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Several studies showed evidence supporting the possibility of hand trajectory decoding
from low-frequency electroencephalography (EEG). However, the decoding in the source
space via source localization is scarcely investigated. In this study, we tried to tackle
the problem of collinearity due to the higher number of signals in the source space by
two folds: first, we selected signals in predefined regions of interest (ROIs); second, we
applied dimensionality reduction techniques to each ROI. The dimensionality reduction
techniques were computing the mean (Mean), principal component analysis (PCA),
and locality preserving projections (LPP). We also investigated the effect of decoding
between utilizing a template head model and a subject-specific head model during
the source localization. The results indicated that applying source-space decoding with
PCA yielded slightly higher correlations and signal-to-noise (SNR) ratios than the sensor-
space approach. We also observed slightly higher correlations and SNRs when applying
the subject-specific head model than the template head model. However, the statistical
tests revealed no significant differences between the source-space and sensor-space
approaches and no significant differences between subject-specific and template head
models. The decoder with Mean and PCA utilizes information mainly from precuneus
and cuneus to decode the velocity kinematics similarly in the subject-specific and
template head models.

Keywords: electroencephalography (EEG), magnetic resonance imaging (MRI), source localization, partial least
squares regression, unscented Kalman filter, frontoparietal network, movement decoding

INTRODUCTION

The relation between the arm/hand movement and the brain has been one of the prominent fields
of research in neuroscience because this knowledge can be extended to a brain-computer interface
(BCI) (Wolpaw et al., 2002). The main goal of BCI is to improve the quality of life of people with
limited body function after disease or injury. One of the goals is to restore motor function via direct
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control from the brain, e.g., the arm/hand function for people
with paralyzed upper extremities. On the neuroscience side,
the arm movement direction in two dimensions of non-human
primates was studied and related to the neural activity in the
motor cortex and parietal lobes by analyzing single neuronal
activity (Georgopoulos et al., 1982; Kalaska et al., 1983). It
was later extended to the 3D arm movement (Georgopoulos
et al., 1988; Kettner et al., 1988; Schwartz et al., 1988;
Caminiti et al., 1990). These studies paved the path towards
decoding of the hand/arm movement kinematics in non-
human primates (Wessberg et al., 2000; Carmena et al., 2003;
Musallam, 2004; Lebedev, 2005; Li et al., 2009). Thereafter,
invasive decoding of movement was also proven to be possible
in humans via intracortical measurement (Hochberg et al., 2012,
2006; Collinger et al., 2013; Wodlinger et al., 2015; Bouton
et al., 2016; Ajiboye et al., 2017; Willett et al., 2017) and
electrocorticography (ECoG) (Schalk et al., 2007; Pistohl et al.,
2008; Nakanishi et al., 2013; Wang et al., 2013; Hammer et al.,
2016). Non-invasively, arm movement trajectories were decoded
via magnetoencephalography (MEG) (Georgopoulos et al., 2005;
Jerbi et al., 2007; Waldert et al., 2008; Yeom et al., 2013; Kobler
et al., 2019a) and electroencephalography (EEG) (Bradberry et al.,
2010; Lv et al., 2010; Ofner and Muller-Putz, 2012; Antelis
et al., 2013; Úbeda et al., 2017; Korik, 2018; Kobler et al.,
2018, 2020c; Martínez-Cagigal et al., 2020; Mondini et al., 2020).
Despite the low signal-to-noise ratio in EEG, Bradberry et al.
(2010) showed that the hand movement kinematics could be
predicted from the low-frequency EEG. The possibility of hand
movement kinematics decoding from EEG has been confirmed
by several studies in both the executed (Lv et al., 2010; Ofner
and Muller-Putz, 2012; Antelis et al., 2013; Úbeda et al., 2017;
Kobler et al., 2020a,c; Martínez-Cagigal et al., 2020; Mondini
et al., 2020), observing (Kobler et al., 2018, 2020c), and also
imagery of the hand movement (Korik, 2018). These studies in
humans suggested an involvement of the brain regions in the
sensorimotor cortex and parietal lobes, which corresponded to
the frontoparietal network (Culham and Valyear, 2006; Marek
and Dosenbach, 2018).

On the other hand, non-invasive research in the BCI context
has been commonly done in the sensor space, i.e., by directly
using EEG signals. But another way emerged recently when the
advancement of source localization techniques allowed us to
infer cortical sources from non-invasive brain signals in real-
time more accurately. For an extensive review of different source
localization techniques, we recommend the readers to Hallez
et al. (2007), Grech et al. (2008), He et al. (2018). In fact,
some studies have already investigated the possibility of decoding
brain activity in the source space via the source localization
of the EEG (Qin et al., 2004; Shenoy Handiru et al., 2017;
Xygonakis et al., 2018; Edelman et al., 2019; Li et al., 2021;
Sosnik and Zheng, 2021; Srisrisawang and Müller-Putz, 2021).
The source-space decoding has been primarily explored in the
domain of classification: motor imagery classification (Qin et al.,
2004; Xygonakis et al., 2018; Edelman et al., 2019), movement-
related cortical potential (MRCP) classification (Li et al., 2021),
arm directions classification (Shenoy Handiru et al., 2017). Most
of the studies in the source-space classification reported an

improved performance in comparison to the sensor space. On
the other hand, in the domain of regression, a recent study
(Sosnik and Zheng, 2021) on source-space decoding shows that
the joint trajectories could be decoded. However, they reported
a slightly lower correlation from the source-space decoding than
the sensor-space decoding.

In this study, we would like to extend the investigation
from our previous study (Srisrisawang and Müller-Putz, 2021)
on the source-space decoding by improving the definition of
the regions of interest (ROIs), as well as investigating the
effect of incorporating the subject-specific information from
magnetic resonance imaging (MRI). We hypothesized that the
performance of source-space decoding could be improved when
including the subject-specific information.

MATERIALS AND METHODS

Participants
The dataset used in this analysis consisted of 15 participants
collected from 14 non-disabled participants from 2 similar
studies published before by our group. In the first study
(Mondini et al., 2020), there are 10 participants (five male,
five female, mean age: 27 ± 3.71 years old, at the time of
measurement), and in the second study (Martínez-Cagigal et al.,
2020), there are 5 participants (two male, three females, mean
age: 28.2 ± 2.4 years old, at the time of the measurement).
The experimental procedure was conformed to the declaration
of Helsinki and was approved by the local ethics committee.
Written informed consent was obtained from participants prior
to the experiment. One participant was excluded due to signal
quality problems, and another one participated in both studies.
The data of this participant from two studies were treated as two
separate participants.

Experimental Paradigm and Dataset
Description
The participants were sitting in a comfortable chair in front of a
tilted monitor screen with a robotic arm (JACO, Kinova Robotics
Inc., Canada) and a LeapMotion (LM) system (LeapMotion
Inc., United States) that measures the kinematics of a hand
(Figure 1A). The participants placed their right hand below
the LM controller. There was a subtle difference in how
the robotic arm was positioned between the two studies,
but the effect can be neglectable. In the first experiment,
the end effector of the robotic arm pointed directly to the
screen. However, in the second experiment, the robotic arm
held a small stick that pointed above the screen, which was
less obstructive.

The experiment was divided into calibration and online
experiment with feedback (Figure 1B, see also Martínez-Cagigal
et al. (2020), Mondini et al. (2020) for more details). There
were seven measurement runs from the calibration part: two eye
artifact runs for recording EOG/EEG with specific eye movement
to train an eye-artifact removal model. Thereafter, there are five
snake runs, in which the participant was instructed to track the
random snake trajectory. The data from EEG and LM from these
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FIGURE 1 | Experimental information (adapted from Mondini et al., 2020). (A) Overall experimental setup. Participants sat in front of a tilted screen while placing
his/her right hand on the table under a LeapMotion (LM) system. (B) Mixing percentages of the control signals for the robotic arm across the whole experiment.
(C) Temporal structure of a single trial during snake run. A trial began with the participant fixating his/her eyes on the cross for 1 s. The participant had to control the
robotic arm to follow the snake target for 23 s.

five snake runs were used to train the decoding models, which
provided the visual feedback later in another six snake runs in the
online experiment with feedback. At the beginning of each trial,
participants were asked to fixate their eyes on the yellow cross
of the screen until the cross disappeared and they had to follow
the snake target with their hand (Figure 1C). The control signals
of the robotic arm were produced by mixing the movement
kinematics from the LM system and the predicted movement
kinematics from EEG at different ratios (33, 66, and 100% EEG
control for snake run 6–7, 8–9, 10–11, respectively).

The EEG signals were measured with 64-channel active EEG
electrodes (actiCAP, Brain Products GmbH, Germany) connected
to the biosignal amplifiers (BrainAmp, Brain Products GmbH,
Germany) at 500 Hz. There were slight differences in the layout
of the electrodes. However, only the 53 common electrodes were
considered in this analysis, as shown in Figure 2B.

Common Processing Pipeline
The processing was implemented via custom scripts on MATLAB
R2019b (MathWorks Inc., MA, United States) based on the
EEGLAB package (Delorme and Makeig, 2004). Prior to
the calibration, the EEG was visually inspected to find any
contaminations. The contaminated channels were removed and
interpolated. The common processing pipeline is summarized
in Figure 2A. The processes were divided into two branches:
EEG + EOG, and LM branches, before being combined to
produce the movement kinematics. The EEG signals were high-
pass filtered with a cutoff frequency at 0.18 Hz, downsampled
from 500 to 100 Hz. Then, they were corrected for any eye artifact
contaminations using the sparse generalized eye artifact subspace
subtraction algorithm (SGEYESUB) (Kobler et al., 2020b), re-
referenced to the common average reference (CAR), corrected

again for the pop and drifts artifact via the high-variance
electrode artifact removal (HEAR) algorithm (Kobler et al.,
2019b), low-pass filtered with a cutoff frequency of 1.5 Hz. At
this stage, the contaminated trials were rejected according to
their signal amplitude, joint probability, variance, and kurtosis
before the remaining signals were downsampled to 20 Hz. After
that, the signals were transformed into the source-space via a
source localization technique (see below) and reduced according
to the predefined ROIs. Thereafter, they got extended with 7
of their lags from −300 to 0 ms. The kinematic signals from
LM were low-pass filtered with a cutoff frequency of 4 Hz,
delayed, and downsampled to 20 Hz to match the EEG signals.
Afterward, a partial least squares (PLS) regression model (Wold
et al., 2001) and a square-root unscented Kalman filter (SR-UKF)
(Van der Merwe and Wan, 2001) were trained with the processed
signals from both branches. The combination of PLS and SR-
UKF models produced the movement kinematics, directional
and non-directional kinematics, namely, horizontal position phor ,
horizontal velocity vhor , vertical position pver , vertical velocity
vver , distance d, and speed s. All filters were second order infinite
impulse response (IIR) Butterworth filters.

Magnetic Resonance Imaging
Acquisition and Processing
The participant-specific anatomical MRI images were acquired
via a 3T MRI machine (Siemens Magnetom Vida, Erlangen,
Germany) with a 20-channel head coil. A T1-weighted
magnetization prepared rapid acquisition gradient-echo
(MPRAGE) sequence was applied during the acquisition. The
MRI images were acquired from six participants, making
the total number of participants with MRI images of seven
participants (because there was a participant that was in both
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FIGURE 2 | The general information of the experiment. (A) The common processing pipeline based on Martínez-Cagigal et al. (2020). Thick dashed lines indicate the
additional part (source-space transformation and regions-of-interest scouting). (B) The common electrode layout from both studies. (C,D) The region-of-interest
used with the ICBM152 template head model and the participant-specific head model from MRI, respectively, projected to the 15,000 voxels head model for
visualization purposes. The ROIs were derived from Srisrisawang and Müller-Putz (2021) by further dividing each of the following regions into two subregions:
superior frontal gyri, precentral gyri, postcentral gyri, superior parietal lobes, and occipital gyri. (E) The overview processes of scouting the signals in the
region-of-interest and applying the dimensionality reduction (DR) techniques to produce the region-of-interest scouted signals.

studies). The cortical surface was extracted from the MRI images
via a graphical user interface of the BrainSuite 19b (Shattuck
et al., 2001; Shattuck and Leahy, 2002). The cortical surface
was automatically labeled according to the USCBrain atlas
(Joshi et al., 2020).

Source-Space Transformation
In order to transform the sensor-space signals into the source-
space signals, a source localization was performed using the
Brainstorm package (Tadel et al., 2011) and OpenMEEG
(Gramfort et al., 2010).

The EEG generation can be modeled as

X = GJ + n (1)

where X is an NChannel × NObservation matrix containing the
sensor-space EEG signals, G is an NChannel × NSource gain matrix,
J is an NSource × NObservation matrix with signals from the true
cortical sources, and n is an NChannel × NObservation matrix
of additive noise.

The forward problem was modeled using a boundary
element method (BEM). The BEM modeled the brain with
three compartments with different electrical conductivity
properties: brain, skull, and scalp. The conductivity of each
compartment was assumed to be homogeneous across the
compartment. The conductivity was set to (0.41, 0.02, and

0.47) for scalp, skull, brain, respectively, according to the
meta-analysis results (McCann et al., 2019). The number of
source components was set to 5,000 cortical sources. The
orientation of each source was not fixed, resulting in 3
directional source components per cortical source. The inverse
problem was solved via the standardized low-resolution brain
electromagnetic (sLORETA) method (Pascual-Marqui, 2002).
The noise covariance was computed from the artifact corrected
signals from the eye runs.

At the beginning of the experiment, the electrode positions
were acquired (ELPOS, Zebris Medical Gmbh, Germany). This
information was used to co-register the electrodes onto the
cortical surface. In the template head model, the cortical surface
came from the ICBM152 template (Collins et al., 1999; Fonov
et al., 2011, 2009), while for the participant-specific head model,
the cortical surface extracted from the MRI images was used.

Regions of Interest Scouting and
Dimensionality Reduction
The idea of ROI scouting is to reduce the number of signals
from the source-space transformation because the number
of signals increases by 300 times from about 50 signals
to 15,000 signals (we have 5,000 cortical sources with 3
directional source components per cortical source). However,
even considering only signals in the defined ROIs would
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not help much as the number of signals would still be in
the range of thousands of signals. Hence, the dimensionality
reduction (DR) techniques were implemented to further reduce
the number of signals.

The ROIs were defined based on the Mindboggle atlas (Klein
et al., 2017) for the template head model (see Figure 2C),
and for the subject-specific head model, the ROIs were
based on the USCBrain atlas (see Figure 2D; Joshi et al.,
2020). The selected ROIs were chosen according to the
frontoparietal network (Culham and Valyear, 2006; Marek and
Dosenbach, 2018) and the source localization results from
the previous EEG hand trajectory decoding studies (Kobler
et al., 2019a; Martínez-Cagigal et al., 2020; Mondini et al.,
2020). The selected ROIs were cuneus (CU), paracentral
(PCL), postcentral (PoCG), precentral (PreCG), precuneus
(PCU), superior frontal (SFG), occipital, and superior parietal
(SPL) regions of the brain, according to the previous study
(Srisrisawang and Müller-Putz, 2021). However, we further
divided SFG into anterior/posterior (aSFG, pSFG); PreCG into
medial/lateral (mPreCG, lPreCG); PoCG into medial/lateral
(mPoCG, lPoCG); SPL into anterior/posterior (aSPL, pSPL);
occipital gyrus into superior/inferior (SOG, IOG) and in the
case of subject-specific MRI, middle occipital gyrus (MOG) were
also included to cover the same area as in the template head
model (see Figures 2C,D). Afterward, several DR techniques
were applied after ROI scouting. Three techniques were
chosen: computing the mean (Mean), principal component
analysis (PCA), and locality preserving projections (LPP)
(He and Niyogi, 2004).

The process of reducing the signals is visualized in Figure 2E.
After projecting the sensor-space EEG signals onto the source
space, the signals were scouted according to the ROIs and in
each ROI, the directional source components were separated. The
DR technique was applied for each directional source component
of each ROI separately, resulting in Nfeat = 3NROI · NDRComp
features, where NDRComp indicates the number of components
retained with DR.

Computing the Mean
This process was done by computing the mean value across all
sources within each ROI for each time step. This produced only
a representative signal per directional source component in each
ROI, NDRComp = 1.

Principal Component Analysis
The idea of PCA is to project observations into a lower dimension
using linear combinations that maximally explains the variance
of observations. The number of retained components was varied,
where NDRComp ∈ [1, 2, 4, 8, 16].

Locality Preserving Projections
Similarly, LPP (He and Niyogi, 2004) linearly maps observations
into a lower dimension. However, instead of finding the
subspace that maximally explains the variance as in PCA,
LPP tries to find the subspace in the lower dimension that
retains the structural information across observations. The
first step of LPP is to form an adjacency matrix representing

the structural information across observations. After that,
the generalized eigenvector problem was solved based on
this adjacency matrix. The number of retained components
was also varied, where NDRComp ∈ [1, 2, 4, 8, 16]. The
adjacency matrix was formed via the k-nearest neighbor
algorithm with k = 5, and the weight between each
pair of observations was computed by the heat kernel
with t = 5. These k and t are different quantities than defined
elsewhere in this study.

The processes of source-space transformation and the ROI
scouting can be written in an equation as

yt = UKxt (2)

where xt is a column vector containing the sensor-space EEG
signal at time t from X, K is an NSource × NChannel kernel matrix
resulting from the source localization, U is an Nfeat × NSource
scouting matrix representing the processing of ROI scouting and
DR, yt is an Nfeat × 1 matrix containing the reduced source-space
signals at time t.

Decoding Model
The directional movement kinematics at time t, zt , were extracted
from the LM signals

zt =
[
phor,t; vhor,t; pver,t; vver,t

]
(3)

and then extended with the non-directional movement
kinematics as

z̃t = ext (zt) =
[
phor,t; vhor,t; pver,t; vver,t; dt; st

]
(4)

where dt =
√

phor,t2 + pver,t2 and st =
√

vhor,t2 + vver,t2.

The reduced source-space signals were extended with multi
lags ranging from 0 to −300 ms (equivalently, 0th lag to −6th
lag at 20 Hz). Resulting in a column vector of the extended
source-space signals, ỹt , with a size of 6Nfeat × 1 as

ỹt =
[
yt; yt−1; . . . ; yt−6

]
(5)

The z-score of zt and ỹt was computed. The PLS regression
was trained via SIMPLS algorithm (de Jong, 1993). The SIMPLS
algorithm finds the latent space that explains the most variance of
the cross-covariance matrix between the ground truth movement
kinematics, z, and the extended reduced source-space signals, ỹ.
The PLS regression weight matrix, W, projects the signals into a
new latent space which can be written as

ẽt =Wỹt (6)

where W is NPLSComp × 6 · Nfeat matrix that projects the
extended reduced source-space signals into the latent space.
NPLSComp was chosen separately for each participant to
retain 95% of the data covariance. After applying PLS
to the extended source-space signals, a UKF (Wan and
Van Der Merwe, 2000) model was applied to predict the
movement kinematics.
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The UKF model can be written as follows

zt+1 = Fzt + qt (7)

ẽt+1 = h(zt+1)+ rt (8)

h (zt+1) = Hext(zt+1) (9)

where F is a state transition matrix that relates the state (or
in this case the movement kinematics) between observations
at time step t and t+1, qt is a state transition error, h (.) is a
nonlinear mapping function, rt is an observation error, and H
is an observation matrix. Equations 7, 8 are called a process
equation and a measurement equation. The nonlinear mapping
was included only in the measurement equation but not in the
process equation.

The UKF model was then initialized as follows (Martínez-
Cagigal et al., 2020)

F = 6zt,zt−16
−1
zt,zt−1

(10)

Q = 6εq,εq−1 ,εq = Fzt−1 − zt (11)

H = 6ẽt,zt−16
−1
zt−1,zt−1

(12)

R = 6εr,εr ,εr = h (zt)− ẽt, (13)

where 6a,b indicates the covariance matrix between a and
b, A−1 indicates an inverse of a matrix A, εq and εr indicate
the state transition error and the observation error, respectively.
In the general form of the UKF (Wan and Van Der Merwe,
2000), the algorithm has to compute a square root of a matrix
frequently, which is computationally intensive. The SR-UKF
extends from the UKF by avoiding direct computation of this
matrix square root via the Cholesky factor updating of the square
root (Van der Merwe and Wan, 2001).

In the case of sensor-space decoding, the processes of source-
space transformation and the ROI scouting were skipped. After
the same processing pipeline and the lag expansion, the sensor-
space signals were fed directly into the PLS regression and the
SR-UKF models to predict movement kinematics.

Performance Evaluation
The decoding models trained with the data from the 0% EEG
measurement block (equivalent to 100% LM) were then applied
to the data from 33, 66, and 100% EEG. However, in the 0%
EEG, we used the leave-one-trial-out training scheme, keeping
one trial as the test data and then using the rest as the training
data. It was repeated as many times as the number of trials in
the 0% EEG blocks.

The following metrics were used to compare the performance
between the source-space and the sensor-space approaches,
namely, Pearson’s correlation, signal-to-noise ratio (SNR), and

decoded-signal-to-signal ratio (DSSR). An SNR can be expressed
as

SNR
(
z, ẑ
)
= 10log10(

var(z)
MSE(z, ẑ)

) (14)

which is the ratio of the variance of the ground truth kinematics
over the mean squared error between the predicted and the
ground truth kinematics. A DSSR can be expressed as

DSSR
(
z, ẑ
)
= 10log10(

var(ẑ)
var(z)

) (15)

which is the ratio between the predicted kinematics
variance and the ground truth kinematics variance. The
DSSR quantifies the amplitude mismatch between the
predicted and the ground truth kinematics. A negative value
of the DSSR indicates that the amplitude of the predicted
kinematics is smaller than the ground truth kinematics
and vice versa. The best case is when DSSR is at 0 dB,
indicating that the amplitude of the predicted and the ground
truth kinematics match (Kobler et al., 2020c). We applied
multiple comparisons with Bonferroni method to compare
between approaches.

First, the number of DR components (NDRComp) was varied
for PCA, LPP from 1, 2, 4, 8, and 16 components. The
correlations were compared to find the optimum NDRComp
for both the approach with ICBM152 template head model
(PCA and LPP) and the one with MRI (PCA + MRI and
LPP + MRI). The group-level correlations were first grouped
across the 0–100% EEG measurement runs. Then they were
grouped into position (horizontal and vertical position), velocity
(horizontal and vertical velocity), and magnitude (distance and
speed). In the case of MRI, 7 participants with available MRI
were considered, and in the case of ICBM152, 14 participants
were considered.

Second, the optimum NDRComp was used to compare across
different approaches for sensor-space (Sensor) and source-
space approaches. There are six variations of the source-space
approaches depending on the DR function and the head model,
namely: Mean, PCA, LPP, Mean + MRI, PCA + MRI, LPP + MRI.
However, only the same seven participants with available MRI
were considered for all approaches in this comparison.

Source-Space Decoding Patterns
In order to visualize the decoding pattern, the subject-specific
decoding pattern was obtained as follows

A =
1
g
6ỹW6

−
1
2

z̃ (16)

The PLS regression weight matrix W was transformed into
the interpretable decoding pattern by multiplying it with the
covariance matrix of the extended source-space signals 6ỹ
and the inverse of the covariance matrix of the extended
movement kinematics 6z̃ according to Haufe et al. (2014). The
decoding pattern was then rescaled by a matrix square root
of 6z̃ , in order to interpret the decoding pattern in voltages
(Ofner et al., 2017; Mondini et al., 2020). The decoding pattern
was rescaled by the reciprocal of the subject-specific global
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FIGURE 3 | Group level correlations with the ICBM152 template head model or the subject-specific MRI images, with varying numbers of components from the PCA
and LPP at 1, 2, 4, 8, 16 components. The correlations across different measurement runs (0–100% EEG) were grouped as well as combined into position
(horizontal and vertical position), velocity (horizontal and vertical velocity), and magnitude (distance and speed). The red pluses indicated the outliers. The number of
asterisk indicates the significant level via Bonferroni method for multiple comparisons, ∗ p < 0.05, ∗∗ p < 0.01, and ∗∗∗ p < 0.001.

field power g (GFP) to reduce the different scaling across
participants (Kobler et al., 2018). The subject-specific GFP was
computed by randomly selecting a time point, averaging over
trials, and computing the standard deviation across ROIs. This
process was repeated for 10,000 permutations. The median of
the standard deviation over permutations was selected for the
subject-specific GFP (Kobler et al., 2020c). Since the decoding
was done directly in the source space, there was no need to
project the weight matrix onto the source space. We separated
the absolute value of the weights of the decoding pattern for
each lag of each ROI and then assigned them to the source
accordingly (i.e., the sources in the same ROI have the same
weight). We assigned value 0 to the sources outside ROI,
resulting in these regions visualized in gray. For the ICBM152
variations, the group level decoding patterns were computed
across participants and then projected onto the 15,000 voxels
head model. For the MRI variations, the subject-specific decoding
patterns from the subject-specific head model were first projected
onto the ICBM152 head model with 15,000 voxels. Then the

group level decoding patterns were computed. Only the first
component was considered for visualization in the case of PCA
and LPP variations.

RESULTS

Choosing Optimal Component Number
for Principal Component Analysis and
Locality Preserving Projections
The results from varying the DR components (NDRComp) for
PCA, PCA + MRI, LPP, and LPP + MRI are summarized in
Figure 3. In all of the PCA and LPP variations, the correlation
increased as the number of components increased and then
reached a plateau or dropped a little (for example, in position
and velocity in LPP). In the case of PCA, the highest correlations
can be found with eight components for position (0.31 ± 0.09,
mean± SD), velocity (0.35± 0.09), and magnitude (0.13± 0.06).
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For PCA + MRI, the highest correlations can be found in 16
components for position (0.31± 0.08), velocity (0.35± 0.07) but
found in four components for the magnitude (0.14 ± 0.05). For
LPP, the highest correlations can be found with eight components
for position (0.30 ± 0.09), velocity (0.33 ± 0.10), and magnitude
(0.11 ± 0.04). For LPP + MRI, the highest correlations can
be found with eight components for position (0.30 ± 0.09),
velocity (0.33± 0.08), and magnitude (0.10± 0.05). The multiple
comparisons with Bonferroni method indicated only statistically
significant differences in the correlation of magnitude between
1 and 4 components for PCA + MRI. In LPP, the statistically
significant differences could be seen between 1 component and
the rest, in all kinematics. In most cases, the highest correlation
could be achieved at eight components.

Furthermore, Figure 4 shows line plots of the number
of DR components (NDRComp) and the number of the
latent components of the regression (PLS) explaining 95%
(NPLSComp) of the variance for PCA, PCA + MRI, LPP,
and LPP + MRI, respectively. The number of PLS latent
components increased as the number of DR components
increased but saturated after eight DR components, similar
to the correlations observed in Figure 3. Two observations
can be made here. First, the PCA variations showed a higher
number of PLS latent components than LPP variations and,
second, the MRI variation showed a slightly lower number
of PLS latent components than the ICBM152 variation.
At eight DR components, the averaged number of PLS
components for PCA, PCA + MRI, LPP, and LPP + MRI were
50.93 ± 4.26 (mean ± SD), 50.14 ± 4.37, 29.36 ± 11.06,
and 28.57 ± 10.03 components, respectively. When the DR
components increased to 16, the average number of PLS
components increased only slightly by 0.07, 0.07, and 0.29 for
PCA, LPP, and PCA + MRI, respectively, but stayed the same
for LPP + MRI. Due to the saturation of both the correlations
and the number of PLS components, the optimal number of

FIGURE 4 | Plot of PLS latent components over the number of DR
components that explain 95% of the variance. The bar indicates ±SD of the
corresponding case.

DR components for all four approaches was chosen to be
eight DR components.

Comparing Across All Approaches
The performance metrics are summarized in Figures 5–7
for each type of metric, kinematic, and measurement run
(i.e., % EEG). Each dot represents the average metric of
each participant. The boxplot and the dots were color-coded
according to each approach: black for Sensor, red for Mean,
blue for PCA, and green for LPP. In the case of the
source-space approaches, the intensity of the color indicates
whether the approach was with the ICBM152 head model
(darker tone) or with the subject-specific head model from
MRI (lighter tone).

Figure 5 visualizes the median correlations. Every approach
indicated a similar range of the median correlations at around
0.2–0.4 for the directional kinematics and around 0.05–0.2 for
the non-directional kinematics. We observed similar trends
across different measurement runs and kinematics: Mean,
Mean + MRI (red and light red), PCA, and PCA + MRI
(blue and light blue), generally indicating a slightly higher
correlation than Sensor. While LPP and LPP + MRI (green and
light green) performed inconsistently compared to Sensor, it
sometimes showed on-par or higher correlation (e.g., horizontal
position at 33% EEG) but more commonly showed lower
correlations than Sensor. The lower correlations of the LPP
variations compared to the rest could be observed clearly
in the 0% EEG measurement runs with speed kinematics,
where the mean correlation of Sensor was at 0.20 ± 0.08,
but the mean correlation of LPP was at 0.14 ± 0.05.
We also observed the declining trend among approaches in
all kinematics over measurement runs. Similar correlations
between the ICBM152 variations and MRI variations could
be observed for the same DR technique. The multiple
comparisons showed significant differences between LPP to
Sensor, Mean, Mean + MRI, PCA, and PCA + MRI mostly in
the non-directional kinematics (distance 0% EEG; speed 0, 33,
66, and 100% EEG).

Similarly, the median SNRs (Figure 6) were similar for all
approaches (around −2 to −1 dB for the directional kinematics
and −5 to −3 dB for the non-directional kinematics). There
was an increasing trend for all approaches of the median
SNR over measurement runs, which could be observed clearly
in the non-directional kinematics. PCA, PCA + MRI showed
slightly higher SNR than Sensor in most cases, while Mean
and Mean + MRI showed slightly lower SNR than Sensor
in some cases. LPP and LPP + MRI, on the other hand,
showed almost always lower SNR than Sensor and Mean and
PCA variations. The significantly lower SNR in LPP than
the other approaches could be seen dominantly in horizontal
position 0% EEG, vertical position 0% EEG, distance 0% EEG,
and speed 0% EEG.

For DSSR, the median DSSRs (Figure 7) were also in the same
range for all approaches across different measurement runs and
kinematics (around −2 to 2 dB for the directional kinematics
and −2 to 4 dB for the non-directional kinematics). There was
a decreasing trend observed across different measurement runs.
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FIGURE 5 | Group level correlations for each kinematic, measurement run, approach. Colors represent different approaches. Only seven participants with measured
MRI were considered in the plot for the Sensor, Mean, PCA, and LPP. Each dot represents the mean correlation of each participant. The red pluses indicated the
outliers. The number of asterisk indicates the significant level from Bonferroni method for multiple comparisons, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

Both LPP and LPP + MRI indicated almost always higher DSSR
than other approaches. PCA and PCA + MRI showed, however,
lower DSSR in most cases compared to Sensor and the rest. The
statistical tests indicated significant differences between LPP and
the other approaches, mainly in the 0% EEG measurement runs
for all kinematics.

The results were further summarized in Figure 8 and
Supplementary Table 1, where the performance metrics
(excluding DSSR) were grouped by averaging the metrics of
each participant across measurement runs. We noticed three
general trends for every approach across kinematics in both
the correlation and SNR. First, the decoding models could
decode the directional kinematics better than the non-directional
ones. Second, the decoding models could decode horizontal
kinematics better than vertical ones. The last general trend was
that the decoding model could decode the velocity kinematics
slightly better than the position kinematics. We found statistically
significant differences only between LPP to Mean and LPP to

PCA in the case of speed correlation and between Sensor to
LPP in SNR for the horizontal velocity and vertical position. We
then compared an improvement in terms of correlations (see
Supplementary Table 1) and found the highest improvement
in comparison to Sensor mainly in PCA + MRI, which showed
the highest improvement over Sensor in the horizontal position
(improved by 0.028), distance (improved by 0.022), and speed
(improved by 0.008). In terms of SNR, PCA + MRI showed
the highest improvement in horizontal velocity (improved by
0.004 dB), distance (improved by 0.263 dB), and speed (improved
by 0.125 dB). The average position correlations were 0.310
and 0.311 while the average velocity correlations were 0.349
and 0.353 and the average non-directional correlations were
0.132 and 0.136 for Sensor and PCA + MRI, respectively.
Other observations were that in most cases within the same
DR technique, the subject-specific head model showed higher
correlations and SNRs in comparison to the template head model.
However, we found no statistically significant differences. For
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FIGURE 6 | Group level SNRs for each kinematic, measurement run, approach. Colors represent different approaches. Only seven participants with measured MRI
were considered in the plot for the Sensor, Mean, PCA, and LPP. Each dot represents the mean correlation of each participant. The red pluses indicated the outliers.
The number of asterisk indicates the significant level from Bonferroni method for multiple comparisons, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

LPP variations, the inclusion of the subject-specific head model
leads to lower performance.

Source-Space Decoding Patterns
The group level source-space decoding patterns of the 0th lag
are summarized in Figure 9. Similar patterns could be observed
between ICBM152 and MRI with the same DR technique.
Both, Mean variations and PCA variations showed the absolute
decoding patterns in the same range from 0 to 2, but LPP
variations showed a much wider range from 0 to 8, but in
Figure 9, we limited it to 0 to 3 to make the figure more
interpretable. Among different approaches, the activity in PCU,
cuneus (CU), and superior parietal lobes (SPL) could be seen
dominantly in the velocity kinematics. In the case of position,
less prominent activities were observed. For PCA and Mean
variations, the dominant patterns are in the anterior part
of superior frontal gyri (aSFG) and the weaker activity in
the medial part of the pre- and postcentral gyri (mPreCG,
mPoCG) for the non-directional kinematics, especially in the

distance. In LPP, the strong activities from the anterior part
of the superior frontal gyri (aSFG) dominated the contribution
from other areas (such as PCU, and superior occipital gyri,
SOG). Similar decoding patterns could be seen in LPP across
movement kinematics. In LPP + MRI, the decoding patterns
were similar to Mean and PCA variations but with dominating
activities in CU and SOG.

DISCUSSION

We studied the hand trajectory decoding based on EEG but
instead of utilizing the low-frequency EEG signals as in the
previous studies (Kobler et al., 2018; Martínez-Cagigal et al.,
2020; Mondini et al., 2020), we utilized the source-space
signals obtained via the projection of the low-frequency EEG
signals onto the source space. We proposed several source-space
decoding approaches with three DR techniques (Mean, PCA, and
LPP) and two head model variations (ICBM152, subject-specific
MRI), resulting in six source-space approaches: Mean, PCA, LPP,
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FIGURE 7 | Group level DSSRs for each kinematic, measurement run, approach. Colors represent different approaches. Only seven participants with measured MRI
were considered in the plot for the Sensor, Mean, PCA, and LPP. Each dot represents the mean correlation of each participant. The red pluses indicated the outliers.
The number of asterisk indicates the significant level from Bonferroni method for multiple comparisons, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

and Mean + MRI. PCA + MRI, and LPP + MRI. These source-
space approaches were compared to the sensor-space approach
(Sensor).

First, the number of DR components (for PCA, LPP, and
PCA + MRI, LPP + MRI) for each ROI was varied and
compared. The number of DR components was chosen to eight
components due to the saturation of both the correlations and
the information (represented as the number of PLS components).
As the number of DR components increased, the PLS model
could utilize more information, leading to the increasing number
of the PLS component. However, the saturation of the number
of PLS components indicated that the additional information
was not helpful in explaining the movement kinematics. We
also observed that the number of PLS components of the LPP
variations was always lower than the PCA variations, as well
as that the number of the PLS components in the MRI head
model was slightly lower than the ICBM152 template head
model. For the first effect, we hypothesized that this is due
to the different optimization criteria between PCA and LPP,
where the former tries to maximize the explained variance

of the data while the latter tries to retain the neighborhood
information between observations. However, the neighborhood
information contributed less useful information to the decoding
model than the information retained with PCA. For the second
effect, this could be due to the difference in the definition of
the ROIs or due to the difference between the subject-specific
head model and the ICBM152 template head model, though
this effect resulted in only a slightly higher number of PLS
components in the ICBM152 template head model than the
subject-specific MRI.

Afterward, the PCA and LPP variations were compared
to the other approaches by selecting eight DR components.
We observed that the decoding correlations decreased over
measurement runs in all approaches while the SNRs improved
over the measurement runs. In the case of DSSR, the decoding
model initially overestimated the amplitude of kinematics, but
then the amplitude of the predicted kinematics became smaller
over the measurement runs. The interpretation of the DSSR
was difficult to comprehend because the quality of the DSSR
depends on how close it is to 0 dB, in contrast to correlation
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FIGURE 8 | Group level metrics for each kinematics. Each dot represents an averaged metric across measurement runs for each participant. Different approaches
were color-coded. The corresponding metrics for each participant were averaged across measurement runs. The red pluses indicated the outliers. The number of
asterisk indicates the significant level from Bonferroni method for multiple comparisons, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

and SNR, in which the higher it is, the better. According to the
questionnaire analysis in Mondini et al. (2020), the participants
perceived less control of the robotic arm over time, which also
reflected the trends in the correlations and SNRs. The cause of
these changes over the measurement runs could not be concluded
whether this was because of the increased mental load due to
the % EEG or the mental fatigue over time as the experiment
progressed. Additional experiments might be needed in order to
disentangle these factors.

Then, to ease the comparison between approaches, we
averaged the correlations and SNRs for each participant across
different % EEG. The DSSR was excluded because averaging
the DSSR around 0 (see Figure 7) would result in numbers
close to 0, which was not so useful for comparison. Across
different approaches, we observed that the correlations of the
velocity were higher than the position. A similar observation
could also be seen in the non-directional kinematics, such that
the speed showed slightly higher correlations than the distance.
The same phenomena were already reported in Martínez-
Cagigal et al. (2020), Mondini et al. (2020). This phenomenon,
however, was not observable in some works that simultaneously
decode the position and velocity kinematics. For example, in
Hammer et al. (2016) and Kobler et al. (2020c), they reported
correlations of the position and the velocity in a similar range
and even contradicted the result in Ofner and Muller-Putz
(2012) and Úbeda et al. (2017), where they reported higher
position correlations than the velocity. We hypothesize that this
discrepancy could be due to the differences in the experimental
setup because of the lack of the robot arm in Kobler et al.
(2020c), the lack of feedback in Ofner and Muller-Putz (2012),

or the different tasks in Hammer et al. (2016) and Úbeda
et al. (2017). Furthermore, the correlations of the horizontal
components of the kinematics were generally higher than the
vertical components. This phenomenon was also reported in
Martínez-Cagigal et al. (2020), where they hypothesized that it
was due to the tilted screen in the experiment that caused
the mismatch between the actual vertical distance that the
participant had to move and the vertical distance perceived.
Similar observations could also be seen in the SNRs (Figure 8,
lower part), where the velocities indicated higher SNRs than the
positions, the speed indicated higher SNRs than the distance,
and the horizontal components indicated higher SNRs than the
vertical components. By comparing the metrics of each approach,
we see that all of them performed in a similar range. LPP
variations showed the lowest correlations and SNRs, while Mean
and PCA variations showed higher correlations and SNRs than
Sensor in most cases. It was reported in Li et al. (2021) that
applying the LPP to the source-space EEG signals improved the
true positive rate in the MRCP detection over the sensor-space
EEG signals. While their processing pipeline was similar to our
approach, our results suggested lower decoding performance in
LPP than the sensor-space approach and even to the other source-
space approaches. These lower decoding performances, in some
cases, were significantly lower than the sensor-space approach (in
the distance and speed). We hypothesized that the disparity in
terms of the decoding improvement might be due to the nature
of the task as our decoder gives continuous output as opposed to
the discrete output in Li et al. (2021).

We saw that PCA + MRI exhibited the highest median metrics
more often than other approaches (correlation: horizontal
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position, distance, and speed; SNR: horizontal velocity, distance,
and speed). Still, we cannot be decisive about which approach
is the best among the source-space approaches because
Mean + MRI, Mean, and PCA showed only slightly lower metrics
than PCA + MRI in those cases (see Supplementary Table 1).
The improvement of the Mean and PCA variations over Sensor
was also not statistically significant, only in the case of SNR
of horizontal velocity and vertical position that LPP showed
significantly lower SNRs than Sensor. We observed slightly better
performance in PCA and Mean variations by including the
subject-specific head model over the template head model, but we
found no significant difference between them. This means that
the template head model might be sufficient for the decoding,
which was reported similarly in Edelman et al. (2019).

The performance of the source-space approaches was also
reflected in the decoding patterns (Figure 9). As the task in
this study involved the visuomotor task, we would expect the
activity in the regions to correspond to the parietofrontal network
(Culham and Valyear, 2006; Marek and Dosenbach, 2018). In
this case, the activity should be around SPL, similar to the
source-space analysis in Kobler et al. (2018, 2020c), Martínez-
Cagigal et al. (2020) and Mondini et al. (2020). The decoding
patterns of Mean, Mean + MRI, PCA, PCA + MRI were similar
such that the decoder utilized the information mainly in PCU,
CU, and SPL, which is in line with the frontoparietal network
(Culham and Valyear, 2006). The decoder trained with LPP
utilized the information from the anterior part of superior

FIGURE 9 | Group level source-space decoding pattern at lag 0 of every
movement kinematic. The color represents the absolute intensity of the
activity. The gray area indicated the brain region outside of the ROIs. In the
case of PCA and LPP variations, only the decoding pattern of the first
component was visualized.

frontal gyri (aSFG), while in LPP + MRI, the decoder relied
on the information from SOG. The dominating activity in LPP
variations could not be from artifacts because the same processed
data was used for every approach, but this activity was only
presented in LPP variations. As we know from the literature
that aSFG and SOG would contribute less information than
the areas around SPL, the lower decoding performance than
the other approaches was expected. The decoding patterns in
LPP that differ from PCA and Mean could be explained by the
different optimization criteria between DR techniques because
the optimizing criteria of LPP were to reduce the dimension while
retaining the locality information across observations, while PCA
tries to preserve the component that explained the variance
of the data, and in the case of Mean, it simply calculates the
averaged signals across voxels. Another interesting observation
in the decoding patterns was that the decoding patterns in PCU
and CU of the velocity kinematics at 0th lag were similar to the
decoding patterns of the position kinematics at −6th lag (or at
−300 ms) for PCA and Mean variations (see Supplementary
Figures 1–4). The lagging behavior of the velocity was expected
because of the temporal dependencies between the position and
velocity, as discussed in Kobler et al. (2018) and Mondini et al.
(2020). One limitation with the visualization of the decoding
patterns with our approaches was that the patterns seem to be
coarser than typical source localization results (i.e., every source
in the same ROI has the same weight/color). The decoding
was done directly in the source space so the decoding patterns
were already in the source space, in contrast to sensor-space
decoding that the decoding patterns had to be projected onto
the source space. In the case of MRI variations, the decoding
patterns seemed finer than the ICBM152 variations because
of the smoothing effect from the projection of the subject-
specific to the template head model before averaging. This effect
could be seen in Figure 9 where the dark blue area in the
MRI variations spreads out more than the ICBM152 variations.
Another limitation was that we tried to define the ROIs similarly
in both the MRI and ICBM152 variations such that the ROIs
covered the same area, but it was not exactly the same, as seen
in Figures 2C,D so that the differences in terms of decoding
performance or the decoding patterns could also be from the
slightly different ROIs.

Several studies utilized the signals in the source space rather
than the sensor space, for example, in the MRCP detection
(Li et al., 2021), motor imagery classification (Qin et al., 2004;
Xygonakis et al., 2018; Edelman et al., 2019, 2016), and arm
direction classification (Shenoy Handiru et al., 2017) where
they reported higher decoding performance in comparison to
the sensor space approach. However, these studies involved the
discrete problem of classification rather than the continuous
problem as a regression. A recent study (Sosnik and Zheng, 2021)
investigated the source-space-based decoding in a similar
scenario, where they tried to regress the velocity of arm joints
in three dimensions. They reported a significantly lower overall
correlation in the source-space decoding than in the sensor-space
(0.28 and 0.25 in sensor and source space, respectively). Our
results showed that the hand trajectory could be decoded in the
source-space with slightly (but not statistically significant) higher
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correlations compared to the sensor-space signals (position:
0.310 and 0.313, velocity: 0.349 and 0.353, magnitude: 0.132
and 0.136 in sensor and source space, respectively). However,
a direct comparison was not possible due to several differences
in the experimental setup (e.g., 2D vs. 3D decoding), processing
steps (e.g., decoding models, differences in how the source-space
signals were extracted).

There are also some points that we would like to discuss
beyond the results represented. First, the benefit of the source-
space decoding over the sensor-space decoding, and second,
the merit of continuous decoding in contrast to other control
schemes in BCI. For the first point, we saw that the source-
space decoding is on-par with the sensor-space decoding despite
utilizing more computational resources. One may ask whether
it is beneficial to continue with the source-space decoding.
However, there might still be some room for improvement. We
believed that the source-space decoding might be a promising
direction as we could try to improve the decoding performance
by using a more sophisticated way to solve the forward or inverse
problems during the source localization. Also, we believed that
the source-space might represent the common space among
measurement units (e.g., across sessions for the same participant,
or across different participants) and might play an important role
in reducing the calibration which is a considerable concern in
the BCI applications. Though, to confirm this point, we need to
conduct further experiments. For the second point, even though
the continuous decoding of hand kinematics showed moderate
decoding accuracy, we believed that this control scheme feels
more natural than classical BCI control schemes such as motor
imagery or P300 BCIs (Müller-Putz et al., 2016). We also would
like to move towards the usage in the end-users group such
as people with limited hand functionality. To achieve this goal,
we would like to further investigate the decoding not just in
an executed hand movement condition as previously done but
also in an attempted hand movement (Muller-Putz et al., 2021;
Pulferer et al., 2021).

CONCLUSION

In this study, we showed that the source-space decoding of the
hand trajectory could be done with similar correlations as in
the sensor space by performing the DR using PCA with eight
components. We also observed no significant difference between
using a template head model or a subject-specific head model.
The group level decoding patterns revealed similar contributions
from the brain regions in both the template and subject-specific
head models. The proposed way of reducing the source-space

signal in this study was simple because it involves applying the
DR technique after the source-space transformation. However,
more elaborate approaches that utilize the information from the
training data during the source localization would be one of the
promising directions of development in source-space decoding.
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