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Abstract

Advances in experimental technologies, such as DNA sequencing, have opened up new avenues for the applications of phy-
logenetic methods to various fields beyond their traditional application in evolutionary investigations, extending to the
fields of development, differentiation, cancer genomics, and immunogenomics. Thus, the importance of phylogenetic
methods is increasingly being recognized, and the development of a novel phylogenetic approach can contribute to several
areas of research. Recently, the use of hyperbolic geometry has attracted attention in artificial intelligence research.
Hyperbolic space can better represent a hierarchical structure compared to Euclidean space, and can therefore be useful for
describing and analyzing a phylogenetic tree. In this study, we developed a novel metric that considers the characteristics
of a phylogenetic tree for representation in hyperbolic space. We compared the performance of the proposed hyperbolic
embeddings, general hyperbolic embeddings, and Euclidean embeddings, and confirmed that our method could be used to
more precisely reconstruct evolutionary distance. We also demonstrate that our approach is useful for predicting the near-
est-neighbor node in a partial phylogenetic tree with missing nodes. Furthermore, we proposed a novel approach based on
our metric to integrate multiple trees for analyzing tree nodes or imputing missing distances. This study highlights the util-
ity of adopting a geometric approach for further advancing the applications of phylogenetic methods.
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Introduction

The advancement of DNA sequencing technologies has enabled
the determination of the genome sequences of different organ-
isms, resulting in the reconstruction of various types of gene
and species trees [1–3]. Phylogenetic analyses based on these
trees have contributed substantially to research fields, such as
the identification of gene–gene associations and gene functions
[4], relationships between evolution and disease [5], evolution-
ary dynamics of pathogens [6–9], and bacterial taxonomy [10].

However, there is increasing recognition of the necessity for de-
veloping novel computational phylogenetic methods to further
accelerate the application of phylogenetic analyses in various
researches [11–13].

Furthermore, recent advances in lineage-tracing methods
based on single-cell and genome-editing technologies have led
to elucidation of cellular lineages [14], and phylogenetic meth-
ods have played an essential role in reconstructing and analyz-
ing these cellular lineages. In addition, phylogenetic methods
have contributed to research in cancer genomics (evolution of
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cancer) [15] and immunogenomics (evolution of antibody line-
ages) [16, 17]. In addition to the essential role of phylogenetic
methods in evolutionary biology, these approaches are increas-
ingly becoming relevant for other research areas; thus, the de-
velopment of novel phylogenetic methods can contribute
broadly to various fields in the life and biomedical sciences.

Hyperbolic geometry, as a non-Euclidean form of geometry,
has attracted attention in artificial intelligence research, with
several methods using hyperbolic geometry recently developed
for various applications. Representation learning models have
shown that the hyperbolic space could be used to represent la-
tent hierarchical structures, exhibiting significant performance
improvements over other approaches [18, 19]. This finding mo-
tivated several subsequent machine-learning studies using hy-
perbolic space, including the construction of hyperbolic neural
networks [20]. In addition, a novel approach for hierarchical
clustering that optimizes the coordinates in hyperbolic space
was proposed [21]. Recently, a novel hyperbolic geometry-based
approach for learning hierarchical structure, including phyloge-
netic data, was proposed, and it showed the potential of hyper-
bolic geometry for novel phylogenetic methods [22].

The coordinates in 2D hyperbolic geometry can be described
with the Poincaré disk model (or the Poincaré ball model for 3D
or n-dimensional hyperbolic space). In contrast to the Euclidean
space, where the shortest path between two points (i.e. a geode-
sic) is a straight line, a geodesic in the Poincaré disk is an arc
(Fig. 1A). This characteristic of geodesics on the Poincaré disk ef-
fectively represents a hierarchical structure because the geode-
sic provides a better match to a tree structure than the path on
Euclidean space represented as a straight line (Fig. 1B). In addi-
tion, the area of the Poincaré disk grows exponentially in accor-
dance with the distance from the origin, which is an
advantageous characteristic for representing the nodes of a tree
which increase in number exponentially with branching of the
tree (Fig. 1C). These characteristics of a Poincaré disk are effec-
tive for embedding a phylogenetic tree, and visualization tools
based on such hyperbolic phylogenetic tree embeddings have
been developed [23, 24]. Hyperbolic embeddings have also re-
cently been used to reconstruct cell lineage trees from single-

cell RNA-sequencing data [25, 26]. In addition, the hyperbolic
space has been used for several other types of biological studies,
such as for analyzing protein function based on protein interac-
tion network embedding [27] and interpreting the mechanisms
of olfactory space [28]. As the hyperbolic embeddings are effec-
tive for analyzing biological data with a hierarchical structure,
they are expected to be useful for various types of phylogenetic
methods. To extend the applications of hyperbolic space for
phylogenetic methods, we here propose a novel metric for accu-
rate phylogenetic tree embedding in hyperbolic space. The pro-
posed method is expected to contribute to the development of
novel phylogenetic methods using hyperbolic space.

For both Euclidean and hyperbolic embeddings, the input
data are generally represented as a distance matrix among data
points, and objective functions are designed to preserve the in-
put distances with the geodesic distances on the embedded
space. In the case of phylogenetic tree embeddings, the distance
between two nodes on the tree corresponds to the evolutionary
distance, which is the sum of branch lengths between the two
nodes (additivity). For example, considering the two external
nodes i and j and their most recent common ancestor (MRCA)
node k, the evolutionary distance dij represents the sum of the
respective distance of each node to the MRCA, dik þ djk.
Although hyperbolic phylogenetic tree embedding is expected
to preserve distance information better than the Euclidean em-
bedding, it still cannot perfectly preserve the evolutionary dis-
tances of the phylogenetic tree. This is because the additivity
can only accurately reflect the geodesic distance when all nodes
are located on a single geodesic line, and this is not the case for
tree structures constructed with general embeddings. To over-
come this limitation, we developed a novel metric that allows
for embedding the evolutionary distance in a more precise man-
ner by using the cosine rule in hyperbolic geometry (i.e. the hy-
perbolic law of cosines). We compared the performance of
conventional Euclidean and hyperbolic embeddings with that of
our proposed embeddings, which confirmed that our approach
could precisely reconstruct the evolutionary distance in a vari-
ety of scenarios. The proposed embeddings also exhibit an ad-
vantageous property in that the angles among external nodes
and their MRCA nodes are stable and can be used to predict
MRCA. In addition, we investigated the ability of the three types
of embeddings to predict the nearest node of an external node
not included in the partial phylogenetic tree, demonstrating
that our proposed approach had the best predictive perfor-
mance. The proposed metric also offers meaningful way to inte-
grate multiple trees, which is not achieved with naive distance
averaging approach. This approach also presents a novel algo-
rithm for integrating partial trees and imputing missing
distances.

Recent advancements of the algorithms using hyperbolic ge-
ometry have shown the efficacy of the geometry for analyzing
and reconstructing various tree structures [22, 25, 26]. In this
work, we demonstrated the effectiveness of our metric that is
designed for the phylogenetic tree. The previous researches and
our results demonstrated the potential of adopting a geometric
approach for phylogenetic analyses. The importance of novel
phylogenetic methods has been increasingly recognized to han-
dle the new and abundant data emerging from the current ge-
nomic era. In this regard, our approach has potential to
contribute to several types of phylogenetic analyses by propos-
ing a novel concept of “tree thinking” [29] based on geometric
thinking.

Figure 1: graphical schematic of the Poincaré disk. (A) Geodesics and triangle on

the Poincaré disk. (B) Geodesics for the external nodes of a simple tree structure.

(C) Tree embedding on the Poincaré disk. The geodesic distances based on the

Poincaré disk for all branches are equal.
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Materials and methods
Novel metric for hyperbolic phylogenetic tree
embeddings

For representing a phylogenetic tree with continuous coordi-
nates, hyperbolic space is expected to preserve evolutionary
distance better than Euclidean space [18, 19]. However, the gen-
eral distance matrix embedding methods, including the general
hyperbolic embedding, had the limitation for the precise repre-
sentation of evolutionary distance. To overcome this limitation,
we developed a novel metric that was based on the hyperbolic
law of cosines to represent the evolutionary distance precisely
in hyperbolic space. For a hyperbolic triangle with side lengths
a, b, and c, and angle (in radians) c (Fig. 1A), the hyperbolic law
of cosines is satisfied, as follows:

coshðcÞ ¼ coshðaÞcoshðbÞ � sinhðaÞsinhðbÞcosðcÞ: (1)

In the case of c ¼ p=2, the above equation becomes

coshðcÞ ¼ coshðaÞcoshðbÞ: (2)

For the two nodes i and j in a phylogenetic tree and MRCA
node k, we describe the evolutionary distances between any
two nodes (i, j), (i, k), and (j, k) as dij, dik, and djk, respectively. We
also describe the geodesic distances in the hyperbolic space as
dðHÞij ; dðHÞik , and dðHÞjk . If we assume that the angle /ikj is p=2 and
the geodesic distance satisfies dðHÞij ¼ acoshðexpðdijÞÞ; dðHÞik ¼
acoshðexpðdikÞÞ, and dðHÞjk ¼ acoshðexpðdjkÞÞ, we can derive the
following from Equation (2):

expðdijÞ ¼ expðdikÞ expðdjkÞ ¼ expðdik þ djkÞ: (3)

When the phylogenetic tree is given, the evolutionary dis-
tance dij over the phylogenetic tree is given by dik þ djk (additiv-
ity of evolutionary distance). Equation (3) shows that the
additivity of evolutionary distances (dij ¼ dik þ djk) can be repre-
sented if the above assumptions (/ikj ¼ p=2) are satisfied.

Thus, we translate the evolutionary distance between two
nodes, i and j, as Xij ¼ acoshðexpðdijÞÞ and embed the translated
distance matrix X onto the hyperbolic space (Poincaré ball) in-
stead of directly embedding the evolutionary distance matrix.

Phylogenetic tree embeddings

The evolutionary distance matrix is represented as D (with Dij

considered to be the evolutionary distance dij), and then D was
embedded with both Euclidean and general hyperbolic embed-
dings, in addition to hyperbolic embeddings with the proposed
metric (Fig. 2). The performance of each approach was then
compared.

For Euclidean embeddings, we used Sammon mapping,
which is a type of multidimensional scaling (MDS) [30]. Toward
this end, we used the sammon function in the MASS package in
R language, and embedded D for the Euclidean space with vari-
ous dimensions (M). The performance of the embeddings was
evaluated by calculating the mean squared error (MSE) between
Dij and the Euclidean distance dEðzi; zjÞ, where zi represents the
coordinate of node i of the embedded space.

For general hyperbolic embeddings, we used the hydraPlus
function in the hydra package in R [31], and embedded D with
parameters “curvature” ¼ 1 and “alpha” ¼ 1 under various
dimensions M. The performance was then evaluated by

calculating the MSE between Dij and the geodesic distance on
the Poincaré ball dPðzi; zjÞ, where the distance is defined as
follows:

dPðzi; zjÞ ¼ acosh 1þ 2
jjzi � zjjj2

ð1� jjzijj2Þð1� jjzjjj2Þ

 !
: (4)

We also used the hydraPlus function for hyperbolic embed-
dings with the proposed metric. We embedded the translated
matrix X, where Xij ¼ acoshðexpðDijÞÞ, and evaluated its perfor-
mance by calculating the MSE between Dij and the inverse
transformed distance logðcoshðdPðzi; zjÞÞÞ.

Folding-in internal nodes

In the previous section, we considered the distance matrix D for
all nodes in a phylogenetic tree as the input, including internal
nodes, and embedded all nodes simultaneously. We further eval-
uated the performance of each type of embedding in the case of
“folding-in” the internal nodes. In this case, the input was a dis-
tance matrix for external nodes, and the external nodes were first
embedded, followed by optimization of the coordinates of the in-
ternal nodes for the embedding space (Fig. 3).

We first conducted these steps for complete phylogenetic
tree. The external nodes were first embedded, and the coordi-
nates of each internal node is optimized numerically and inde-
pendently (Fig. 3A). The objective function used for optimizing
the coordinates of an internal node was the minimization of the
MSE between the true evolutionary distances and the recon-
structed evolutionary distance based on the geodesic distance
for the internal node and all external nodes.

We next embedded the internal nodes of a partial tree,
which is the phylogenetic tree for only a portion of the external
nodes (Fig. 3B). The objective function used here is the minimi-
zation of the MSE between the true evolutionary distances and
the reconstructed evolutionary distance for the internal node
and external nodes included in the partial tree.

Prediction of the MRCA

Based on the results of each method of embedding, we developed
new indicators to predict the MRCA of two external nodes i and j.
The indicators are based on the distance or angle information on

Figure 2: graphical representation of hyperbolic phylogenetic tree embeddings.

The input evolutionary distance matrix D contains all nodes, including the in-

ternal nodes of the phylogenetic tree. In our proposed embeddings, the input

matrix is the translated matrix X, instead of D.
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the embedded space, which are used to determine whether the in-
ternal node k is the MRCA of i and j. When node k is the MRCA for i
and j, the additivity of the evolutionary distance (dij ¼ dik þ djk) is
satisfied. However, the above condition is not sufficient to deter-
mine the MRCA because all internal nodes l on the path from i to j
satisfy the additivity dij ¼ dil þ djl. Therefore, we also used the out-
group node o, which is a distant species from the target species
and is used to determine the root of the tree. The additivity is also
satisfied for the outgroup node o only for the MRCA node k
(dio ¼ dik þ dok and djo ¼ djk þ dok). As the first indicator, we devel-
oped the “distance-score,” which is the maximum of
ðdij � dik � djkÞ2; ðdio � dik � dokÞ2, and ðdjo � djk � dokÞ2. We also de-
veloped another indicator based on the angle information. If the in-
ternal node k0 is a more distant (i.e. not the most recent) ancestor,
then dik0 þ djk0 becomes larger than the dij, and the angle on the
embedded space will be /ik0j < /ikj, where k is the MRCA of i and
j. We calculated the angles /ikj; /iko, and /jko based on the em-
bedded coordinates, and then used the minimum value of each an-
gle as the “angle-score,” which served as the basis for predicting
whether or not k is the MRCA.

We evaluated the performance of distance-score and angle-
score to predict the MRCA for each embedding type by randomly
selecting the external nodes i and j 1000 times, and used i, j, and
their MRCA k as the positive-control dataset. We also randomly
selected the external node l, and used the combination i, l, and k
as the negative-control dataset (if the MRCA of i and l was k, we
resampled l randomly). We performed the above process for
each random simulated tree and calculated the mean of the
area under the receiver operating characteristic (ROC) curve
(AUC) values to evaluate the prediction of the MRCA with the
angle-score for each embedding method.

Prediction of the nearest-neighbor node in the partial
tree

Numerous genomes have been determined in the genome era, and
the importance of integrating multiple partial phylogenetic trees

[32, 33] or placing a novel species into an already-established phy-
logenetic tree (phylogenetic placement) [34] is increasing.
Therefore, we evaluated the ability of our method to predict the
nearest-neighbor node in the partial tree for some external nodes
missing from the tree. First, we embedded the external nodes and
folding-in the partial tree as described above (Fig. 3B). Second, we
predicted the nearest-neighbor node in the partial tree for an exter-
nal node that was not included the tree based on the geodesic dis-
tance for each embedding method. We evaluated the performance
of each embedding by calculating the rank of the actual nearest-
neighbor node calculated from the complete phylogenetic tree.

Integration and embeddings of multiple phylogenetic
trees

As an application of our distance transformation, we here focus
on the use of our geometric perspective for the alternative ap-
proach of the integration of multiple gene trees. The coordinates
of the M-dimensional Poincaré ball model zi can be transformed
to the coordinates of the M-dimensional hyperbolic geometry

xi ¼ fxi;kjk ¼ 1; . . . ;Mþ 1g, where xi satisfies
PM
k¼1

x2
i;k � x2

i;Mþ1 ¼ �1.

The geodesic distance based on the above coordinates [hyper-

bolic geometry version of Equation (4)] is then defined as follows:

dHðxi; xjÞ ¼ acoshð�hxi; xjiM;1Þ; (5)

hxi; xjiM;1 ¼
XM
k¼1

xi;kxj;k � xi;Mþ1xj;Mþ1: (6)

Using our novel metric for the conversion of evolutionary
distance, acoshðexpðdijÞÞ, the pseudo-inner product (hxi; xjiM;1)
has the following relationship to evolutionary distance:

hxi; xjiM;1 ¼ �expðdijÞ: (7)

Here, we consider two genes, a and b, and their phylogenetic
gene trees independently. The evolutionary distances for each
tree are then dðaÞij and dðbÞij , respectively. Based on Equation (7),
the mean of the pseudo-inner product satisfies the following
relationship:

1
2

�
hxðaÞi ; xðaÞj i1;M þ hx

ðbÞ
i ; xðbÞj i1;M

�
¼ � 1

2

�
expðdðaÞij Þ þ expðdðbÞij Þ

�
:

(8)

Then, we define a new vector, x0i, which is combined with xðaÞi

and xðbÞi as follows:

x0i ¼
1ffiffiffi
2
p
�

xðaÞi;1 ; x
ðbÞ
i;1 ; . . . ; xðaÞi;Mþ1; x

ðbÞ
i;Mþ1

�
: (9)

Using the above vector, the mean of the pseudo-inner prod-
uct can be represented with the following bilinear form:

1
2

�
hxðaÞi ; xðaÞj i1;M þ hx

ðbÞ
i ; xðbÞj i1;M

�

¼
X2M

k¼1

x0i;kx0j;k � x0i;2Mþ1x0j;2Mþ1 � x0i;2Mþ2x0j;2Mþ2

¼ hx0i; x0ji2M;2:

(10)

Figure 3: graphical representation of the hyperbolic embeddings of a distance

matrix corresponding to the external nodes and folding-in of the internal nodes

of the complete phylogenetic tree (A) and the partial tree (B).
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This form is known as an inner product related to a pseudo-
Euclidean space. Therefore, the pseudo-Euclidean space may be
useful for representing the ensemble trees.

In this research, we compared the approaches for integrating
tree distances: averaging distance matrix (H0), averaging inner
product based on the general hyperbolic method (H1), and aver-
aging inner product based on the proposed method (H2).
Hereafter, we only used the external nodes of the trees and de-
scribed the distance between the two external nodes i and j of
two trees as dðaÞij and dðbÞij , respectively. As the typical integration
of trees, we defined the averaged distance as
dHðxi; xjÞ ¼ ðdðaÞij þ dðbÞij Þ=2. Because the hyperbolic distance is de-
fined by Equation (5), the indefinite inner product is given by
�coshððdðaÞij þ dðbÞij Þ=2Þ, and we defined the inner product matrix
Hð0Þ such that Hð0Þij ¼ �coshððdðaÞij þ dðbÞij Þ=2Þ. Then, we performed
the eigendecomposition of the matrix. Because the inner prod-
uct corresponds to the hyperbolic geometry, there will be at
least one negative eigenvalue. The eigenvalue decomposition of
such inner product matrix is connected with the hyperbolic
embeddings and is used for initializing the hyperbolic embed-
dings in the hydra package [31].

We also developed the integration of trees based on
Equation (8) and defined the inner product as
�ðexpðdðaÞij Þ þ expðdðbÞij ÞÞ=2. Then, we defined the inner product
matrix Hð2Þ such that Hð2Þij ¼ �ðexpðdðaÞij Þ þ expðdðbÞij ÞÞ=2 and per-
formed the eigendecomposition of the matrix. Based on
Equation (10), there will be two negative eigenvalues (see online
supplementary material for the discussion of the number of
negative eigenvalues). We also defined the inner product matrix
Hð1Þ based on the general hyperbolic embeddings such that
Hð1Þij ¼ �ðcoshðdðaÞij Þ þ coshðdðbÞij ÞÞ=2 and performed the eigende-
composition of the matrix.

Imputation of missing distances from partial trees

Next, we considered the case of integrating two partial trees, a
and b, which have different sets of external nodes. We refer to
the external nodes that appeared only in the tree a as Lanb, only
in the tree b as Lbna, and in both of the trees as La\b, respectively.
In such case, the distance dij for i 2 Lanb and j 2 Lbna is missing.
Imputing such missing distances is important to estimate the
comprehensive tree [35]. In this research, we proposed an alter-
native approach for imputing distances based on the eigenvalue
of the indefinite inner product matrix Hð2Þ. We discussed that
the first and second smallest eigenvalue of Hð2Þ would be nega-
tive and positive when it is appropriated for hyperbolic repre-
sentation (see online supplementary material). If we set
inappropriate values to the missing distances, Hð2Þ would not be
represented by hyperbolic space and would have more than two
negative eigenvalues. Therefore, we optimized the missing val-
ues by maximizing the second smallest eigenvalue of Hð2Þ. We
also impute the missing values based on the inner matrix Hð1Þ in
the same manner. The detailed optimization procedures are de-
scribed in online supplementary material.

Datasets

We randomly generated phylogenetic tree shapes comprising
100 external nodes using the rtree function [36]. We determined
each branch length with að1� logðuðe� 1Þ þ 1ÞÞ, where u is a
uniform random value and a corresponds to the scaling factor,
which was set to values of 0.25, 0.5, and 1 for this analysis. We
added another external node as an outgroup for the phyloge-
netic tree, resulting in a tree with 101 external nodes. We

generated the trees 100 times independently for each a value.
For analyses of the partial trees, we randomly selected 20 exter-
nal nodes in addition to the outgroup node and extracted the
partial tree corresponding to these external nodes set from the
complete phylogenetic trees. Hereafter, we refer to the dataset
with a ¼ 0:25, 0.5, and 1.0 as Data0:25; Data0:5, and Data1,
respectively.

We also used the phylogenetic tree of primates downloaded
from TimeTree [37] for evaluation. We used the genus-level
phylogenetic tree and added one outgroup node, resulting in a
tree with 77 external nodes. First, we normalized the branch
lengths such that the maximum branch length was 1.0, and
then perturbed the branch lengths by adding
0:5ð1� logðuðe� 1Þ þ 1ÞÞ. We generated the branch length-per-
turbed trees 100 times independently. The partial trees were
generated in the same manner as implemented for the random
phylogenetic trees. We refer to the dataset as Datapri.

We also used the phylogenetic dataset of the carnivorous
Caryophyllales downloaded from http://dx.doi.org/10.5061/
dryad.vn730 [38]. This dataset contains 13 taxa, and we used the
1237 gene trees based on the CDS sequences that include all
taxa. We normalized the branch lengths of each gene tree such
that the maximum branch length was 1.0 and added one out-
group node. For analyses of the partial trees, we randomly se-
lected five external nodes in addition to the outgroup node. We
refer to the dataset as Dataca.

For the analysis of integrating trees, we randomly generated
tree shape comprising 50 external nodes using the rtree function
and determined each branch length with a ¼ 0:5 and then nor-
malized the branch length so that the maximum length is 1.0.
We duplicated the tree and referred to trees 1 and 2, hereafter.
Then, we randomly selected four external branches and set the
two branch lengths of trees 1 and 2 to 0.5 and 0.01, respectively.
We also set the other two branch lengths of trees 1 and 2 to 0.01
and 0.5, respectively. We regarded the four external nodes cor-
responding to the four external branches as the change nodes
between two trees. We generated the two tree pair dataset 1000
times independently.

We used a tree of Data0:5 for the analysis of integrating and
imputing missing distances from partial trees. We randomly
generated two partial trees from the tree so that both of the par-
tial trees include jLa\bj common external nodes. In this research,
we set jLa\bj to 80, 60, and 40 and imputed the missing distances
for each jLa\bj condition.

Results
Full node embeddings

We embedded the evolutionary distance matrix D, including the
internal nodes, with each embedding method, and evaluated
the performance of each method according to the MSE calcu-
lated between the actual evolutionary distance and the recon-
structed evolutionary distance based on the coordinate of the
embedded space. The mean MSE values for the dataset Data0:5

and Dataca of MDS, general hyperbolic embeddings (H1), and the
proposed hyperbolic embeddings (H2) for various embedding
dimensions M are shown in Table 1. The results for the dataset
Data0:25; Data1, and Datapri are provided in online supplemen-
tary material.

The mean MSE values of MDS were larger than those of H1
and H2 for all cases, and the hyperbolic space offered a better
representation of the phylogenetic trees. Although the mean
MSE value of H1 for Data0:5 was the smallest for M¼ 5, the
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values of H2 were the smallest for M � 10. In particular, the
mean MSE value of H2 for Data0:5 was less than one-tenth the
value of H1 for M¼ 30. The similar tendency that the mean MSE
value of H1 was smallest for M¼ 4 and the values of H2 were the
smallest for M � 6 were validated for Dataca.

We also investigated the angles (degrees) of any external
nodes i and j and their MRCA k (/ikj) for each embedding
method under various M values (Fig. 4). The dispersion of
angles of MDS and H1 were large, even when the dimension M
was increased. In contrast, all of the angles of H2 merged to
�90� in accordance with increasing M. The median angle of
H2 for M¼ 5 was over 100�, which had a gap to satisfy
Equation (2), explaining the larger MSE value of H2 than that
of H1 for M¼ 5.

Thus, the proposed hyperbolic embeddings can precisely
represent the phylogenetic tree, especially with large embed-
ding dimensions. In addition, our proposed embeddings offer
an advantage with respect to the angle, which will be useful for
analyses or machine learning using angle information.

Prediction of the MRCA

Based on the embeddings described in the subsection above, we
next evaluated the ability of each method to predict the MRCA
based on the distance-score and angle-score, respectively. We
calculated the distance-score and angle-score for the positive
and negative datasets (see Materials and methods section), and
evaluated the performance according to the AUC values of ROC
curves for each embedding method. The mean AUC values of
100 simulated phylogenetic trees with a ¼ 0:5 (Data0:5) and the
carnivorous Caryophyllales gene trees (Dataca) with distance-
score and angle-score are shown in Tables 2 and 3, respectively.

The AUC values of the proposed method (H2) were the high-
est compared with those of other embedding methods for all
dimensions M. In particular, our method could predict the
MRCA almost perfectly with M¼ 30 and M¼ 10 for Data0:5 and
Dataca, respectively. Interestingly, the AUC value of H2 were sig-
nificantly higher than that of H1, despite the fact that the MSE
for standard hyperbolic embeddings were better than that of
our embedding method with M¼ 30 and M¼ 10 for Data0:5 and
Dataca, respectively. These results imply that the proposed em-
bedding method maintains the integrity not only of distances
but also of the angles even when the dimensions of the embed-
dings are small. This tendency was consistent for other datasets
(see online supplementary material).

Table 1: Mean MSE values of full node embeddings for the datasets
Data0:5 (above panel) and Dataca (below panel) for each embedding
method (columns): Euclidean embeddings (MDS), general hyperbolic
embeddings (H1), and the proposed hyperbolic embeddings (H2).
The rows represent the dimensions of the embeddings.

M¼5 M¼ 10 M¼ 20 M¼ 30

MDS 1:4� 10�1 4:4� 10�2 2:3� 10�2 2:0� 10�2

H1 1:4� 10�2 4:3� 10�3 3:2� 10�3 3:2� 10�3

H2 2:3� 10�2 4:0� 10�3 5:6� 10�4 1:6� 10�4

M¼4 M¼ 6 M¼ 8 M¼ 10

MDS 2:9� 10�2 1:7� 10�2 1:5� 10�2 1:5� 10�2

H1 1:3� 10�2 7:2� 10�3 6:4� 10�3 6:3� 10�3

H2 1:9� 10�2 5:6� 10�3 2:0� 10�3 8:5� 10�4

Figure 4: angles (degrees) of two external nodes and their MRCA for the dataset

Data0:5 for each embedding method and each dimension.

Table 2: Mean AUC values for the ability to identify the MRCA based
on the distance-score for the datasets Data0:5 (above panel) and
Dataca (below panel) for each embedding method (columns). The
rows represent the dimensions of the embeddings.

M¼ 5 M¼ 10 M¼ 20 M¼ 30

MDS 0.75 0.82 0.84 0.84
H1 0.85 0.91 0.93 0.93
H2 0.91 0.95 0.97 0.98

M¼ 4 M¼ 6 M¼8 M¼ 10

MDS 0.77 0.83 0.86 0.86
H1 0.88 0.92 0.95 0.95
H2 0.94 0.94 0.95 0.97

The bold values represent the best results.

Table 3: Mean AUC values for the ability to identify the MRCA based
on the angle-score for the datasets Data0:5 (above panel) and Dataca

(below panel) for each embedding method (columns). The rows rep-
resent the dimensions of the embeddings.

M¼ 5 M¼ 10 M¼ 20 M¼ 30

MDS 0.62 0.71 0.78 0.79
H1 0.80 0.87 0.90 0.90
H2 0.91 0.95 0.97 0.99

M¼ 4 M¼ 6 M¼8 M¼ 10

MDS 0.67 0.74 0.78 0.79
H1 0.82 0.88 0.92 0.92
H2 0.94 0.94 0.95 0.98

The bold values represent the best results.
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External node embeddings and folding-in internal
nodes

In the previous analysis, we embedded all nodes, including the
internal nodes, of a phylogenetic tree simultaneously. Next, we
embedded the external nodes and then appended the internal
nodes onto the embedding space (Fig. 3A). The mean MSE val-
ues for the dataset Data0:5 and Dataca for each embedding
method are shown in Table 4.

Similar to the previous results, the mean MSE values of the
proposed embedding method were better than those of other
embeddings with folding-in of internal nodes, especially for
M¼ 30 for Data0:5. These results indicate that the proposed
embeddings can be trained to learn the appropriate space even
if the only information available is the evolutionary distance of
external nodes.

External node embeddings and folding-in internal
nodes of the partial tree

We further evaluated the performance of each embedding
method when the evolutionary distances of some nodes are
only partially known. As an example, we first embedded the ex-
ternal nodes and then appended the internal nodes of the par-
tial tree according to the evolutionary distances for the external
nodes included in the tree (Fig. 3B). Finally, we calculated the
MSE values for the evolutionary distance between the external
nodes that were not included in the tree and the internal nodes.
The mean MSE values for the dataset Data0:5 and Dataca for
each embedding method are shown in Table 5. Similar to the
previous results, the mean MSE values of the proposed embed-
dings were better than those of other embeddings, especially for
M¼ 30 for Data0:5. Thus, the proposed method can also effec-
tively embed nodes when there is missing data on the evolu-
tionary distances for some nodes. This approach can be useful
for analyses of phylogenetic trees with only partial external
nodes available.

Prediction of nearest-neighbor nodes in the partial tree

Based on the embeddings for the partial tree, we investigated
the ability to predict the nearest-neighbor node for an external
node that is not included in the partial tree. The prediction per-
formances of the different embedding methods were compared
by calculating the rank of the actual nearest-neighbor node for
the external nodes based on the respective geodesic distances.
The actual nearest-neighbor node can be determined from the

complete phylogenetic tree. The mean ranks of each method for
the dataset Data0:5 and Dataca are shown in Table 6, and the
results for other datasets are shown in online supplementary
material.

The mean ranks using embeddings based on hyperbolic
space (H1 and H2) were superior to those obtained using
Euclidean embeddings. Moreover, the mean ranks of the pro-
posed method demonstrated the best performance overall un-
der all conditions. In particular, the mean rank of our method
was close to 1 with M¼ 30 for Data0:5 and with M¼ 10 for Dataca.
Therefore, our approach would be effective for analyzing a par-
tial tree and assigning missing nodes.

Integration and embeddings of trees

By averaging distance, averaging the inner product based on the
general hyperbolic embeddings, and averaging the inner product
based on the proposed method, we integrated the distance ma-
trix of two trees and performed the eigendecomposition of each
inner product matrix. The distribution of the first, second, and
third smallest eigenvalues for the distance averaging approach
(H0), general hyperbolic inner product integrating approach (H1),
and the proposed distance based integrating approach (H2) are
shown in Fig. 5A and B. The distance averaging approach (H0)
showed one large negative eigenvalue. In contrast, the
approaches that calculate the mean of the inner product (H1 and
H2) showed two large negative eigenvalues in most cases.
Although the third smallest eigenvalues of H1 were near 0, these

Table 4: Mean MSE values of external node embeddings and folding-
in internal nodes for the datasets Data0:5 (above panel) and Dataca

(below panel) for each embedding method (columns). The rows rep-
resent the dimensions of the embeddings.

M¼5 M¼ 10 M¼ 20 M¼ 30

MDS 1:0� 10�1 4:2� 10�2 2:2� 10�2 2:0� 10�2

H1 1:4� 10�2 4:6� 10�3 3:6� 10�3 3:5� 10�3

H2 2:3� 10�2 4:0� 10�3 6:2� 10�4 2:3� 10�4

M¼4 M¼ 6 M¼ 8 M¼ 10

MDS 3:9� 10�2 2:4� 10�2 2:1� 10�2 2:0� 10�2

H1 1:6� 10�2 9:2� 10�3 8:4� 10�3 8:3� 10�3

H2 2:0� 10�2 6:3� 10�3 2:8� 10�3 1:9� 10�3

Table 5: Mean MSE values of external node embeddings and folding-
in internal nodes of the partial tree for the datasets Data0:5 (above
panel) and Dataca (below panel) for each embedding method (col-
umns). The rows represent the dimensions of the embeddings.

M¼5 M¼ 10 M¼ 20 M¼ 30

MDS 1:1� 10�1 8:7� 10�2 7:8� 10�2 8:0� 10�2

H1 2:0� 10�2 1:6� 10�2 1:6� 10�2 1:6� 10�2

H2 2:3� 10�2 8:3� 10�3 3:3� 10�3 3:0� 10�3

M¼4 M¼ 6 M¼ 8 M¼ 10

MDS 1:4� 10�1 1:3� 10�1 1:3� 10�1 1:2� 10�1

H1 3:7� 10�2 3:7� 10�2 3:8� 10�2 3:9� 10�2

H2 5:2� 10�2 3:5� 10�2 2:6� 10�2 2:4� 10�2

Table 6: Mean rank of predicting the true nearest-neighbor nodes in
the partial tree for external nodes not included the tree for the data-
sets Data0:5 (above panel) and Dataca (below panel). The rank is
based on the geodesic distances for each embedding method.

M¼ 5 M¼ 10 M¼ 20 M¼ 30

MDS 3.07 2.47 2.13 2.04
H1 1.75 1.52 1.47 1.46
H2 1.43 1.24 1.18 1.14

M¼ 4 M¼ 6 M¼8 M¼ 10

MDS 2.00 1.77 1.67 1.64
H1 1.40 1.27 1.22 1.21
H2 1.34 1.20 1.08 1.05

The bold values represent the best results.

Hyperbolic phylogenetic tree embeddings | 7

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpab006#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpab006#supplementary-data


values were negative in most cases (993/1000). In contrast, the
number of negative eigenvalues of H2 was two or less in all cases.
This result implies that the proposed approach will be more ef-
fective for representing in the pseudo-Euclidean space defined by
hxi; xjiM;K (see online supplementary material for the detailed dis-
cussion of the number of negative eigenvalues).

We also investigated the eigenvector of the second smallest
eigenvalue of the proposed method for the example tree pair

(Fig. 5C). The tree 1 has longer external branches corresponding
to the nodes 11 and 44, and the tree 2 has longer branches corre-
sponding to the nodes 7 and 38. The eigenvector of the second
smallest negative eigenvalue is shown in Fig. 5D. The result
implies that the absolute values of the eigenvector of the
change nodes are larger than the values of the remaining nodes.
We also applied our method for 1237 gene trees of the carnivo-
rous Caryophyllales and analyzed all gene trees’ pairs. The dis-
tance matrices of these trees are basically similar (the mean of
the correlation coefficient is about 0.93), and the second small
eigenvalues of the pairs of trees were positive in most cases. We
show an example pair of trees (Fig. 6A and B) and the eigenvec-
tor of the second small eigenvalue (Fig. 6C), of which the second
small eigenvalue is negatively large. The external branches of
Beta, MJM1652, and WPYJ are longer in the tree 1 (Fig. 6A), and
the branches of Spol, DrobinSFB, and Retr are longer in the tree

Figure 5: (A) the distributions of first, second, and third smallest eigenvalues

with general distance averaging approach (H0), the general hyperbolic based ap-

proach (H1), and the proposed approach (H2). The y-axis represents the value of

log 10ð�minðki ;0Þ þ 1Þ, where ki is the i-th smallest eigenvalue. (B) The same dis-

tributions of (A) are visualized for first, second, and third smallest eigenvalues

for visibility. (C) An example of a tree pair that have different branch lengths of

four external branches. In this example, the branches of the nodes 11 and 44 are

longer for tree 1, and the branches of the nodes 7 and 38 are longer for tree 2. (D)

The eigenvector of the second smallest eigenvalue for the example tree pair.

The eigenvector is shown in ascending order.

Figure 6: the gene trees named “cluster3190” (A) and “cluster4222” (B) in the orig-

inal data, respectively. (C) The eigenvector of the second smallest eigenvalue of

the above trees.
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2 (Fig. 6B) that is consistent with the tendency of the
eigenvector.

Then, we investigated whether we can predict the change
point between trees by using the absolute values of the eigen-
vector of the second smallest eigenvalue. We calculated the
AUC values for the simulation dataset of 1000 gene trees’ pairs.
The mean AUC value of H1 is about 0.981 and that of H2 is about
0.987 in comparison that the mean AUC value of H0 is about
0.574. This result demonstrated that the eigenvector of H1 and
H2 represents the difference between the tree pair. We also in-
vestigated the eigenvalues when we integrated K phylogenetic
trees with some change points. We confirmed that our ap-
proach showed K negative eigenvalues in most cases (see online
supplementary material). Thus, our approach has the potential
to represent both the common feature of multiple trees and the
difference of trees. Our results also suggest the importance of
appropriate integration, that is, averaging the inner product, in
comparison to just averaging the distance matrix for
embeddings.

Imputation of missing distances from partial trees

We integrated the distance matrix of the partial trees and im-
puted the missing distances by maximizing the second smallest
eigenvalue of Hð1Þ and Hð2Þ, respectively. Figure 7 shows the
comparison of the true evolutionary distances and the imputed
distances for each dataset (jLa\bj ¼ 80, 60, and 40) with Hð1Þ and
Hð2Þ based imputation. Compared with the MSE values before
optimization (0.071, 0.104, and 0.379 for jLa\bj ¼ 80, 60, and 40
datasets), the MSE values of Hð2Þ based imputation are reduced
significantly (0.002, 0.002, and 0.004). Therefore, our approach
can recover the missing distances precisely, especially for a
large distance. Those of Hð2Þ are slightly smaller than those of
Hð1Þ (0.007, 0.006, and 0.010), and Hð2Þ based method can estimate
more precisely, especially for a small distance.

Discussion

Although numerous algorithms for phylogenetic tree recon-
struction and phylogenetic analyses have been developed with
superior performance, there has been limited discussion of
these algorithms from the perspective of geometry. Our results
demonstrate that a geometric view has potential to provide
novel knowledge for rethinking and improving these algo-
rithms. Furthermore, our approach suggests that the arithmetic
mean of the exponential of the evolutionary distance is useful
for creating an ensemble of multiple gene trees. Recently, novel
kernels that can deal with indefinite inner products have been
developed in representation learning studies [39, 40]. The inner
product of Equation (10) is associated with these kernels, and
we plan to extend our phylogenetic approach by adopting these
techniques in future work.

The phylogenetic methods have contributed to various
researches, including differentiation, immunogenomics, and
cancer evolution. In the analysis of single-cell RNA-sequencing
data, the k-nearest neighbor (k-NN) graph is usually used to re-
construct cell lineages. Our method assumes the additivity of
the distance and cannot be applied for such a k-NN graph di-
rectly. Recently, a novel hyperbolic-based approach that learns
a tree structure first has been proposed [22], and our idea might
be useful for such approaches. Moreover, our research proposed
the importance of thinking of data-specific suitable distances
for representation learning and gave the chance to investigate
the reasonable distances for several biological data.

In conclusion, we here propose and validate a novel metric
for hyperbolic phylogenetic tree embeddings, which could pre-
cisely reconstruct evolutionary distance. Our method had a par-
ticular advantage over other embedding methods in that the
angles were consistent for any two external nodes and the node
of their MRCA. Moreover, our approach was shown to be useful
for predicting the MRCA and the nearest-neighbor node in a

Figure 7: comparison of the true evolutionary distances and the imputed distances for jLa\b j ¼ 80, 60, and 40 datasets with Hð1Þ based method (above) and Hð2Þ based

method (below).
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partial tree with missing nodes. Our approach was also shown
to be useful for integrating distance matrices of multiple trees.
Our results imply that our integration approach and the eigen-
decomposition of the integrated inner product matrix is effec-
tive for embedding integrated tree. In the hyperbolic geometry,
the negative eigenvalue and corresponding eigenvector will rep-
resent the temporal axis. In this case of integrating trees, the
smallest negative eigenvalue and corresponding eigenvector
will represent the common temporal axis of the trees, and the
second smallest negative eigenvalue and corresponding eigen-
vector will describe the time difference between trees. Besides,
we proposed an approach to impute missing evolutionary dis-
tances from partial trees by maximizing the second smallest ei-
genvalue of Hð2Þ. Thus, our “tree node space” based on the
evolutionary distance transformation and hyperbolic (or
pseudo-Euclidean) representation will be effectual for various
phylogenetic methods.

There are other geometric methods for phylogenetics that
represent multiple trees (“tree space”) [41], and such an ap-
proach is useful to analyze various properties of trees [42]. Our
results and these studies highlight the possibility of applying
“geometric-thinking” as an effective approach to the novel
“tree-thinking” approach. This is particularly relevant as evolu-
tionary analyses are expanding to different research fields be-
yond evolutionary inferences themselves, including
differentiation, immunogenomics, and cancer evolution, requir-
ing a novel phylogenetic strategy, and we will extend our ap-
proach to these analyses in future work.

Supplementary data

Supplementary data is available at Biology Methods and
Protocols online.

Data availability

The demo code is attached as a supplementary material in a
compiled jupyter notebook. The code used for analyses is avail-
able on GitHub at https://github.com/hmatsu1226/HyPhyTree.
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