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Abstract: Background. Hereditary hemorrhagic telangiectasia (HHT) is a rare, autosomal dominant
genetic disorder characterized by life-threatening vascular dysplasia. Myeloid angiogenic cells
(MACs), alternatively called early endothelial progenitor cells or circulating angiogenic cells, do not
directly incorporate into developing blood vessels, but augment angiogenesis in a paracrine manner.
MAC dysfunction has been reported in HHT. MicroRNAs (miRNAs) regulate cellular function by
modulating gene expression post-transcriptionally. To date, the role of miRNAs in HHT MAC
dysfunction has not been documented. Objective. The goal of this study was to comparatively profile
miRNAs in HHT patient and control MACs to identify dysregulated miRNAs that may be responsible
for the observed MAC dysfunction in HHT. Methodology/Results. Twenty-three dysregulated
miRNAs (twenty-one upregulated and two downregulated) in HHT MACs were identified with a
TaqMan miRNA microarray. Pathway enrichment analysis showed that the dysregulated miRNAs
were significantly enriched in pathways involved in HHT pathogenesis, such as the transforming
growth factor β (TGFβ), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and Hippo
signalling pathways. Furthermore, miR-132-3p was determined to be significantly reduced in HHT
MACs compared with controls by reverse transcription-quantitative polymerase chain reaction (RT-
qPCR). Bioinformatic analysis revealed that miR-132-3p is significantly enriched in the TGFβ and
PI3K/AKT signalling pathways, targeting SMAD4, an effector of the TGFβ signalling pathway and
RASA1, a negative regulator of the PI3K/AKT signalling pathway, respectively. Conclusion. MiRNA
dysregulation, specifically reduced expression of miR-132-3p, in HHT MACs was identified. The
dysregulated miRNAs are significantly enriched in the TGFβ, PI3K/AKT, and Hippo signalling
pathways. These data suggest that alteration in miRNA expression may impair these pathways and
contribute to MAC dysfunction in HHT.

Keywords: hereditary hemorrhagic telangiectasia; myeloid angiogenic cells; microRNAs; early
endothelial progenitor cells; circulating angiogenic cells; transforming growth factor beta signalling
pathway; PI3K/AKT signalling pathway

1. Introduction

Hereditary hemorrhagic telangiectasia (HHT) is a rare, autosomal dominant, genetic
disorder characterized by life-threatening vascular malformations. Approximately 1 in
5000 to 8000 people are affected globally [1]. Patients can develop skin and mucocutaneous
vascular malformations, that are direct connections between arterioles and venules lacking
capillaries, called telangiectases [2]. Approximately 95% of patients develop recurrent
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and spontaneous epistaxis from nasal telangiectases [3]. Patients can also develop direct
connections between arteries and veins, lacking capillaries, in the lungs, brain, liver, and
spine, called arteriovenous malformations (AVMs) [4]. Serious complications can arise
from AVMs, including high output cardiac heart failure, cirrhosis, ischemic and hem-
orrhagic stroke, and brain abscess [5]. HHT is underdiagnosed and lacks an effective
pharmacological therapy.

Heterozygous mutations in at least three genes, including endoglin (ENG, chromo-
somal locus 9q34), activin-A type-II receptor-like kinase 1 (ACVRL1, also known as ALK1,
chromosomal locus 12q1), and mothers against decapentaplegic homolog 4 (SMAD4, chro-
mosomal locus 18q21) are known to cause HHT [6–8]. Mutations in ENG and ACVRL1
lead to HHT Type 1 and 2, respectively, while SMAD4 mutations result in a combined
juvenile polyposis-HHT syndrome (JP/HHT). HHT Type 1 and 2 comprise 70–90% of
cases, while JP/HHT is responsible for approximately 1–2% [9–11]. Over 850 pathogenic
mutations in ENG, ACVRL1, and SMAD4 have been documented (https://arup.utah.edu/
database/HHT/, https://arup.utah.edu/database/SMAD4/SMAD4_welcome.php, ac-
cessed on 24 January 2022). These genes play critical roles in the transforming growth factor
β/bone morphogenetic protein (TGFβ/BMP) signalling pathway. This pathway regulates
vascular homeostasis, endothelial cell function, and angiogenesis [12]. ENG encodes a
TGFβ co-receptor or auxiliary receptor that is responsible for maintaining a high affinity
bond between TGFβ ligands and receptors. ACVRL1 encodes a TGFβ receptor I that binds
to TGFβ ligands with ENG and TGFβ receptor II. SMAD4 is an intracellular effector of
TGFβ/BMP signalling that upon activation translocates to the nucleus to regulate gene
expression. Mouse models of HHT were integral in the characterization of the pathogenicity
of these mutations, as well as the identification of endothelial cells (ECs) as the predominant
pathologic cell [13]. HHT animal models have also led to the development of the “Three
Event Hypothesis” that states AVM formation is due to the synergy of three events: the
inherited mutation, loss of heterozygosity of the inherited mutation, and an angiogenic
trigger [13]. Indeed, Snellings et al. demonstrated that HHT Type 1 and 2 telangiectasia
biopsies could have bi-allelic loss of ENG or ACVRL1 [14]. This suggests that the genetic
mutations alone are necessary, but not sufficient to generate vascular malformations, and
alternative biological factors must be at play.

MicroRNAs (miRNAs) are short (21–25 nucleotides long) non-coding RNA molecules
that regulate gene expression in a post-transcriptional fashion [15]. To date, over 2000
miRNAs have been discovered and are involved in virtually every cellular process [16–18].
MiRNAs regulate gene expression by targeting the 3′ untranslated region of messenger
RNA (mRNA), where perfect complementarity results in mRNA cleavage and imperfect
complementarity results in mRNA silencing through the blockage of translational ma-
chinery [16,19]. The latter mechanism is typically carried out by human miRNAs [19].
These promiscuous molecules have been shown to possess tens to hundreds of targets and
regulate approximately 30% of known genes [20,21]. MiRNAs are involved in a variety
of human diseases and have been established as reliable biomarkers, especially in oncol-
ogy [22,23]. We have previously reported reduced levels of miRs-28-5p and -361-3p in
HHT patient peripheral blood mononuclear cells (PBMCs), as well as elevated levels of
circulating miR-210 in HHT patients with pulmonary AVMs [24,25]. Various other studies
have identified miRNA dysregulation in HHT, but miRNA research in HHT is limited and
an exact pathogenic role of any one miRNA has yet to be fully elucidated [26–28].

Myeloid angiogenic cells (MACs) [29], also known as early endothelial progenitor
cells [30–32] or circulating angiogenic cells [33], are myeloid cells of the hematopoietic
lineage with potent pro-angiogenic and vasoreparative properties [34,35]. They are derived
through the culture of PBMCs on fibronectin-coated flasks in vascular endothelial growth
factor (VEGF)-containing medium for 4–7 days [36–38]. MACs do not directly incorporate
into a developing blood vessel, but rather support angiogenesis in a paracrine manner
through the secretion of various growth factors, including VEGF, interleukin 8 (IL8), stromal
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cell-derived factor 1 (SDF1), insulin-like growth factor 1 (IGF1), and hepatocyte growth
factor (HGF) [39,40].

MAC dysfunction has been shown in a variety of human diseases [35–38,41,42]. van
Laake et al. demonstrated that MACs from HHT Type 1 patients have impaired migration
and homing to sites of cardiac injury in a mouse model of myocardial infarction [41]. Tepper
et al. showed that MACs derived from type 2 diabetes patients had reduced proliferation,
decreased adherence to human umbilical vein endothelial cells (HUVECs), and a decreased
ability to augment tube formation [36]. Vasa et al. showed that patients with coronary
artery disease (CAD) had reduced MAC levels that were correlated with CAD risk factors,
such as smoking and diabetes [37]. They also demonstrated that CAD MACs had reduced
migratory capacity [37]. Ward et al. demonstrated that MACs from patients with CAD
had impaired vasoreparative properties, blunted migration, and reduced expression of
VEGF and platelet derived growth factor [38]. It was also found that endothelial nitric
oxide synthase (eNOS) overexpression in CAD MACs improved HUVEC tube formation
and augmented neovascularization and perfusion in a nude mouse model of hind limb
ischemia [38]. Zhang et al. identified reduced migration and increased apoptosis in MACs
derived from patients with idiopathic pulmonary arterial hypertension [43]. Most relevant
to the present study, Zucco et al. demonstrated that MACs derived from HHT patients had
impaired function [44]. The exact mechanism of MAC dysfunction in HHT is not completely
understood and whether miRNA dysregulation is involved has not yet been investigated.
In this study, we sought to comparatively profile miRNAs in HHT patient and control
MACs to identify dysregulated miRNAs that may play a role in HHT MAC dysfunction.

2. Methodology
2.1. Patient Recruitment and Ethics Statement

Informed written consent was obtained from all study participants, i.e., HHT patients
and age- and gender-matched controls. Forty HHT patients between the ages of 18 and 65
who were clinically diagnosed with HHT according to the Curaçao diagnostic criteria for
HHT were recruited [45]. HHT patients who demonstrated clinically significant anemia
(hemoglobin < 100 g/L) or pregnancy were excluded to prevent risk of health complications,
e.g., worsening of anemia that may require blood transfusion. All HHT patients were
recruited from the Toronto HHT Centre at St. Michael’s Hospital, Toronto, Ontario, Canada.
The study protocol was approved by the Research Ethics Board of St. Michael’s Hospital,
University of Toronto (REB 02-185), in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki).

2.2. MAC Cell Culture

Vacutainer CPT Mononuclear Cell Preparation Tubes (BD Biosciences, Mississauga,
ON, Canada) containing Ficoll-Hypaque solution were used for PBMC isolation. A total of
24 mL of peripheral blood was obtained in 3 tubes. After centrifugation at room temperature
at 1650× g for 30 min, PBMCs were carefully collected from the buffy coat, washed one
time with phosphate buffered saline (PBS), and seeded at a density of 0.75 × 106 cells/cm2

on human fibronectin-coated (10 µg/mL) T25 flasks in complete Endothelial Cell Growth
Medium-2 (EGM-2) (Lonza, EGM-2 BulletKit, cat# CC-3162) supplemented with 20%
human serum. On the 3rd day of culture, non-adherent cells were removed through
aspiration and fresh growth medium was supplied. Media were replenished every other
day until day 7 when cells were used directly for analysis. MACs were analyzed by cell
uptake of Dil-Ac-LDL, binding of UEA-Lectin, and detection of VEGFR2 expression, as
previously described [38,44,46,47].

2.3. Total RNA Isolation from MACs

A Qiagen RNeasy Mini Kit (Qiagen, Toronto, ON, Canada; cat# 217004) was used to
isolate total RNA from MACs in accordance with the manufacturer’s instructions. Briefly,
cells were lysed with 700 µL of Qiazol lysis reagent and the lysate was incubated for
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5 min at room temperature and mixed with 140 µL of chloroform. After the mixture was
centrifuged at 12,000× g for 15 min at 4 ◦C, 300 µL of the aqueous layer containing RNA
was carefully extracted and mixed with 450 µL of 100% ethanol. Subsequently, 700 µL of
this mixture was added to an RNeasy Mini column and centrifuged at 10,000× g for 15 s at
4 ◦C. Then the column was washed twice with 500 µL of Buffer RPE followed by 500 µL of
100% ethanol at 10,000× g for 15 s at 4 ◦C. Finally, RNA was eluted with 30 µL of RNase
free water at 10,000× g for 1 min at 4 ◦C. A NanoDrop 2000 spectrophotometer was used to
assess the concentration and quality of RNA prior to storage at −80 ◦C. All components
used were free of DNase, RNase, and pyrogen.

2.4. MiRNA Microarray

A TaqMan Low Density MicroRNA Microarray covering 377 human miRNAs (Applied
Biosystems, Burlington, ON, Canada, Card A v2.0, cat# 4398965) was employed to profile
miRNAs in 6 independent HHT and 6 independent control MAC RNA samples. Reverse
transcription (RT) and miRNA array were performed as described elsewhere [48]. RQ Study
software (Applied Biosystems) was used to analyze the array results and normalized to U6
snRNA as determined by the NormFinder Excel plugin (https://moma.dk/normfinder-
software) (accessed on 18 March 2020) [49]. Select miRNAs of interest were determined
based on a fold change of 1.5 or greater and <31 cycle threshold value (Ct) [50,51]. Relative
quantification of the expression of individual mRNAs was carried out with the Livak
method (2−∆∆Ct ) and normalized against endogenous U6 snRNA.

2.5. Enrichment Analysis of Dysregulated MiRNAs

DIANA-miRPath v.3 [52] (http://snf-515788.vm.okeanos.grnet.gr/) (accessed on 11
May 2020) was used to perform enrichment analysis on the 23 dysregulated miRNAs
identified by microarray analysis after systematic exclusion. The microT-CDS prediction
algorithm with a threshold of 0.5 was applied to identify targets of the 23 dysregulated
miRNAs followed by a functional enrichment analysis on the identified targets with the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways annotation database. Statis-
tical analysis was performed with Fisher’s exact test with a p-value threshold of 0.01 and
corrected with the false discovery rate (FDR). Results were combined at the pathways level
(pathways union) and presented as a heat map with hierarchical clustering. MiR-886-5p
was excluded from the analysis by DIANA-miRPath v.3 because it had been withdrawn
from miRBase (v22.1) due to a lack of empirical evidence to support its existence.

2.6. RT-qPCR for MiRNA Validation

Selected dysregulated miRNAs identified by the miRNA microarray analysis were
validated with RT-qPCR. The RT reaction was performed with a total volume of 15 µL
and was comprised of: 3 µL 5X RT primer, 7 µL RT master mix, and 5 µL RNA sample
(20 ng of total RNA). For each RT reaction, the master mix was prepared as follows: 0.15 µL
100 mM dNTP, 0.19 µL (20 U/µL) RNase inhibitor, 1 µL (50 U/µL) MultiScribe Reverse
Transcriptase, 1.5 µL 10X reverse transcription buffer, and 4.16 µL of nuclease-free water. A
Veriti 96-well thermal cycler was used to perform RT according to the following protocol:
16 ◦C for 30 min, 42 ◦C for 30 min, 85 ◦C for 5 min, and 4 ◦C hold. Quantitative PCR was
performed in a total volume of 10 µL consisting of: 0.5 µL 20X miRNA PCR primer, 1 µL
RT product, 5 µL 2XTaqMan Fast Advanced Master Mix, and 3.5 µL of nuclease-free water.
A QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems) was used to perform
qPCR according to the following thermocycling protocol: 95 ◦C for 20 s, and 40 cycles of
95 ◦C for 1 s and 60 ◦C for 20 s. Relative quantification of miRNAs normalized against
endogenous U6 snRNA was performed using the Livak method (2−∆∆Ct ).

2.7. Enrichment Analysis of MiR-132-3p

MIENTURNET [53] (http://userver.bio.uniroma1.it/apps/mienturnet/) (accessed on
19 November 2021) and DIANA-miRPath v.3 were used to identify miR-132-3p targets and
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subsequently perform functional enrichment analysis. DIANA-miRPath v.3 parameters
and methodology were described above. MIENTURNET utilized the experimentally
validated miR–target interactions database, miRTarbase [54] (Release 7.0, September 2017),
to identify targets of miR-132-3p. A threshold of 1 was used for the minimum number of
miR–target interactions and for the FDR adjusted p-value. Targets were filtered for strong
empirical evidence such as Western blot and luciferase assay. Functional enrichment was
performed on these identified targets using the Reactome pathways database. MiR-886-5p
was excluded from the analysis as described above.

2.8. Statistical Analyses

Data were presented as the mean ± standard deviation (SD). An unpaired two-tailed
Student’s t-test with Welch’s correction was used for all statistical analyses. A p-value < 0.05
was considered statistically significant. Z-score analysis was performed with a threshold of
2 SDs for outlier identification.

3. Results
3.1. Study Participants

A total of 40 HHT patients (21 females and 19 males) and 22 controls (12 females and 10
males) were recruited to participate in this study (Table 1). The mean age of the HHT patient
and control groups were 49.4 ± 10.6 years and 46.2 ± 12.6 years, respectively. Pulmonary
AVMs were detected by thoracic computed tomography (CT) or pulmonary angiography,
cerebral AVMs were detected by magnetic resonance imaging (MRI), and symptomatic
hepatic or liver vascular malformations (VMs) were detected by MRI, contrast-enhanced
CT, or Doppler ultrasonography. A detailed summary of HHT patient genetics, clinical
manifestations, and demographics, as well as control demographics can be seen in Table 1.

Table 1. Summary of demographics and clinical information.

HHT Patients (n = 40) Controls (n = 22)

Age (years) 49.4 ± 10.6 46.2 ± 12.6
Number (%) of Females 21 (52.5) 12 (54.5)

Average Female Age (years) (SD) 50.0 ± 9.8 48 ± 11.2
Number (%) of Males 19 (47.5) 10 (45.5)

Average Male Age (years) (SD) 48.8 ± 11.7 44 ± 14.5

Mutated Genes (Number of HHT Patients):

ENG 19 (47.5)
ACVRL1 15 (37.5)
SMAD4 1 (2.5)

Unknown * 5 (12.5)

AVMs (Number of HHT Patients):

PAVM 17 (42.5)
PAVM and CAVM 3 (7.5)
PAVM and LVM 2 (5)

CAVM
LVM

1 (2.5)
3 (7.5)

No AVM
Unknown †

13 (32.5)
1 (2.5)

Data presented as mean ± standard deviation (SD) or n (%). * Patients without an identified mutation despite full
mutational analysis in the known HHT genes, including ENG, ACVRL1, and SMAD4, or patients who have not
yet undergone genetic testing. † The patient had not undergone AVM screening. Abbreviations: HHT, hereditary
hemorrhagic telangiectasia; ENG, endoglin; ACVRL1, activin receptor-like kinase 1; SMAD4, mothers against
decapentaplegic homolog 4; AVM, arteriovenous malformation; PAVM, pulmonary arteriovenous malformation;
CAVM, cerebral arteriovenous malformation; LVM, liver (hepatic) vascular malformation.



Genes 2022, 13, 665 6 of 20

3.2. HHT MACs Have a Dysregulated MiRNA Profile Enriched in Pathways Involved in
HHT Pathogenesis

MAC characterization results are in line with those that we reported previously [47,48].
TaqMan microarray results were processed as follows, and miRNAs that had a Ct value
greater than 31 and a fold change less than 1.5 were systematically removed (Figure 1). A to-
tal of 23 miRNAs were identified to be dysregulated (21 upregulated and 2 downregulated)
in HHT MACs (Figure 2). A list of the dysregulated miRNAs is shown in Table 2. Functional
enrichment analysis in KEGG pathways by DIANA-miRPath v.3 revealed that the dys-
regulated miRNAs were significantly enriched in pathways related to HHT pathogenesis,
such as TGFβ, PI3K/AKT/Ras/MAPK [55–60], mTOR [61], Hippo [62], and Wnt [63,64]
signalling pathways (Figure 3). The top 10 significantly enriched pathways can be seen
in Figure 4. The extracellular matrix (ECM)–receptor interaction pathway (Pathway ID:
map04512, FDR adjusted p < 1 × 10−325) was the most significantly enriched and targeted
by miRs-29a/b-3p, -133a-3p, and let-7f-5p. The TGFβ signalling pathway (Pathway ID:
map04350, FDR adjusted p < 1 × 10−325) was the third most significantly enriched, targeted
by nine of the dysregulated miRNAs, including miRs-132-3p, -155-5p, -362-3p, -106b-5p,
and let-7f-5p, to name a few. A total of 68 genes were targeted in the TGFβ signalling
pathway, including SMAD2, SMAD4, ID1, TGFBR1/2, and BMPR2. A complete list of the
significantly enriched KEGG pathways is demonstrated in Table S1.
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Table 2. Dysregulated miRNAs identified by the microarray analysis. Table includes the miRNA
accession code (miRBase Identification Code), microarray assay target sequence, and fold change.

MicroRNAs Accession Assay Target Sequence Fold Increase

hsa-miR-16-5p MIMAT0000069 UAGCAGCACGUAAAUAUUGGCG 2.06

hsa-miR-19a-3p MIMAT0000073 UGUGCAAAUCUAUGCAAAACUGA 1.50

hsa-miR-29a-3p MIMAT0000086 UAGCACCAUCUGAAAUCGGUUA 1.63

hsa-miR-29b-3p MIMAT0000100 UAGCACCAUUUGAAAUCAGUGUU 1.89

hsa-miR-106b-5p MIMAT0000680 UAAAGUGCUGACAGUGCAGAU 1.52

hsa-miR-126-3p MIMAT0000445 UCGUACCGUGAGUAAUAAUGCG 1.69

hsa-miR-132-3p MIMAT0000426 UAACAGUCUACAGCCAUGGUCG 1.54

hsa-miR-133a-3p MIMAT0000427 UUUGGUCCCCUUCAACCAGCUG 16.51

hsa-miR-139-5p MIMAT0000250 UCUACAGUGCACGUGUCUCCAG 2.56

hsa-miR-145-5p MIMAT0000437 GUCCAGUUUUCCCAGGAAUCCCU 1.91

hsa-miR-210-3p MIMAT0000267 CUGUGCGUGUGACAGCGGCUGA 4.16

hsa-miR-218-5p MIMAT0000275 UUGUGCUUGAUCUAACCAUGU 3.46

hsa-miR-221-3p MIMAT0000278 AGCUACAUUGUCUGCUGGGUUUC 1.70

hsa-miR-301a-3p MIMAT0000688 CAGUGCAAUAGUAUUGUCAAAGC 2.13

hsa-miR-155-5p MIMAT0000646 UUAAUGCUAAUCGUGAUAGGGGU 1.68

hsa-miR-342-3p MIMAT0000753 UCUCACACAGAAAUCGCACCCGU 6.92

hsa-miR-362-3p MIMAT0004683 AACACACCUAUUCAAGGAUUCA 1.64
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Table 2. Cont.

MicroRNAs Accession Assay Target Sequence Fold Increase

hsa-miR-424-5p MIMAT0001341 CAGCAGCAAUUCAUGUUUUGAA 1.82

hsa-miR-454-3p MIMAT0003885 UAGUGCAAUAUUGCUUAUAGGGU 1.68

hsa-miR-532-3p MIMAT0004780 CCUCCCACACCCAAGGCUUGCA 2.00

hsa-miR-886-5p MI0005527 CGGGUCGGAGUUAGCUCAAGCGG 2.61

Fold Decrease

hsa-let-7f-5p MIMAT0000067 UGAGGUAGUAGAUUGUAUAGUU 2.07

hsa-miR-17-5p MIMAT0000070 CAAAGUGCUUACAGUGCAGGUAG 1.59
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enriched KEGG pathways. The coloured scale bar represents LOG (p-value) from 0 to –15 where red
indicates more significance and yellow indicates less significance. The background colour of the heat
map or 0 of the scale bars represent no significance. Each row represents a KEGG pathway, and each
column represents a miRNA. The miRNA clustering tree or dendrogram is shown at the top and the
KEGG pathway clustering tree or dendrogram is shown on the right.
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Figure 4. Bubble plot represents the top 10 significantly enriched KEGG pathways for the 23 dys-
regulated miRNAs. The coloured scale bar indicates the −LOG (Q-value) where yellow indicates
more significance and blue indicates less significance. Q-value is the FDR adjusted p-value. Bubble
size represents the number of genes targeted in that particular pathway (gene count). The y-axis
represents the pathway rank from most to least significant (1 through 10). The x-axis represents the
number of miRNAs that are enriched in a particular pathway relative to the number of target genes
that are enriched in the same pathway, known as the miR:gene ratio.

3.3. MiR-132-3p Is Significantly Decreased in HHT MACs

Of the 23 dysregulated miRNAs identified by the microarray analysis, 12 miRNAs
(miRs-19a-3p, -29b-3p, 126-3p, -132-3p, -133a-3p, -139-5p, -145-5p, -155-5p, -221-3p, -301a-
3p, -424-5p, and -454-3p) were selected for RT-qPCR validation. These miRNAs were chosen
because they are well characterized, and some have been validated in healthy MACs in
a previous study [48]. Levels of miRs-19a-3p, -29b-3p, -126-3p, -145-5p, -155-5p, -221-3p,
-301a-3p, -424-5p, and -454-3p were not found to be significantly different between HHT and
control MACs by RT-qPCR (Figure 5). MiR-132-3p was shown to be significantly decreased
in HHT MACs compared with control MACs. MiRs-139-5p and -133a-3p were found to be
significantly increased in HHT MACs (Figure 5). However, the presence of extreme data
points or outliers in the HHT MACs were of concern. A Z-score analysis was applied to
all the miRNAs measured by RT-qPCR to identify and remove outliers (Figure S1). The
removal of outliers for miRs-139-5p and -133a-3p resulted in a loss of significance between
HHT and control groups, while miR-132-3p levels remained significantly decreased in HHT
MACs (Figure 6). Clinical characteristics, age, gender, mutated genes, or AVM types for
miRNA expression outliers are shown in Table S2. No correlations were identified between
levels of miR-132-3p and subject age or gender in both groups.
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Figure 5. (A–L) RT-qPCR validation of 12 miRNAs. Three miRNAs as indicated in the graphs were
found to be significantly different in HHT and control MACs, while nine as indicated were not.
* p < 0.05, and ns indicates not statistically significant.

3.4. MiR-132-3p Is Significantly Enriched in the TFGβ and PI3K/AKT Signalling Pathways

MiR-132-3p functional enrichment analysis in KEGG pathways by DIANA-miRPath
v.3 identified TGFβ signalling as the second most significantly enriched pathway (FDR ad-
justed p = 5.34 × 10−5) (Figure 7). A total of 31 genes in the TGFβ signalling pathway were
predicted to be targeted by miR-132-3p, including SMAD2, SMAD4, GDF5, and BMPR2.
A full list of predicted miR-132-3p target genes in the TGFβ signalling pathway can be
seen in Table 3. Target enrichment analysis by MIENTURNET using the experimentally
validated miRNA–target interactions database, miRTarbase v9.0, identified 33 experimen-
tally validated (Western blot or luciferase assay) targets of miR-132-3p, including, RASA1,
SMAD2, and GDF5 (Figure 8). Functional enrichment analysis of these targets in Reactome
pathways by MIENTURNET identified regulatory pathways of PI3K/AKT signalling as
the most significantly enriched, including the Reactome pathways, “PIP3 activates AKT
signaling” (Pathway ID: R-HSA-1257604, FDR adjusted p = 0.0008), “PI5P, PP2A, and IER3
regulate PI3K/AKT signaling” (Pathway ID: R-HSA-6811558, FDR adjusted p = 0.0024), and
“negative regulation of PI3K/AKT network” (Pathway ID: R-HSA-199418, FDR adjusted
p = 0.0032) (Figure 9). A complete list of enriched Reactome pathways and their respective
miR-132-3p target genes can be seen in Table S3.
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Figure 7. Bubble plot represents the top 10 significantly enriched KEGG pathways for miR-132-3p.
The coloured scale bar indicates the −LOG (Q-value) where yellow indicates more significance and
blue indicates less significance. Q-value is the FDR adjusted p-value. Bubble size represents the
number of genes targeted in that particular pathway (gene count). The y-axis represents the pathway
rank from most to least significant (1 through 10). The x-axis represents the number of miRNAs that
are enriched in a particular pathway relative to the number of target genes that are enriched in the
same pathway, known as the miR:gene ratio.

Table 3. List of miR-132-3p target genes in the TGFβ signalling pathway returned from DIANA
miRPath v.3. MicroT-CDS score is the miRNA target prediction algorithm score where values closer
to 1 are highly predicted. Experimental support refers to whether the predicted target has been
supported by experimental evidence, such as Western blot or luciferase assay.

Gene Name Gene Ensembl ID Microt-CDS Score Experimentally Supported

ROCK1 ENSG00000067900 0.921 No

SMAD2 ENSG00000175387 0.937 Yes

INHBB ENSG00000163083 0.564 No

SMAD9 ENSG00000120693 0.871 No

THBS1 ENSG00000137801 0.606 Yes

BMP5 ENSG00000112175 0.737 No

CDKN2B ENSG00000147883 0.684 No

ACVR1 ENSG00000115170 0.914 No

SKP1 ENSG00000113558 0.669 No

ACVR2B ENSG00000114739 0.999 Yes

ZFYVE16 ENSG00000039319 0.531 No

DCN ENSG00000011465 0.517 No

SMAD4 ENSG00000141646 0.711 No

E2F5 ENSG00000133740 0.503 Yes

SMURF1 ENSG00000198742 0.691 Yes

ZFYVE9 ENSG00000157077 0.716 No
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Table 3. Cont.

Gene Name Gene Ensembl ID Microt-CDS Score Experimentally Supported

SMAD5 ENSG00000113658 0.943 Yes

GDF6 ENSG00000156466 0.527 No

MAPK3 ENSG00000102882 0.608 No

TFDP1 ENSG00000198176 0.854 No

SP1 ENSG00000185591 0.538 Yes

GDF5 ENSG00000125965 0.998 No

TGFB2 ENSG00000092969 0.855 No

EP300 ENSG00000100393 1.000 No

PPP2CB ENSG00000104695 0.800 Yes

BMPR1A ENSG00000107779 0.605 No

LTBP1 ENSG00000049323 0.611 No

MAPK1 ENSG00000100030 0.992 Yes

PPP2R1B ENSG00000137713 0.587 Yes

BMPR2 ENSG00000204217 0.717 No

RPS6KB1 ENSG00000108443 0.515 NoGenes 2022, 13, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 8. MiR-132-3p target interaction network. All miR-132-3p targets are experimentally vali-
dated (Western blot and luciferase assay) as curated by miRTarbase. Yellow nodes represent miR-
132-3p target genes. Edges indicate gene–miRNA interactions. Nodes are sized appropriately to fit 
gene/miRNA names. 

Figure 8. MiR-132-3p target interaction network. All miR-132-3p targets are experimentally validated
(Western blot and luciferase assay) as curated by miRTarbase. Yellow nodes represent miR-132-
3p target genes. Edges indicate gene–miRNA interactions. Nodes are sized appropriately to fit
gene/miRNA names.



Genes 2022, 13, 665 14 of 20
Genes 2022, 13, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 9. Bubble plot of the top 10 significantly enriched Reactome pathways for miR-132-3p targets 
identified by MIENTURNET and miRTarbase. The coloured scale bar indicates the  ̶ LOG (Q-value) 
where yellow indicates more significance and blue indicates less significance. Q-value is the FDR 
adjusted p-value. Bubble size represents the number of genes targeted in that particular pathway 
(gene count). The y-axis represents the pathway rank from most to least significant (1 through 10). 
The x-axis represents the number of miRNAs that are enriched in a particular pathway relative to 
the number of target genes that are enriched in the same pathway, known as the miR:gene ratio. 

4. Discussion 
In the present study, we demonstrated that HHT MACs have a dysregulated miRNA 

profile with a significant reduction in miR-132-3p expression. Of note, miR-132-3p levels 
in some healthy controls were found to be as low as those in patients. The reason for this 
remains unresolved. Lifestyle factors such as diet, physical activity, and alcohol consump-
tion, known to affect miRNA expression [65], might be responsible for miR-132-3p varia-
tion in healthy controls. Bioinformatic analysis revealed that miR-132-3p is significantly 
enriched in the TGFβ and PI3K/AKT signalling pathways, both known to be involved in 
HHT pathogenesis [55–57]. MiR-132-3p is well characterized in various neurological and 
oncological pathologies, including Alzheimer’s and Parkinson’s disease, as well as lung, 
breast, glioma, and cervical cancer, to name a few [66,67]. MiR-132-3p has been shown to 
be a critical regulator of cellular apoptosis, migration, adhesion, and proliferation through 
various pathways, including the TGFβ, PI3K/AKT/Ras/MAPK, mTOR, Hippo, and 
Hedgehog signalling pathways [67]. 

Figure 9. Bubble plot of the top 10 significantly enriched Reactome pathways for miR-132-3p targets
identified by MIENTURNET and miRTarbase. The coloured scale bar indicates the −LOG (Q-value)
where yellow indicates more significance and blue indicates less significance. Q-value is the FDR
adjusted p-value. Bubble size represents the number of genes targeted in that particular pathway
(gene count). The y-axis represents the pathway rank from most to least significant (1 through 10).
The x-axis represents the number of miRNAs that are enriched in a particular pathway relative to the
number of target genes that are enriched in the same pathway, known as the miR:gene ratio.

4. Discussion

In the present study, we demonstrated that HHT MACs have a dysregulated miRNA
profile with a significant reduction in miR-132-3p expression. Of note, miR-132-3p levels
in some healthy controls were found to be as low as those in patients. The reason for
this remains unresolved. Lifestyle factors such as diet, physical activity, and alcohol
consumption, known to affect miRNA expression [65], might be responsible for miR-
132-3p variation in healthy controls. Bioinformatic analysis revealed that miR-132-3p is
significantly enriched in the TGFβ and PI3K/AKT signalling pathways, both known to
be involved in HHT pathogenesis [55–57]. MiR-132-3p is well characterized in various
neurological and oncological pathologies, including Alzheimer’s and Parkinson’s disease,
as well as lung, breast, glioma, and cervical cancer, to name a few [66,67]. MiR-132-3p
has been shown to be a critical regulator of cellular apoptosis, migration, adhesion, and
proliferation through various pathways, including the TGFβ, PI3K/AKT/Ras/MAPK,
mTOR, Hippo, and Hedgehog signalling pathways [67].

MiR-132-3p has been shown to be induced by TGFβ1/2 ligands and is in fact directly
controlled by the TGFβ signalling pathway [68–70]. It is not surprising that HHT MACs,
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which presumably have downregulated TGFβ signalling due to the genetic mutations, have
reduced expression of miR-132-3p. Wang et al. demonstrated that miR-132-3p expression is
controlled by TGFβ in a time- and concentration-dependent manner in glioma cells [69].
They also found miR-132-3p could enhance TGFβ signalling by directly targeting SMAD7,
a negative regulator of TGFβ signalling [69]. Similarly, Li et al. showed that miR-132-
3p expression could be stimulated via the induction of TGFβ1/2 in keratinocytes [70].
They also showed that inhibition of miR-132-3p could delay skin wound healing, increase
inflammation, and reduce keratinocyte proliferation in a mouse model [70]. Li et al. further
demonstrated that miR-132-3p expression can be induced by TGFβ1 in human dermal
fibroblasts (HDFs) [68]. They also showed that miR-132-3p inhibition can delay skin wound
healing in a human surgical wound model [68]. Interestingly, they demonstrated that
miR-132-3p inhibition can impair HDF migration by directly targeting RASA1 [68]. RASA1
is a negative regulator of the PI3K/AKT and Ras/MAPK signalling pathways and plays a
pivotal role in the regulation of cellular proliferation, apoptosis, and migration [71]. These
data indicate that miR-132-3p promotes cell migration and proliferation in various cell
types. In view of this, we speculate that the previously reported impairment of HHT
MAC migration and proliferation might be due in part to reduced levels of miR-132-3p.
Whether overexpression of miR-132-3p would rescue HHT MAC function warrants further
study. As miR-132-3p targets RASA1, a negative regulator of key pathways, such as the
PI3K/AKT pathway, that stimulate cell migration and growth, it would be of interest to
examine RASA1 and its target pathway expression in HHT MACs to better understand the
contribution of miR-132-3p to HHT MAC dysfunction.

Several studies have also identified that miR-132-3p regulates EC function and an-
giogenesis by targeting RASA1. Anand et al. revealed that miR-132-3p overexpression
in HUVECs increased cell proliferation and tube forming capacity, while inhibition of
miR-132-3p in the mouse postnatal retina impaired vascular development [72]. They
further determined that miR-132-3p exerts its effects through RASA1, where the deliv-
ery of anti-miR-132-3p to vessel endothelium in an orthotopic xenograft mouse model
of breast carcinoma restored RASA1 expression and suppressed angiogenesis [72]. The
proangiogenic effects of miR-132-3p were also demonstrated by Devalliere et al., where
HUVECs transfected with miR-132-3p had enhanced proliferation, migration, and vas-
cularization [73]. Lei et al. demonstrated that the overexpression of miRs-132-3p and
-212 in HUVECs enhanced vascularization through the direct inhibition of RASA1 and
SPRED1 [74]. Interestingly, mesenchymal stromal cell-derived exosomes (MSC-EXs) loaded
with miR-132-3p have been shown to promote EC function through the inhibition of RASA1.
Ma et al. demonstrated that MSC-EXs containing miR-132-3p increased HUVEC tube for-
mation and angiogenic capacity by targeting RASA1 [75]. Pan et al. showed that MSC-EXs
loaded with miR-132-3p decreased reactive oxygen species production, apoptosis, and
tight junction disruption in hypoxia/reoxygenation injured mouse brain microvascular
ECs compared with MSC-EXs without miR-132-3p [76]. These effects were due to increased
PI3K/AKT and Ras/MAPK signalling as a result of miR-132-3p inhibiting RASA1 and
associated with increased expression of eNOS and phospho-AKT [76]. Taken together,
miR-132-3p can promote cell proliferation and migration and inhibit apoptosis in a variety
of cell types by suppressing RASA1, a negative regulator of the PI3K/AKT and Ras/MAPK
signalling pathways. Therefore, it is possible that reduced levels of miR-132-3p may be
contributing to the observed HHT MAC dysfunction.

Differences in disease expression only partially reflect the specific gene that is mutated
in HHT. Even within families with the same genetic mutation, expressivity can widely
vary. We found in the present study that miR-132-3p is enriched in signalling pathways
that are involved in HHT pathogenesis. It is possible that the degree of downregulation of
miR-132-3p might better correlate with phenotype expression, although we did not follow
our patients longitudinally. In this sense, measurement of MAC miR-132-3p might predict
individuals who are at higher risk of AVM formation and bleeding, and allow for tailored
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pharmacotherapy and clinical follow-up. Longitudinal clinical studies are necessary to test
the hypothesis.

In conclusion, miRNA dysregulation, specifically reduced expression of miR-132-3p,
in HHT MACs was identified. The dysregulated miRNAs were significantly enriched in
the TGFβ, PI3K/AKT, and Hippo signalling pathways. These data suggest that miRNA
alteration may impair these pathways, resulting in MAC dysfunction, which warrants
further study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13040665/s1, Figure S1: RT-qPCR validation of the miRs
identified by microarray analysis after outlier removal by Z-score analysis; Table S1: Significantly
enriched KEGG pathways returned from DIANA-miRPath v.3 analysis. Q-value is the FDR adjusted
P-value. MiR:gene ratio is the number of miRs that are enriched in a particular pathway relative to
the number of target genes that are enriched in the same pathway; Table S2: Clinical characteristics of
HHT patient outliers identified by Z-Score analysis; Table S3: List of the top 10 enriched Reactome
pathways returned from the functional enrichment analysis of miR-132-3p targets. Q-value is the FDR
adjusted P-value. MiR:gene ratio is the number of miRs that are enriched in a particular pathway
relative to the number of target genes that are enriched in the same pathway.
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