effects”) on the
dependent variable (BOLDSD). Multiple models were run and
the likelihood-ratio test was used to (1) investigate if introducing
subjects as random effects improves the fit of the model
(2) to select the optimal combination of fixed effects fitted
with maximum likelihood, while keeping the random effects
structure the same. Therefore, the likelihood-ratio test via
ANOVA was used to compare the goodness of fit of different
models. R statistical software package (R Core Team, 2013)2

was used for all statistical analyses. Correlation between cortical
morphology measures were computed using cor function in
R. All models were fitted using the “lmer” or “lm” function
in R. “lmerTest” R package was used to obtain summary
table and p-values for linear mixed models via Satterthwaite’s
degrees of freedom method (Kuznetsova et al., 2017). A spatio-
temporal approach to LMMs allowed characterization of
regionally specific variation across the brain (Bernal-Rusiel
et al., 2013). This approach was implemented to investigate
if there is a significant change in BOLD variability across
time (1) all cortical regions (2) region specific. Random
effect structure with subjects varying in their “baseline”
BOLD variability was retained (random intercept, 1| ID).
Additionally, to model a different rate of change in the expected
response levels, time varying predictors were introduced by
random slopes (i.e., thickness, time) (“Regional Model”). To
reduce spatial correlation issues an LMM model with the
described structure was applied at each spatial location (i.e.,
region of interest) independently. Each model produced a
parameter which quantifies the mean change in BOLD variability
(delta.variability) for that region. P-values were corrected for
multiple comparisons using false discovery rate (FDR) at q = 0.05
(Benjamini and Yekutieli, 2001).

Models
Model 1 < lm (delta.variability∼ region).
Model 2 < - lmer [delta.variability∼ region+(1| ID), REML = F].
Model 3 < - lmer [delta.variability ∼ delta.thickness +
region+(1| ID), REML = F].
Model 4 < - lmer [delta.variability ∼ delta.area + region +
(1| ID), REML = F].

2www.R-project.org
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Model 5 < - lmer [delta.variability∼ delta.thickness+ delta.area
+ region+(1| ID), REML = F].
Model 6 < - delta.variability∼ delta.volume+ region+ (1 | ID).

Final Model
lmer [delta.variability∼ delta.thickness+ region+(1| ID)].

Regional Model
lmer [variability∼ time+ thickness+ (1+thickness+ time| ID)].

RESULTS

Relations Between Cortical Thickness
and BOLD Signal Variability Age-Related
Changes
The functional and structural data of 28 participants was assessed.
As expected, our study showed that CA and GM are highly
correlated r = 0.904, p < 0.001 (95% Cl 0.901–0.908) and
consequently collinearity was suspected. Multiple LMMs were
utilized to assess the effect of neuroanatomical metrics CT, CA,
and GM on BOLDSD age-related changes. Results from the linear
mixed effect models run with likelihood-ratio test via ANOVA,

are presented in Table 1. (A) indicates that subject intercept
should be introduced as a random effect, while (B–E) show the
steps that have led to the final model. Specifically, Table 1. (B,C)
indicate that introducing CT or CA as covariates, separately, each
significantly improve the fit of the model p < 0.0001, p < 0.05,
respectively. However, from (D) it is apparent that adding CA
to a model that already has CT as a covariate does not improve
the fit of the model, meaning that CT only should be included
in the final model (see section “Final Model”). (E) indicates
that introducing GM as a covariate does not improve the fit
of the model. Neither CT, GM, nor CA mean changes were
significant as tested with LMMs. Regional Model LMM indicated
that neither overall nor regionally specific mean BOLDSD change
was significant after FDR correction.

DISCUSSION

Cortical Thickness and Its Association
With BOLDSD
In this study we aimed at determining the contribution of
cortical morphology to BOLDSD in order to better understand

TABLE 1 | Results from likelihood-ratio test via ANOVA for model comparison (fit with “lmer” function in R).

Df AIC BIC logLik Deviance Chisq Chi Df. Pr > Chisq

(A) Determine if random effects for subject intercept should be introduced

Model 1 Delta.variability ∼ Region

Model 2 Delta.variability ∼ Region + (1| ID)

Model 1 149 −2771.9 −1828.8 1534.9 −3069.9

Model 2 150 −3744.8 −3744.8 2022.4 −4044.8 974.97 1 < 2.2e− 16

(B) Determine if introducing thickness as a covariate improves the goodness-of-fit

Model 2 Delta.variability ∼ Region + (1| ID)

Model 3 Delta.variability ∼ Delta.thickness + Region + (1| ID)

Model 2 150 −3744.8 −2795.4 2022.4 −4044.8

Model 3 151 −3765.5 −2809.8 2033.8 −4067.5 22.691 1 1.903e− 06

(C) Determine if introducing area as a covariate improves the goodness-of-fit

Model 2 Delta.variability ∼ Region + (1| ID)

Model 4 Delta.variability ∼ Delta.area + Region + (1| ID)

Model 2 150 −3744.8 −2795.4 2022.4 −4044.8

Model 4 151 −3749.0 −2793.3 2025.5 −4051.0 6.2025 1 0.01276

(D) Determine if introducing both area and thickness as covariates as compared to just one improves the goodness-of-fit

Model 3 Delta.variability ∼ Delta.thickness + Region + (1| ID)

Model 5 Delta.variability ∼ Delta.thickness + Delta.area + Region + (1| ID)

Model 3 151 −3765.5 −2809.8 2033.8 −4067.5

Model 5 152 −3766.7 −2804.7 2035.4 −4070.7 3.2151 1 0.07296

(E) Determine if introducing gray matter volume as covariate improves the goodness-of-fit

Model 2 Delta.variability ∼ Region + (1| ID)

Model 6 Delta.variability ∼ Delta.volume + Region + (1| ID)

Model 2 150 −3744.8 −2795.4 2022.4 −4044.8

Model 6 151 −3743.1 −2787.3 2022.5 −4045.1 0.2245 1 0.6357

AIC, akaike information criterion; BIC, Bayesian information criterion; Chisq Chi, chi-square test statistic; Df, degrees of freedom; logLik, log-likelihood; Pr > Chisq.
P < 0.05. ID represents subject identification number.
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the physiological nature of brain function capture by BOLDSD.
BOLDSD changes across the lifespan have been shown to be
robust to certain vascular factor such as cerebral blood flow,
BOLD cerebrovascular reactivity, maximal BOLD signal change
(Garrett et al., 2017), as well as GM volume changes (Nomi
et al., 2017). However, using LMMs, we found that functional
alterations in aging as captured by BOLDSD are confounded
by the structural metric CT. This is not surprising, considering
that it is well known that BOLD signal change/activation is
dependent on the laminar organization of the cortex, and
consequently is influenced by its depth or thickness (Koopmans
et al., 2010; Tian et al., 2010; Bandettini, 2012). In fact,
neurovascular coupling is reported to vary by cortical depth and
layer (Goense et al., 2012).

In a longitudinal study investigating CT, GM volume, CA
across the lifespan, Storsve et al. (2014) reported cortical
morphology metric specific and region specific rates of mean
annual percentage change (APC) in healthy adults aged
23–87 years. In most regions, GM volume has a mean APC
of –0.51, CT of –0.35, and CA of –0.19. Other longitudinal
studies in older adults, report similar reductions: in GM
volume, mean APC ranging from –0.5 to –2.1 ± 1.6% (Tang
et al., 2001; Fjell et al., 2009), in CT, mean APC –0.3%
(Shaw et al., 2016), in WM tracts, mean APC ranging from –
0.20 to –0.65 depending on the tract location (Storsve et al.,
2016). In our sample, the change in cortical morphology
from scan 1 to scan 2 (2.5 years apart) was not statistically
significant. However, the findings reported by these longitudinal
studies suggest that while the neuroanatomical alterations
may be too subtle to reach statistically significance in the
investigated timespan of 2.5 years, they may still contribute to
BOLDSD age-related findings. Particularly, accounting for CT
age-related changes may help “unmask” the functional value
of BOLDSD.

While the relationship between cortical morphology metrics
in aging is dynamic, GM volume changes were largely accounted
by changes in CT rather than CA, highlighting the importance
of tracking changes in CT (Storsve et al., 2014). In fact,
studies show that CT and CA are genetically independent
(Panizzon et al., 2009). Their neurodevelopment in the lifespan
is largely independent of each other suggesting that they should
be considered as separate metrics with different contributions
to cortical volume (Im et al., 2008; Winkler et al., 2010;
Eyler et al., 2011; Lemaitre et al., 2012; Storsve et al., 2014).
Furthermore, studies show that that some cortices experience
decrease in cortical morphology metrics at a higher rate than
others (Storsve et al., 2014).

The hemodynamic properties of each brain region are highly
correlated with its cortical structure (Ulrich and Yablonskiy, 2016;
Wen et al., 2018). Studies based on quantitative gradient recalled
echo (qGRE) analysis use the GRE signal decay rate parameter
(R2t∗) to gather information on tissue-specific contributions to
the fMRI signal. Regional R2t∗ metric variations are associated
with variations in neuronal density and myelination (positive
correlation), as well as glial cells and synapses concentration (i.e.,
negative correlation) (Wen et al., 2018). In normal aging R2t∗
increases in all cortical regions (Zhao et al., 2016). Thicker regions

show the opposite pattern, respectively, decreased neuronal
density, and higher concentration of glial cells and synapses
relative to neurons. Thicker areas also tend to extract less oxygen
from the blood, as measured by oxygen extraction ratios (i.e.,
expressed as local-to-global ratio). These findings indicate that
laminar differences in cellular content impact neurovascular
coupling mechanisms, which in turn may compromise the
power of BOLDSD measurements to detect “real” changes in
neuronal variability processing (Harris et al., 2011). Although,
laminar differences in BOLDSD remain rather elusive, our
study suggests the that CT should be considered in BOLD
variability studies.

Age-Related Changes in BOLDSD
In our study, we did not find a significant change in BOLDSD,
likely due to the low timespan between scans (2.5 years), and
relatively low sample (n = 28). Overall, most studies reporting
a decrease in BOLDSD suggest that this finding may indicate
structural reductions in synaptic complexity and integrity, as
well as functional decline in neural optimization and flexibility
(Garrett et al., 2010). Burzynska et al. (2015) reported a positive
correlation between increased microstructural integrity of WM
and BOLDSD in healthy adults, consequently warranting the
consideration of structural alterations in variability studies.
Nomi et al. (2017) found increases in variability in bilateral
anterior insula, anterior cingulate and ventral temporal cortex,
and decreases in BOLDSD in sensory brain regions and other
subcortical areas, in participants with ages ranging from 6 to
86 years. In their study they accounted for GM volume but not
CT or CA. Two seminal studies investigated BOLDSD differences
in aging alone (Garrett et al., 2010) and in relation to performance
on cognitive tasks (Garrett et al., 2011) between a young group
of participants (20–30 years) and an older one (56–85 years)
and found both increases and decreases in regional variability
with younger age alone, and younger age and better performance
(Garrett et al., 2011) making it rather difficult to isolate specific
key contributing regions. Most regions in these two studies
showed the same trend but there were some inconsistencies. For
example, superior frontal gyrus was reported to show greater
variability with younger age and better performance (Garrett
et al., 2011) in one study, while another one reported that
its variability increases with age (Garrett et al., 2010). CT
was not considered in any of these studies. The relationship
between cognitive performance and/or flexibility and BOLDSD
is definitely complex and task dependent. Behavioral studies
indicate age-related differences in intra-individual variability
on cognitive performance tests involving reaction time, and
working memory. Older adults showing higher intra-individual
variability on reaction time tests than younger adults, while the
opposite is observed on working memory tests (Fagot et al.,
2018). Additionally, the relationship between BOLDSD change,
aging and cognitive health has not been a consistent finding.
Some studies have found increased BOLD in healthy older adults
(Baum and Beauchamp, 2014), Alzheimer’s (Scarapicchia et al.,
2018), attention deficit hyperactivity disorder (ADHD) (Nomi
et al., 2018), and other neurological disorders (Zöller et al., 2017).
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Other Possible Confounds in BOLDSD
Studies
Most studies investigating BOLD variability utilized a
cross-sectional design while we used a within-subject design.
This design is a highlight of our study because it allows
for the investigation of normative age-related differences,
specifically intra-individual effects of the processing of aging
on cortical morphology and BOLDSD, rather than process of
aging simply age differences across groups. Importantly, the
within-subject design helps account for numerous sources of
individual differences that may affect BOLD variability such
as differences in dopaminergic neurotransmission (Guitart-
Masip et al., 2016; Alavash et al., 2018), significant differences
in vascular features, pain sensitivity and coping (Rogachov
et al., 2016), clinical symptomology (Ke et al., 2015; Nomi
et al., 2018; Zöller et al., 2018), and even differences in
tendency for financial risk taking (Samanez-Larkin et al., 2010).
Given that in our study the participants were scanned at an
interval of approximately 2.5 years, we were able to at least
partially account for such factors. Furthermore, it is clear
from the literature that there are numerous environmental
factors [i.e., socioeconomic status, education (Chan et al.,
2018)] that may contribute to individual neuroanatomical
alterations, which in turn may confound BOLD variability
studies. This further supports the findings of our study,
specifically that CT is a neuroanatomical metric that should
be accounted for.

Lastly, there may be inconsistency in results between studies
due to: (1) using task-fMRI and resting-state fMRI, (2)
calculation of BOLD signal variability using standard deviation
vs. mean-square successive difference) (for review, Garrett et al.,
2013b), (3) type of statistical analysis performed (e.g., partial
least squares method, LMM, general linear model), and (4) not
accounting for contribution of CT and the other mentioned
sources of individual differences.

STUDY LIMITATIONS

The main limitations, as discussed above and further addressed
by Garrett et al. (2013b); Scarapicchia et al. (2018), are the
lack of standardization in acquiring and analyzing the fMRI
data. Additionally, the sample used in our study consists of
a relatively small sample of older adults and rather short
scan-rescan time, consequently this limits our ability to make
strong generalization to other age groups or longer time spans,
respectively. Nevertheless, since studies show that the brain

undergoes extensive annual structural alterations across the
lifespan at different rates, our finding that CT contributes to
BOLDSD alterations, remains an important consideration.

CONCLUSION

In conclusion, contrary to a view that BOLD variability is just
“noise,” we consider it to be emerging as an important metric
of normal aging. Keeping in mind that across the lifespan
there are considerable cortical morphometry alterations and
that cortical depth affects the BOLD signal, we reported that
CT contributes to BOLDSD changes, in an older sample of
health adults. An increasing number of studies are considering
healthy regional BOLDSD changes in the context of functional
networks (Rogachov et al., 2016; Nomi et al., 2017). Pursuing
this direction while accounting for CT and other possible
confounding factors such as dopaminergic neurotransmission,
socioeconomic background etc., should reveal new insights into
the mechanisms behind age-related neural processes.
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