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Simple Summary: After the Fukushima Daiichi nuclear power plant accident, a highly contaminated
area with radionuclide appeared and was designated a difficult-to-return zone (DRZ). After that,
the increase in number of wild boars (Sus scrofa) has been pronounced in DRZ, and the spread of
highly contaminated wild boars into other areas is cause for concern. Understanding the population
structure based on the genetic diversity of wild boars in Fukushima provides important information
for the management of the animals. In this study, we carried out MIG-seq analysis to clarify the dis-
persal and gene flow of the local wild boar population and uncover the genetic population boundary
in Fukushima. We obtained 328 single-nucleotide polymorphisms from 179 wild boars. Based on
STRUCTURE analysis, we found significant genetic differences between groups of wild boars inhab-
iting in the east and west, divided by the Abukuma River. Since the urbanized area is concentrated
along the Abukuma River in Fukushima, both the Abukuma River and the urbanized area are likely
to interfere in the migration and dispersal of wild boars. Furthermore, our results indicate that the
population in the western area was established by the migration from other neighboring prefectures
rather than by that from the eastern group of Fukushima Prefecture.

Abstract: We aimed to reveal the dispersal and gene flow of the local wild boar (Sus scrofa) population
and find their genetic boundary in Fukushima Prefecture. After the nuclear incident in 2011, the
land was considered a difficult-to-return zone, and the increase in the number of wild boars was
pronounced. To provide an effective management strategy for the wild boar population, we used
multiplexed inter-simple sequence repeat genotyping by sequencing (MIG-seq) and clarified the
genetic structure of wild boars. We obtained 328 single-nucleotide polymorphisms from 179 samples.
STRUCTURE analysis showed that the most likely number of population cluster was K = 2. Molecular
analysis of variance showed significant genetic differences between groups of wild boars inhabiting
in the east and west across the Abukuma River. The migration rate from the eastern population to
the western population is higher than in the reverse case based on BayesAss analysis. Our study
indicates that both the Abukuma River and anthropogenic urbanization along the river may affect
the migration of wild boars and the population in western was established mainly by the migration
from other neighboring prefectures.

Keywords: wild boars; MIG-seq analysis; genetic population structure; single-nucleotide polymor-
phisms; Fukushima Prefecture
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1. Introduction

Recently, some mammals, such as deer and wild boar, have expanded their population
size and their habitats expand closer to human dwellings, resulting in damage to agriculture,
forestry, and ecosystems in Japan [1,2]. Wild boars are naturally distributed in Asia, Europe,
and northern Africa [3], and two subspecies are distributed in Japan as follows: The
Japanese wild boar (Sus scrofa leucomystax) and the Ryukyu wild boar (Sus scrofa riukiuanus).
The Japanese wild boar (hereafter referred to as “wild boar”) is widely distributed in
mainland Japan, including Honshu, Shikoku, and Kyushu islands, except for the north
Tohoku district [4] (Figure 1). Wild boars have been targeted for hunting and are preferred
as a food source locally, but they also cause serious damage to crops. Therefore, wild boars
have suffered from increased hunting pressure to prevent agricultural damage since the
Meiji era (i.e., 1968–1912), and their habitats have decreased due to increased urbanization.
Moreover, swine fever, which has a severe impact on the pig industry as well as wild boar
populations, became epidemic in Japan [5]. These resulted in the reduction of wild boar
populations in Japan until the 1980s [5,6].
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3, Ken-Poku; 4, Ken-Chu; 5, Ken-Nan; 6, Aizu). Numbers in parentheses represent the number of
wild boars analyzed in each district region. (C) The sampling location of wild boars in Fukushima
Prefecture. Sampling points of wild boars are shown in orange dots. These figures were created using
QGIS 3.1.6 (https://www.qgis.org/en/site/, accessed on 15 February 2022). The map of Fukushima
Prefecture and Abukuma River were obtained by Ministry of Land, Infrastructure, Transport and
Tourism (MLIT) of Japan (http://nlftp.mlit.go.jp/ksj/, accessed on 15 February 2022).
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In recent years, the number of wild boars has rapidly increased as a result of increased
abandoned land accompanied by the decline in human activity around the rural area (i.e.,
Satoyama area) and the reduction of hunting pressure due to the aging population [7,8]. In
addition, wild boars have expanded their habitats via re-invasion in certain regions, such
as north Tohoku, where they could not inhabit over the winter previously due to heavy
snowfall [9,10]. In Japan, wild boars caused 4733 million yen worth of damage to crops in
the 2018 fiscal year, which is the second largest animal-caused damage—just behind deer.
The amount of damage caused by wild boars was four times that of birds or other animals,
such as monkeys, in the 2018 fiscal year [11]. The increase in the population of wild boars
has also become a major problem in Fukushima Prefecture. Distribution surveys conducted
before 2002 showed that wild boars only inhabited the eastern Fukushima Prefecture [5].
However, wild boars were found in the western Fukushima Prefecture, upon surveillance
in 2004, suggesting that the wild boars habitat in Fukushima Prefecture have expanded
rapidly within recent years [5]. Specific to wild boars in Fukushima Prefecture, the effects
of the accident at the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power
Plant (FDNPP, Figure S1A) in 2011 were particularly notable. After the accident, radioactive
cesium above the allowed limits for radionuclides in food was detected in wild boars in
Fukushima Prefecture, resulting in the restriction of the ingestion or commercial distribution
of wild boar meat caught in Fukushima Prefecture. This decreased the motivation for
hunting wild boars in Fukushima Prefecture. Moreover, a part of Fukushima Prefecture
close to the FDNPP was designated as an evacuation zone (i.e., difficult-to-return zone
(DRZ), Figure S1A) due to a high level of radiation, and wild boar numbers are higher
within this evacuation zone compared to that outside the zone [5,12]. Furthermore, the
activity range of wild boars expanded in Fukushima evacuation zone, and it is a concern
that wild boars containing high concentrations of radionuclides may be dispersed to other
areas. In general, population management for wild boars is mainly conducted under the
control of the prefecture or each municipal unit, but wild boars move and disperse beyond
the boundaries of municipalities. To manage the population of wild boars, it is important
to collect information on the habitat and ecological characteristics beyond the boundaries
of municipalities [6].

Understanding the population structure based on the genetic diversity and genetic
boundary of species is important for wildlife management [13]. The genetic structure of
populations mainly reflects the migration and dispersal in nature [14,15]. Studies on the
genetic population structure based on DNA analysis have been previously conducted on
wild boars to determine the background of their geographical distribution [13,16–22]. Based
on changes in base sequences of mitochondrial DNA (mtDNA) control regions (D-loops) of
wild boars inhabiting a wide area in Japan extending from Honshu island to Kyushu island
inferred that geographical barriers, such as the Japanese Alps, restrict gene flow among
local populations [22]. In addition, microsatellite analysis has also been used to determine
the local-scale genetic population structure of wild boars [18,21]. For example, a study
of wild boars based on both mtDNA sequence analysis and microsatellite analyses in the
Tochigi Prefecture showed that microsatellite analysis represents a more recent population
structure than mtDNA sequence analysis [18].

The use of microsatellite analysis has increased linearly since the early 1990s, whereas
the use of genome-wide single-nucleotide polymorphisms (SNPs) has increased expo-
nentially since the late 1990s [23]. Genetic population analysis based on the detection
of genome-wide SNPs has many advantages in comparison to microsatellite analysis for
understanding population structure as follows: a lower number of samples is required
for an accurate estimation of allelic frequencies because of the large number of alleles per
locus in microsatellite; SNPs are suitable for estimation of long-term population history
due to the lower rate of recurrent or backward mutations; variability of highly polymorphic
microsatellite markers may not accurately reflect the underlying genomic diversity [23].
High-throughput sequencing technologies allow the identification of large numbers of
SNPs at reduced cost in non-model species. Multiplexed inter-simple sequence repeat
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genotyping by sequencing (MIG-seq) on non-model animals, plants, and fungi was per-
formed, which identified the population structure within each species, demonstrating that
this method can be applicable for population analysis in a wide group of taxa [24]. In
this study, we carried out MIG-seq analysis to clarify the genetic population structure of
wild boars in Fukushima Prefecture, in which the unusual DRZ has raised concerns and
the increase in the numbers of wild boars has been observed after the FDNPP accident.
This study aimed to reveal the dispersal and gene flow of the local wild boar population
and find the genetic boundary for wild boars in Fukushima Prefecture, including the DRZ
(Figure 1). This information will be useful for the management of wild boars in the area
after the FDNPP accident.

2. Materials and Methods
2.1. Sample Collection

Since the FDNPP accident in 2011, Fukushima Prefectural government has been
collecting meat fragments of wild boars from hunters to monitor the concentration of
radioactive cesium in the muscles of wild boars. These boars were caught by hunters
as part of efforts to control harmful wildlife implemented under the Wildlife Protection
and Hunting Management Law (Law No. 32, 1918). As in the case of wild boars in
DRZ, we used muscle samples of wild boars captured by the Ministry of the Environment
under “The habitat survey and capture of the wild animals project in and around the
former restricted areas (areas within 20-km radius from Fukushima Daiichi NPP)”, and
“The habitat survey and capture of the wild animals project in and around the former
restricted areas (areas within 20-km radius from Fukushima Daiichi NPP)”. Therefore, no
wild boars were killed specifically for this research and no live animals were used. One
hundred and seventy-nine wild boars captured in Fukushima Prefecture from October
2013 to June 2018 were used (Table S1). Information on the capture sites of wild boars was
obtained from maps or addresses submitted by hunters. As for a comparative sample to
wild boars in Fukushima Prefecture, nine samples of wild boars caught in the Kumamoto
Prefecture in the Kyushu district were provided by Munemasa Kosan Co., Ltd. (http:
//shop.amakusa-web.jp/cinghiale, accessed on 15 February 2022) (Figure 1A). Kumamoto
Prefecture is located approximately 1040 km away from Fukushima Prefecture and the
Kyushu district is only connected by a bridge to Honshu island including the Tohoku
district. The samples were analyzed in two ways based on the capture site of the wild boars
as follows: One group was divided into seven regions (six regions in Fukushima Prefecture
and one region in the Kumamoto Prefecture) (Table S1, Figure 1B); the other was divided
into two groups (captured in the eastern and western Abukuma River, Table S1).

2.2. MIG-Seq Analysis

DNA was extracted from frozen, freeze-dried, or ethanol-fixed wild boar meat pieces.
Genomic DNA was extracted using DNeasy EZ1 Kit (QIAGEN, Hilden, Germany) and
BIO ROBOT EZ1 (QIAGEN). MIG-seq analysis was performed as previously described
by Suyama and Matsuki [24]. For the preparation of the MIG-seq library, multiplex PCR
was performed with eight forward and reverse primer sets using the MIG-seq primer
set-1 for the first PCR [24]. The first PCR was conducted using Multiplex PCR Assay
Kit Ver.2 (Takara Bio, Kusatsu, Japan), and contained 3.5 µL of 2× Multiplex PCR Buffer,
0.035 µL of Multiplex PCR Enzyme Mix, 1.0 µL of template DNA, and 0.2 µM of each
primer. The volume of the reaction solution was adjusted to 7.0 µL with Nuclease Free
Water. PCR conditions were as follows: Initial denaturation at 94 ◦C for 1 min, followed
by 25 cycles of heat denaturation at 94 ◦C for 30 s, primer annealing at 48 ◦C for 1 min,
extension reaction at 72 ◦C for 1 min, and final extension reaction at 72 ◦C for 10 min.
The first PCR was performed three times per sample to detect more mutations. Equal
amounts of the first PCR products were mixed from the three replicates, and the PCR
products were purified using AMPure XP (Beckman Coulter Life Sciences, San Jose, CA,
USA). The purified PCR product was used as the template for the second PCR to add

http://shop.amakusa-web.jp/cinghiale
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the adaptor for Illumina MiSeq (Illumina, San Diego, CA, USA) and the Index for sample
identification. We used a single index that was different for each sample as published
by Matsuki and Suyama [24]. The second PCR was conducted using PrimeSTAR GXL
buffer (Takara Bio, Kusatsu, Japan), and the PCR reaction solution consisted of 3.0 µL of
5× PrimeSTAR GXL buffer, 1.2 µL of 2.5 mM dNTP mixture, 1.0 µL of template DNA,
0.375 U of PrimeSTAR GXL Polymerase, 3.0 µL of purified first PCR product, and primers
at a final concentration of 0.2 µM each, and the reaction solution volume was adjusted to
15.0 µL with Nuclease Free Water. PCR conditions were as follows: Heat denaturation at
98 ◦C for 10 s, primer annealing at 54 ◦C for 15 s, and elongation at 68 ◦C for 1 min for
12 cycles. The second PCR products were purified using the QIAquick PCR Purification
Kit (QIAGEN) according to the manufacturer’s protocol. Size selection was performed
using SPRI Size Select (Beckman Coulter Life Sciences, San Jose, CA, USA) to obtain
300–800 bp libraries. However, since fragments larger than 10,000 bp remained after the
size selection with SPRI Size Select, the PCR products were electrophoresed on an agarose
gel. Then, 300–800 bp fragments were cut out from the agarose gel and purified using the
QIAquick Gel Extraction Kit (QIAGEN). Size distribution and concentration of the library
were analyzed by Agilent 2200 TapeStation using the Genomic DNA ScreenTape System.
Sequencing was performed by MiSeq (Illumina) using MiSeq Regent v3 150 cycle. FASTX-
Toolkit ver.0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/, accessed on 15 February
2022) was used to remove the primer sequences (Minimum quality score to keep (q) = 33,
Minimum percent of bases that must have “q” quality (p) = 40) from the raw reads. TagDust
v2.31 [25] was then used to remove short reads containing primer sites in the sequence, and
then Read1 and trimmed Read2 data were combined. At this point, the average number
of reads for each sample was 482,605.6 (minimum 248,840 reads). SNPs were detected
using Stacks v. 1.35 [26]. To create “stacks”, ustacks was used and set to a minimum depth
of coverage (m) as 5 and maximum distance allowed between stacks (M) as 2. We used
ctacks to catalog the data under mismatches between sample loci (n) as 4, and then used
sstacks to determine the SNP loci for each individual. We used stacks to select SNPs with a
minimum percentage of samples in a population (r) as 0.5 and the minimum number of
populations in a locus (p) as 2; we set up separate populations for individuals captured
in Fukushima and Kumamoto prefectures. For the parameters not specifically mentioned
above, all default values were used. For the candidate SNP loci obtained, loci that appeared
only once in all individuals were excluded from further analysis. CLC Genomic Workbench
(CLC bio, Aarhus, Denmark) was used to perform pairwise similarity calculations after the
alignment of sequences containing SNPs. SNPs showing more than 50% sequence similarity
were considered duplicates and removed, and the remaining SNP loci were extracted. The
registration number of the obtained sequences are in Table S1.

2.3. Data Analysis

Genetic population structure estimation based on the obtained SNPs was performed
using STRUCTURE ver. 2.3.4 [27]. We set the first burn-in period 100,000 times and then
performed 150,000 calculations using the Markov chain Monte Carlo (MCMC) method.
The number of clusters (K) was set from 1 to 6, and ten calculations were performed for
each K. After STRUCTURE analysis, we calculated ∆K [28] using Structure Harvester
ver. 0.6.94 [29], and the value of K with the highest ∆K was set as the optimal number
of clusters. STRUCTURE analysis was performed independently for each data set of
wild boars from the six populations of Fukushima and Kumamoto prefectures or only
wild boars from six populations of Fukushima Prefecture. Hierarchical cluster analysis
was performed for six groups in Fukushima Prefecture via Ward’s method using “stat”
program that is implemented in R package by default (R 4.1.0; https://cran.r-project.org/
bin/windows/base/, accessed on 15 February 2022), then tree diagrams were created. The
fixed index of genetic differentiation (Fst) among the six groups in Fukushima Prefecture
was calculated using AMOVA approach in GenAlEx 6.503 [30]. AMOVA was conducted
on the SNPs for eastern and western Abukuma River groups using GenAlEx 6.503 [30]

http://hannonlab.cshl.edu/fastx_toolkit/
https://cran.r-project.org/bin/windows/base/
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to examine the partition of genetic variation among the groups. Statistical significance of
calculation of pairwise Fst values and AMOVA was assessed based on 9999 permutations
and applied the “interpolate missing” option. p-Values of pairwise Fst values were corrected
for multiple comparisons using the Bonferroni method [31]. We estimate migration rates
between eastern and western Abukuma River groups using the MCMC method in BayesAss
3.0.4 [32]. Preliminary estimation were conducted to adjust the acceptance rate of three
parameters (i.e., migration rate, allele frequency and inbreeding coefficients) were between
20 to 60%. In addition, convergence of each MCMC run was diagnosed using Tracer
v1.7.2 and Bayesian deviance calculated by R 4.1.0 software using R script authored by
Meirmans [33] for determinant the best run. Finally, we used the results that set the value
of deltaA = 0.20 and deltaF = 0.05, and MCMC runs performed 100,000,000 iterations
with a burn-in of 10,000,000 iterations and a sampling frequency of 2000. PGDspider ver.
2.1.1.5 [34] was used to convert the data files for each software.

3. Results
3.1. Genetic Population Structure of Wild Boars in Fukushima Prefecture

We obtained 688 SNPs using MIG-seq analysis, in wild boar samples from Fukushima
and Kumamoto Prefectures. The highest ∆K value was observed at K = 2 (∆K = 687.88),
followed by K = 3 (∆K = 117.61) (Figure S2A). Therefore, the genetic lineages of the wild
boar population in Fukushima and Kumamoto Prefectures could be classified into two or
three groups (Figures S2A and S3). In addition, we obtained 328 SNPs from only wild boars
in Fukushima Prefecture using MIG-seq analysis. STRUCTURE analysis, using 328 SNPs,
showed that the highest ∆K value (∆K = 1236.90) was obtained when K = 2 in comparison to
other K values, strongly indicating that the wild boar population in Fukushima Prefecture
could be classified into two groups (Figures 2 and S2B). The bar plot for K = 2 showed two
distinct clusters dominant in regions 1, 2 and 5 (the dark red cluster), and regions 3, 4 and 6
(dark red and geyser blue clusters) (Figure 2). To analyze the classification of wild boars in
Fukushima Prefecture in detail, we carried out cluster analysis based on genetic similarities
of wild boars inhabiting the six regions of Fukushima Prefecture. The analysis showed that
wild boars in Fukushima Prefecture can be genetically classified into two groups as follows:
The ones living in eastern and southern parts of Fukushima Prefecture (regions 1, 2 and 5);
the ones inhabiting in north-central and western parts of Fukushima Prefecture (regions
3, 4 and 6) (Figure S4). Furthermore, we calculated Fst values among all six regions, and
the result showed that range of significant Fst values were from 0.022 to 0.166 (p < 0.05,
Table S2).

3.2. Geographical Fragmentation of Wild Boars in Fukushima Prefecture

As described above, wild boars inhabiting Fukushima Prefecture could be classified
into two groups depending on the genetic analysis. We designated the dark red cluster
as wild boars in Fukushima-East (WF-E) and the geyser blue cluster as wild boars in
Fukushima-West (WF-W) based on the K = 2 data in Figure 2. For a detailed understanding
of the distribution of these clusters in Fukushima Prefecture, the ratio of WF-E to WF-W was
calculated in each municipality in Fukushima Prefecture (Figure 3A). A mixture of WF-E
and WF-W was observed in pie charts for the municipalities along the Abukuma River
(Figure 3A). Focusing on the genetic distribution of wild boars in terms of the separation
by the Abukuma River, WF-E and WF-W tended to be dominant on the east side and the
west side of the Abukuma River, respectively (Figure 3B). Moreover, analysis of molecular
variance (AMOVA) results showed significant genetic differences between east and west
groups of wild boars on the border of the Abukuma River (p ≤ 0.001), and the variation
between the east and west groups represented 11% of the total variation (Table 1). Taken
together, these indicated that the distribution of the two clusters tended to be divided
between the eastern and western Abukuma River. From BayesAss analysis, values of the
migration rates within the same side are almost same in both sides (0.967 in the east and



Animals 2022, 12, 491 7 of 13

0.897 in the west). However, the migration rate in case from the east side population to
west side population (0.103) is higher than in the reverse case (0.033).
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Table 1. Analysis of molecular variance (AMOVA) of two populations of wild boars divided to east
and west side between Abukuma River in Fukushima Prefecture.

Source of Variation Degrees of
Freedom

Sum of
Squares

Percentage
of Variation

Fixation
Index

Among populations 1 764 11% 0.115 ***
Among individuals within

populations 177 5420 0% −0.028

Within individuals 179 5793 89% 0.091 ***

Total 357 11,978 100%
In bold significant values and significance levels are represented by: *** for p ≤ 0.001.



Animals 2022, 12, 491 8 of 13

Animals 2022, 12, x 8 of 13 
 

Table 1. Analysis of molecular variance (AMOVA) of two populations of wild boars divided to east 
and west side between Abukuma River in Fukushima Prefecture. 

Source of Variation Degrees of 
Freedom 

Sum of 
Squares 

Percentage of 
Variation 

Fixation  
Index 

Among populations 1 764 11% 0.115 *** 
Among individuals within 

populations 
177 5,420 0% −0.028  

Within individuals 179 5,793 89% 0.091 *** 
Total 357 11,978 100%   

In bold significant values and significance levels are represented by: *** for p ≤ 0.001. 

 

Figure 3. Sample number and detection rate (in percentage) of clusters WF-E and WF-W in each 
city/town/village (A) in eastern and western Abukuma River (B). The detection rate of clusters WF-
E and WF-W was based on the results of STRUCTURE analysis (K = 2, Figure 2). The size of the 
circle in the graphs corresponds to the number of samples. Sampling points of wild boars are shown 
in orange dots. 

Figure 3. Sample number and detection rate (in percentage) of clusters WF-E and WF-W in each
city/town/village (A) in eastern and western Abukuma River (B). The detection rate of clusters WF-E
and WF-W was based on the results of STRUCTURE analysis (K = 2, Figure 2). The size of the circle
in the graphs corresponds to the number of samples. Sampling points of wild boars are shown in
orange dots.

4. Discussion

Our study revealed that there are two genetically differentiated lineages of wild boars
(i.e., groups WF-E and WF-W) in Fukushima Prefecture. Inhabitation of wild boars in the
west side in Fukushima prefecture (WF-W group) has been confirmed since 2004 [5]. With
a simplistic point of view, the WF-W group of wild boars is considered to have originated
from WF-E group. However, the significant genetic differentiation between groups of
WF-E and WF-W, which is found in this study, is unlikely to have occurred in the less than
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20 years. We will discuss the establishment of WF-W group of wild boars in Fukushima
Prefecture as following sections.

When wild boars were divided into six regions based on their captured sites, the Fst
values among each site were very small, indicating that the degree of genetic differentiation
among the regions tended to be small (Table S2). Low levels of genetic differentiation
observed here may be attributable to the characteristics of wild boars with comparatively
low mobility and small home range [4,35]. Genetic lineages of wild boars seemed to be
divided into two by the Abukuma River, suggesting that the Abukuma River restricts the
migration of wild boars in Fukushima Prefecture (Figure 3). The Abukuma River is the
largest river in Fukushima Prefecture, with a channel length of 239 km, flowing from south
to north toward the neighboring Miyagi Prefecture (Figure S1A). Previous studies based on
genetic analysis reported that rivers and valleys are responsible for the fragmentation of
wild boar populations in Bulgaria [19] and Portugal [13,17]. However, rivers are not perfect
barriers to the gene flow of wild boars because some individuals belonging to the same
subpopulation were previously observed on both sides of a river [13,17]. Indeed, our study
showed that the wild boars mainly distributed on the east side (cluster WF-E) were also
found on the west side of the Abukuma River, and vice versa. Therefore, the Abukuma
River itself may not be a complete barrier to the gene flow of wild boars in Fukushima
Prefecture (Figure 3).

In general, the distribution of wild boar populations is considered to have been
influenced by climate change, but also landscape change due to human activity, such as
agriculture and forestry [3]. A study of genetic population structure in wild boars inhabiting
the Gunma Prefecture [21] showed that landscape factors, such as main rivers, roads, urban
areas, and train networks, can be boundaries for wild boar populations. Indeed, it has been
shown that human infrastructures, such as highways, hinder wild boar migration [36,37].
Table S3 shows the land use in Fukushima Prefecture both as a whole and within 4 km
of the riverbank in the municipalities bordering the Abukuma River. The urbanized
area concentrates along the Abukuma River (Table S3) and highway, railroads, and the
Shinkansen bullet train, run almost parallel to the Abukuma River (Figure S1), resulting
in the division of the prefecture into eastern and western sides. Therefore, anthropogenic
factors of landscape in the bordering area along the river may affect the migration and
dispersal of wild boars.

According to the habitat distribution maps of wild boars throughout Japan, wild boars
are generally not observed in areas with over 30 cm of snow accumulation continuing for
more than 70 days in winter and those with 40% or less forest regions [5,38]. In Fukushima
Prefecture, snow accumulation was relatively high in the west, which corresponds to the
Aizu region (region 6 in Figure 1B), in comparison to other regions. According to wild
boar distribution surveys conducted in 1981, 1993, and 2002, wild boars were not found
in the west sides of the Abukuma River, including the Aizu region [5,38]. Since 2004, the
inhabitation of wild boars has been confirmed even on the west side of the Abukuma
River [5]. The increase of wild boar numbers on the west side of the prefecture was more
concerned after the FDNPP accident. A recent study showed that wild boar is the most
abundant species in the evacuation zone and was over three times more abundant in the
evacuation order zone than in human-inhabited areas [39]. Therefore, was expected that the
recent increase in the number of wild boars in the western Fukushima Prefecture occurred
as a consequence of the increase in the number of wild boars inside the evacuation order
zone after the FDNPP accident. Results by BayesAss analysis, in which the immigration
rate of wild boars from east side population to west side population was high in comparison
to the reverse case, provide some support for the above expectations.

Our study showed that wild boars in the western Fukushima Prefecture were genet-
ically different from those on the eastern side. This suggests that the establishment of
the western wild boar population in Fukushima Prefecture may have occurred due to the
migration of wild boars from neighboring prefectures rather than the eastern Fukushima
Prefecture wild boar population. Indeed, nearly 70% of Fukushima Prefecture is made up
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of forest areas (Table S3), and the Abukuma Mountains, as well as the Ou Mountains, are
located at the east and west side of the Abukuma River, respectively, straddling neighbor-
ing prefectures (Figure S1C). Such geomorphic characteristics may contribute to the easy
migration of wild boars between Fukushima and neighboring prefectures. Therefore, it
is necessary to clarify the genetic population structure of the wild boars not only within
Fukushima Prefecture but also in the neighboring prefectures.

In general, population management for wild boars in Japan is mainly conducted under
the control of units of the prefecture or each municipal; however, wild boar populations
and their migration do not correspond to a particular administrative unit. As shown in
this study, the genetic difference among wild boar populations reflects the population
boundaries and the migration scale among populations; therefore, it is considered that the
wild boar management based on the genetic population structure could be more effective.
Furthermore, the long-term monitoring of the wild boar population is also important
because the population dynamics of wild boars is likely to be affected by climate change,
changes in human activities, and the landscape environment accompanied by depopulation
in the future. In addition to these, the effect of long-term evacuation on the DRZ to the
wild boar population is also an important issue. The long-term monitoring of wild boar
populations after the Chernobyl nuclear power plant accident showed that the abundance
of wild boars increased in the Chernobyl exclusion zone [40]. Therefore, it is necessary to
continue long-term monitoring of wild boar population dynamics in Fukushima Prefecture,
and monitoring methods based on genetic analysis, such as MIG-seq shown in this study,
will provide information with sufficient resolution to understand the long-term dynamics
and migration of the wild boar population. In addition, one aim of this study is to clarify
that the wild boars containing high concentrations of radionuclides may be dispersed to
western area of Fukushima Prefecture. Indeed, results from BayesAss analysis show that
the immigration rate of wild boars from the east side population to the west side population
was high in comparison to the reverse. However, it is difficult to discriminate whether
the immigration of wild boar with high radioactive Cs into west of Fukushima Prefecture
occurred one generation or over several generations. Therefore, it is important to study the
relationships between genetic linages and radioactive Cs concentration in wild boars in the
west side of Fukushima Prefecture. This will make clear the dynamics of radioactive Cs by
migration of wild boar into the west area of Fukushima Prefecture.

5. Conclusions

We obtained 328 SNPs from wild boars in Fukushima Prefecture using MIG-seq
analysis. Our study revealed that there are two genetically differentiated lineages of wild
boars (i.e., groups WF-E and WF-W) and that both the Abukuma River and anthropogenic
urbanization along the river may affect the migration and dispersal of wild boars. In
addition, our results also suggest that the establishment of the western wild boar population
in Fukushima Prefecture may have occurred due to the migration of wild boars from
neighboring prefectures, in addition to the eastern population of Fukushima Prefecture.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani12040491/s1, Figure S1: Supplementary Figure S1. Geographical
features (A), land use (B) and the location of the mountains (C) around Fukushima Prefecture. These
figures were created using ArcGIS Pro (Esri Japan, Tokyo). The map of Japan, river, highway, railroad,
land use and altitude were obtained by Ministry of Land, Infrastructure, Transport and Tourism
(MLIT) of Japan (http://nlftp.mlit.go.jp/ksj/, accessed on 15 February 2022) area of difficult to
return area, as of March 10th, 2020, was referred to the map released by Fukushima Prefecture
(https://www.pref.fukushima.lg.jp/site/portal/list271-840.html, accessed on 15 February 2022).;
Figure S2: Results of delta (∆) K calculation based on Structure Harvester. (A) Result of ∆K from
seven regions (six regions in Fukushima Prefecture and Kumamoto Prefecture). (B) Result of ∆K
from six regions (six regions only in Fukushima Prefecture). Location of each region has provided in
Figure 1A,B.; Figure S3: Results of the STRUCTURE analysis for K = 2–5. Gray bars at the bottom
indicate region numbers (1, North of Soso; 2, South of Soso and Iwaki; 3, Ken-Poku; 4, Ken-Chu; 5,

https://www.mdpi.com/article/10.3390/ani12040491/s1
https://www.mdpi.com/article/10.3390/ani12040491/s1
http://nlftp.mlit.go.jp/ksj/
https://www.pref.fukushima.lg.jp/site/portal/list271-840.html
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Ken-Nan; 6, Aizu in Fukushima Prefecture and 7, Kumamoto Prefecture). Location of each region has
provided in Figure 1A,B.; Figure S4: Results of the cluster analysis for six regions of wild boars in
Fukushima Prefecture (1, North of Soso; 2, South of Soso and Iwaki; 3, Ken-Poku; 4, Ken-Chu; 5, Ken-
Nan; 6, Aizu in Fukushima Prefecture). Location of each region has provided in Figure 1B.; Table S1:
Sample information.; Table S2: Pairwise Fst value (below) among the populations in Fukushima
Prefecture based on 328 SNPs data.; Table S3: Land use of area of the Abukuma River basin and
overall Fukushima Prefecture.
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