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Abstract

The CDC25 protein phosphatases drive cell cycle advancement by activating cyclin-dependent protein kinases (CDKs).
Humans and mice encode three family members denoted CDC25A, -B and -C and genes encoding these family members
can be disrupted individually with minimal phenotypic consequences in adult mice. However, adult mice globally deleted
for all three phosphatases die within one week after Cdc25 disruption. A severe loss of absorptive villi due to a failure of
crypt epithelial cells to proliferate was observed in the small intestines of these mice. Because the Cdc25s were globally
deleted, the small intestinal phenotype and loss of animal viability could not be solely attributed to an intrinsic defect in the
inability of small intestinal stem and progenitor cells to divide. Here, we report the consequences of deleting different
combinations of Cdc25s specifically in intestinal epithelial cells. The phenotypes arising in these mice were then compared
with those arising in mice globally deleted for the Cdc25s and in mice treated with irinotecan, a chemotherapeutic agent
commonly used to treat colorectal cancer. We report that the phenotypes arising in mice globally deleted for the Cdc25s are
due to the failure of small intestinal stem and progenitor cells to proliferate and that blocking cell division by inhibiting the
cell cycle engine (through Cdc25 loss) versus by inducing DNA damage (via irinotecan) provokes a markedly different
response of small intestinal epithelial cells. Finally, we demonstrate that CDC25A and CDC25B but not CDC25C compensate
for each other to maintain the proliferative capacity of intestinal epithelial stem and progenitor cells.
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Introduction

The CDC25 phosphatases are critical components of the cell

cycle engine that function to drive cell cycle transitions by

dephosphorylating the CDKs [1–6]. We recently described a

genetic model that enables the cell division cycle to be acutely

halted in adult mice [7]. This was accomplished by the targeted

disruption of genes encoding the CDC25 family of protein

phosphatases. In this model, adult mice lacking two members of

the CDC25 family (CDC25B and CDC25C) were globally deleted

for the third family member (CDC25A) using transgenic mice

expressing a tamoxifen-driven Cre recombinase from the ubiqui-

tously expressed Rosa26 (R26) locus [8]. Despite the fact that the

CDC25s were deleted in all tissues of these triple knockout (TKO)

mice, the major phenotype observed is in the small intestine where

a loss of epithelial cell proliferation was accompanied by a

corresponding loss of absorptive villi and animals died within a

week after Cdc25A disruption. Despite the inhibition of cell

division, overall crypt architecture was maintained and strikingly,

neither apoptosis nor inflammation were observed to any

significant level in the small intestines of these animals.

Given that the epithelium of the adult mammalian small

intestine is in constant dialog with its underlying mesenchyme to

direct progenitor proliferation, lineage commitment, terminal

differentiation and ultimately cell death and given that Cre

expression and therefore Cdc25A deletion occurred in cells of the

underlying mesenchyme, the phenotypes observed in the small

intestines of TKO mice could not be solely attributed to an intrinsic

defect in the inability of small intestinal stem and progenitor cells

to divide. For example, loss of CDC25s in neutrophils could have

been responsible for the failure of inflammatory cells to infiltrate

the small intestinal crypts of TKO mice. Therefore, we specifically
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deleted the CDC25s in intestinal epithelial cells by way of a

tamoxifen-dependent Cre recombinase expressed from the murine

villin promoter [9]. In addition, we generated mice that can be

conditionally deleted for CDC25B. These mice were used to

address several issues relevant to the CDC25 family of protein

phosphatases and to the homeostasis of the small intestinal stem

cell niche including (1) how the small intestine responds when cell

division is blocked in epithelial cells but not in other cells and

tissues of the small intestine such as mesenchyme, muscle, blood

and endothelium; (2) how the small intestine responds to loss of

Figure 1. Targeted disruption of Cdc25B in mice. (A) Structure of targeting vector and chromosomal organization of Cdc25B locus before and
after Cre-mediated excision. The genomic organization of the mouse Cdc25B gene was disrupted by inserting into intron 1 the neomycin
phosphotransferase cDNA driven by the phosphoglycerine kinase promoter (pGK-neo) as a selectable marker. Exons are represented by black boxes.
The location of Hind III (H), Bam HI (B) and Kpn I (K) site is indicated and loxP sites are represented by yellow triangles. Sizes of upstream (3.3 kb) and
downstream (4.5 kb) homologous arms are indicated. Position of probes used for Southern blotting are shown. Red triangles depict the locations of
PCR primers used for genotyping. Abbreviations: +, wild type allele; R, recombinant allele; F, floxed allele; WT, wild type. (B–C) Southern blot analysis
demonstrating homologous recombination in the Cdc25B locus. ES cell genomic DNA was digested with Hind III (B) and Bam HI (C), and Southern
blotting was performed using the 59 and 39 probes shown in panel A. The genotype of each ES cell line is indicated. The location of size markers is
shown on the left. (D) Southern blot analysis demonstrating Cre-mediated recombination in the Cdc25B locus. ES cell clones containing the
recombinant allele were expanded and transiently transfected with a plasmid encoding Cre recombinase. Genomic DNA was digested with Kpn I (K),
and Southern blotting was performed using the internal probe shown in panel A. The genotype of each ES cell line is indicated. Location of size
markers is shown on left. (E) PCR analysis of mouse tail DNA. Mouse tail DNA was amplified with PCR primers depicted as red triangles in panel A. The
wild type (+) allele produced a 383 bp PCR product and floxed allele (F) produced a 433 bp PCR product. The genotype of each mouse is indicated.
The location of size markers is shown on the right.
doi:10.1371/journal.pone.0015561.g001

Disruption of CDC25s in Intestinal Epithelium

PLoS ONE | www.plosone.org 2 January 2011 | Volume 6 | Issue 1 | e15561



epithelial cell proliferation induced by Cdc25-disruption versus by

DNA damage (chemotherapy) (3) whether the failure to observe

apoptosis and inflammation in the small intestines of TKO mice

was due to the disruption of CDC25s in cells and tissues other than

intestinal epithelial cells and (4) which of the three CDC25 family

members are required to drive proliferation of intestinal epithelial

stem cells and progenitors.

Results

Disruption of Cdc25A in intestinal epithelial cells of adult
mice

Mice expressing a tamoxifen-dependent Cre recombinase

driven by the murine villin promoter (vil-Cre-ERT2) [9] were

employed to disrupt Cdc25s specifically in intestinal epithelial cells.

In these mice, administration of tamoxifen induces Cre-recombi-

nase activity exclusively in small and large intestinal epithelial cells

including stem cells. vil-Cre-ERT2 mice were crossed with mice

containing floxed alleles of Cdc25A [7] to generate mice containing

one floxed and one null allele of Cdc25A (vAf/2). Additional crosses

were carried out to generate mice containing one null and one

floxed allele of Cdc25A that were also disrupted for Cdc25B

(vAf/-BKO), Cdc25C (vAf/-CKO) or both Cdc25B and Cdc25C

(vAf/-BCKO). In addition, mice containing floxed alleles of Cdc25B

were generated and crossed with vil-Cre-ERT2 transgenic mice

to fgenerate mice with one null and one floxed allele of

Cdc25B (vBf/2). The strategy used for generating Cdc25B

conditional mice is shown in Fig. 1. Wild-type and Vil-Cre-ERT2

mice were used as controls throughout our studies.

vAf/- mice were bred to a Cre-inducible b-galactosidase reporter

line (R26R) [10] to enable deletion efficiencies at floxed loci to be

readily monitored. X-gal (5-bromo-4-chloro-3-indolyl-b-D-galac-

topyranoside) staining revealed efficient recombination when

tamoxifen was dosed at a concentration of 4 mg per 25 g body

weight for 5 consecutive days (Fig. 2A, B). X-gal staining was

observed exclusively in the epithelium of both the small and large

intestines demonstrating the specificity of the villin promoter for

these tissues (data not shown). The gross and histological

appearance of all organs, with the exception of intestines (see

below), was indistinguishable between tamoxifen-injected

vAf/-BKO and vAf/-BCKO and all other mice. The deletion

frequency (conversion of floxed to null allele) was ,40% in the

small and large intestines (Fig. 2C). However, this is likely an

underestimate given the presence of DNA derived from non-

epithelial cell types (muscle, blood and mesenchyme) that do not

express Cre recombinase.

Significant shortening of small intestines in vABKO and
vTKO mice

Mice globally deleted for all three CDC25s exhibit an ,20%

reduction in body weight within one week of the induction of

global Cre expression [7]. This weight loss was also associated with

significant mortality. To determine the consequences of deleting

Cdc25A specifically in intestinal epithelium (in a background of

Figure 2. Specific deletion of Cdc25A in intestinal epithelial cells. (A, B) vR26R;Af/2 and vAf/2 mice were injected with tamoxifen for 5
consecutive days and then sacrificed 3 days after the final injection. Frozen sections of small intestines were prepared and stained with X-gal to
visualize Cre-mediated deletion frequencies. Scale bar: 200 mm. (C) Genomic DNA isolated from the small and large intestines of vAf/2 mice 3 days
after the final tamoxifen-injection was digested with Bst XI followed by Southern blotting. Deletion frequencies are shown below the each lane. (D)
Mice were weighed prior to injection and 3 days after the final tamoxifen injection. Data is presented as mean +/2 standard error of the mean (SEM).
Asterisks indicate significantly different from WT mice injected with tamoxifen as determined by a Student’s t-test. *, P,0.05; **, P,0.01;
***, P,0.001. The actual P-values are 0.86 (vil-Cre-ERT2), 0.15 (vAKO), 0.87 (vBKO), 0.00007 (vABKO), 0.11(vACKO) and 0.0004 (vTKO).
doi:10.1371/journal.pone.0015561.g002

Disruption of CDC25s in Intestinal Epithelium

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e15561



complete knockouts for Cdc25B and Cdc25C), the weights of vTKO

mice were compared prior to injection (day 1) and prior to sacrifice

on day 8 (Fig. 2D). A significant decrease in weight (17%) and

increased mortality (5 of 11 vTKO mice died by day 8) were also

observed in these mice. Interestingly, a similar weight loss was

observed when only two family members (Cdc25A and Cdc25B)

were disrupted in intestinal epithelium (vABKO mice) and vABKO

mice also showed increased mortality by day 8 (2 of 5 vABKO mice

died by day 8). In contrast, mice disrupted for Cdc25A alone,

Cdc25B alone, or both Cdc25A and Cdc25C were not significantly

different from control littermates (WT and vil-Cre-ERT2; Fig. 2D).

These results indicate that small intestinal homeostasis in mice

requires CDC25A or CDC25B but not CDC25C.

A significant shortening of the small intestines was measured in

vABKO (44%) and vTKO (32%) mice relative to WT mice within

one week of the first tamoxifen injection (Fig. 3A). This phenotype

was not a condition existing prior to tamoxifen injection, as small

intestinal lengths of vAf/2BKO and vAf/2BCKO mice were not

different from controls (Fig. 3A). In contrast, the length of the

small intestine did not change significantly after tamoxifen

injection of vBf/2 or vAf/2CKO animals (Fig. 3A). A mild decrease

(,11%) in small intestinal length was observed in animals

conditionally deleted for Cdc25A (vAKO). As additional controls,

wild type littermates (WT) and vil-Cre-ERT2 transgenic mice were

also injected with tamoxifen and showed no significant differences

in small intestinal length (Fig. 3A). We noted that the frequency of

Cre-mediated deletion of the floxed Cdc25A allele in the small

intestines of tamoxifen-treated mice was comparable for each

genotype (compare Fig. 2C and Fig. 4). Since the villin promoter

expresses Cre in both small and large intestinal epithelium, we also

measured the lengths of the large intestines of mice before and

after tamoxifen treatment. Lengths of large intestines were

significantly shorter in both vABKO (37% decrease) and vTKO

(27% decrease) mice (Fig. 5). Mice doubly deleted for both Cdc25A

and Cdc25C (vACKO) also showed a modest (15%) but significant (p

= 0.04) reduction in large intestinal length.

Small intestinal phenotypes in tamoxifen-treated mice
Disruption of both Cdc25A and Cdc25B (vABKO) or all three

Cdc25s (vTKO) in intestinal epithelium also caused a significant loss

Figure 3. Loss of homeostasis in small intestines of vABKO and vTKO mice. (A) Mice were injected with tamoxifen for five consecutive days
and then sacrificed 3 days after the final injection. Small intestines were isolated and length determinations were made. Small intestine lengths were
normalized to body weights, which were determined prior to the first tamoxifen-injection. Data is presented as mean +/2 SEM. Asterisk (*) indicates
significantly different after tamoxifen injection as determined by a Student’s t-test. *, P,0.05; **, P,0.01; ***, P,0.001. The actual P-values are 0.38
(WT), 0.76 (vil-Cre-ERT2), 0.003 (vAKO), 0.31 (vBKO), 0.002 (vABKO), 0.46 (vACKO) and 0.004 (vTKO). The small intestinal lengths of vAKO, vABKO and vTKO
mice were significantly different from WT mice injected with tamoxifen as determined by a Student’s t-test. *, P,0.05; **, P,0.01; ***, P,0.001.
Actual P-values are 0.40 (vil-Cre-ERT2), 0.03 (vAKO), 0.10 (vBKO), 0.00006 (vABKO), 0.36 (vACKO) and 0.0006 (vTKO). (B) Duodenums isolated from mice
treated as described in A were photographed under a dissection microscope. Scale bar: 0.5 mm. (C) Significant shortening of villi in small intestines of
vABKO and vTKO mice. Length of individual villi shown in panel B were measured (30 villi per mouse). Data is presented as mean +/2 SEM. Asterisk (*)
indicates significantly different after tamoxifen injection as determined by a Student’s t-test. P-values are 0.00008 (vABKO) and 0.007 (vTKO). Villi
lengths of vil-Cre-ERT2, vABKO and vTKO mice were significantly different from WT mice injected with tamoxifen as determined by a Student’s t-test.
*, P,0.05; **, P,0.01; ***, P,0.001. Actual P-values are 0.001 (vil-Cre-ERT2), 0.27 (vAKO), 0.45 (vBKO), 0.0005 (vABKO), 0.25 (ACKO) and 0.03 (vTKO).
doi:10.1371/journal.pone.0015561.g003
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of small intestinal villus height (duodenum is shown in Fig. 3B with

corresponding quantification in Fig. 3C). Shortened villus height

was also observed in the jejunums and ileums of these mice (data

not shown). In contrast, disruption of a single Cdc25 family

member or both Cdc25A and Cdc25C in intestinal epithelium did

not affect small intestinal villus height. Taken together, these

results demonstrate that loss of Cdc25C does not contribute to the

phenotypes observed in TKO mice. Furthermore, the decrease in

villus height measured in tamoxifen-treated vAf/2BCKO mice

(45%) was similar to that observed in mice globally deleted for all

three Cdc25s (47%) [7]. These results argue that the phenotypes

observed in the small intestines of mice globally deleted for all

three Cdc25s is due to defects in intestinal epithelial cells and that

loss of the Cdc25s in neighboring mesenchyme does not contribute

to the observed phenotypes.

Histological examination of small intestines also revealed loss of

epithelial cells within crypts of vABKO and vTKO mice (Fig. 6A).

Cellular composition of crypts was quantified by counting the

number of crypt epithelial cells and Paneth cells (Fig. 6B). The

number of epithelial cells/crypt was greatly diminished in vABKO

(57% decrease) and vTKO (46% decrease) mice. Despite the

reduced cellularity of crypts in these mice, individual epithelial

cells appeared to undergo a process of hypertrophy, thus

accounting for the maintenance of overall crypt structure observed

in vABKO and vTKO mice.

The number of mature Paneth cells/crypt was similar in vABKO

and vTKO mice relative to controls suggesting that loss of CDC25s

impacted replicating progenitors rather than fully differentiated

Paneth cells (Fig. 6B). Indeed, mitotic cells were nearly absent in

vABKO and vTKO mice (Fig. 7C). In addition, BrdU-labeling

experiments revealed a significant decrease of S-phase cells in the

crypts of vABKO and vTKO mice (Fig. 7A). We reported previously

that intestinal epithelial cells arrest in the G1- and G2- phases of

the cell division cycle upon global deletion of the CDC25s (17).

The CDKs are regulated by reversible phosphorylation and

phosphorylation of tyrosine 15 (phospho-Tyr-15) maintains both

CDK1 and CDK2 in an inactive state until this residue is

dephosphorylated by the CDC25s. We predicted that levels of

phospho-Tyr-15 would be elevated in crypt epithelial cells lacking

the CDC25s. As seen in Fig. 7E, levels of phospho-Tyr-15 Cdk1

are greatly elevated in the crypts of vTKO mice compared with WT

mice. This observation is consistent with the loss of S- (Fig. 7A)

and M-phase (Fig. 7C) cells in vTKO mice.

Cell death did not appear to play a role in the crypt epithelial

cell loss of vABKO and vTKO mice as only occasional apoptotic cells

(,1 apoptotic cell per 4 or 5 crypts) were observed in the crypts of

these mice (Fig. 7B and 7D). In contrast, a higher level of apoptosis

(up to 6% of total epithelial cells/crypt) was observed in

tamoxifen-treated vil-Cre-ERT2, vAf/2, vBf/2 and vAf/2CKO mice.

Apoptosis was not observed in tamoxifen-treated WT mice. These

results indicate that apoptosis is caused by Cre expression in

proliferating epithelium. This conclusion is supported by the

observed low level of apoptosis in small intestinal crypts of vABKO

and vTKO mice where proliferation was halted (Fig. 7A).

Enhanced Wnt signaling and differentiation in intestinal
epithelial cells disrupted for Cdc25 family members

Acute disruption of cell proliferation in small intestinal crypts,

due to global CDC25 loss, leads to enhanced Wnt-signaling and

concomitant differentiation of small intestinal epithelial cell

progenitors along multiple lineages [7]. Thus, the presence of

nuclear beta-catenin was monitored to determine if Wnt signaling

was also enhanced when Cdc25s were specifically disrupted in

intestinal epithelium. As seen in Fig. 8(A, B) significantly more

epithelial cells stained positive for nuclear b-catenin in both vABKO

(middle panel) and vTKO (right panel) mice compared with those

in vil-Cre-ERT2 (left panel) mice.

Canonical Wnt-signaling has many functions in the small

intestines including maintaining crypt structure [11,12], promot-

ing differentiation of progenitors along the secretory lineage [13–

15] and maintaining the self-renewal capacity of stem cells [16–

18]. Histologic sections of vABKO and vTKO small intestinal crypts

also showed extensive premature differentiation along multiple

epithelial lineages. PAS/alcian blue-stained sections of vABKO and

vTKO small intestines did not reveal Crypt Base Columnar (CBC)

cells. Instead, cells with scattered, small PAS/alcian blue-positive

apical granules were observed, consistent with the conclusion that

CBC cells differentiated along the Paneth cell lineage under these

conditions (Fig. 8C).

Electron microscopic analysis confirmed the effects of epithelial

cell cycle arrest on differentiation (Fig. 9). Both mature and

immature Paneth cells (the latter contains much smaller granules

than mature cells) were present in crypt bases of vABKO (Fig. 9B, C)

Figure 4. Tamoxifen injection induced efficient recombination
within Cdc25A and Cdc25B loci. (A) Genomic DNA isolated from the
small and large intestines of tamoxifen-treated mice were assessed for
Cre-mediated excision by Southern blotting. Deletion frequencies are
shown below each lane and were determined by measuring band
intensities using a Molecular Dynamics Storm imager. (B) Total RNA
isolated from the small intestine (jejunum) of tamoxifen-treated WT and
vBf/2 mice was reverse-transcribed into cDNA. qRT-PCR was used to
determine relative amounts of Cdc25B mRNA. The data is presented as
mean +/2 SEM. Asterisk (*) indicates significantly different from WT, P
= 0.012 by Student’s t-test. Note that vBf/2 mice are generated by
crossing Cdc25B null mice [26] with Cdc25B conditional mice. The PCR
primers detect transcript arising from the null allele but not the deleted
floxed allele. Thus, a 50% decrease in relative expression indicates
complete loss of Cdc25B expression.
doi:10.1371/journal.pone.0015561.g004
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and vTKO (Fig. 9D, E). CBC cells were not readily identified in

crypts of these mice and were replaced instead by immature Paneth

cells. These immature Paneth cells were not readily apparent in H&

E stained sections due to the small size of granules (Fig. 6) but were

readily observed upon staining with Periodic Acid Schiff/alcian blue

(Fig. 8C) or by EM (Fig. 9). Taken together, these results confirm the

observation that loss of epithelial cell proliferation causes premature

differentiation of CBC cells into Paneth cells.

Response of intestinal epithelial cells to chemotherapy
versus Cdc25 deletion

Blocking CDC25 function directly inhibits cell division by

preventing activation of the cell cycle engine. In contrast, radiation

and chemotherapy, current mainstays of cancer treatment, inhibit

cell division indirectly by inducing DNA damage. Our hypothesis

was that the effects of directly blocking cell cycle would be less

damaging to the intestinal mucosa. Therefore, we directly compared

the intestinal mucosa of mice with CDC25 inactivation to mice

treated with the topoisomerase I inhibitor irinotecan, which induces

DNA damage thereby leading to cell cycle arrest [19]. Irinotecan

was chosen for this comparison as it is clinically effective against

several human cancers, most notably colorectal cancer [20,21].

However, mucositis is a frequent side effect of this drug [22].

A profound loss of proliferation was observed in the small

intestines of irinotecan-treated mice (Fig. 10A). The intestinal

mucosa in irinotecan-treated mice showed multiple features of

damage that were quite distinct from the mucosa of TKO mice:

i) loss of crypts (Fig. 10B), ii) increased apoptosis in the crypts

(Fig. 10 (D,E,F)), iii) lack of premature enterocytic differentiation

in the crypts (Fig. 10G), iv) loss of villus goblet cells (Fig. 10H),

and v) increase in acute inflammatory cells (Fig. 10I). Taken

together these findings demonstrate that directly blocking the

cell division through CDC25 loss is less damaging to the

intestinal mucosa than is blocking cell division by inducing DNA

damage with chemotherapy. Note that inflammation was not

observed in TKO mice where CDC25 loss theoretically occurs in

all cells and tissues of the mouse (including inflammatory cells)

or in vTKO mice where CDC25 loss is restricted to intestinal

epithelium (Fig. 10I and data not shown). Thus, failure to

observe inflammation in TKO mice cannot be attributed to

an intrinsic proliferative defect in the inflammatory cells

themselves.

Discussion

Here we describe a genetic model that enables the cell division

cycle to be acutely halted in the intestinal epithelium of adult mice.

This was accomplished by the targeted disruption of the CDC25

family of protein phosphatases using vil-Cre-ERT2 mice, which

facilitate inducible disruption of the Cdc25s in epithelial cells but

not mesenchymal cells or other cells comprising the stem cell

niche. Current approaches to induce cell cycle arrest in the

intestine include radiation, chemotherapy or dextran sodium

sulfate-treatment. These treatments are suboptimal due to the

additional deleterious effects that they impose on the intestinal

epithelium such as DNA damage and inflammation.

The response of the small intestine to the loss of epithelial cell

proliferation is markedly distinct depending on how cell division is

blocked. Chemotherapy and radiation indirectly inhibit cell

division by inducing DNA damage. In contrast, blocking Cdc25

function inhibits cell division directly by preventing activation of

the cell cycle engine. In the latter case, Wnt-signaling was

enhanced, apoptosis was not induced and both crypt number and

structure were maintained. Importantly, the inflammatory re-

sponse was significantly milder in this model. This is in stark

contrast to irinotecan treatment, which failed to induce Wnt-

Figure 5. Significant shortening of large intestine of vABKO and vTKO mice. Mice were injected with tamoxifen for five consecutive days and
then sacrificed 3 days after the final injection. Large intestines were isolated and length determinations were made. Large intestine lengths were
normalized to body weights, which were determined prior to the first tamoxifen-injection. Data is presented as mean +/2 SEM. Asterisks indicate
significantly different after tamoxifen injection as determined by a Student’s t-test. P-values are 0.059 (WT), 0.32 (vil-Cre-ERT2), 0.020 (vAKO), 0.27
(vBKO), 0.0009 (vABKO), 0.12 (vACKO) and 0.003 (vTKO). Large intestinal lengths of vABKO, vACKO and vTKO mice were significantly different from WT
mice injected with tamoxifen as determined by a Student’s t-test. P-values are 0.94 (vil-Cre-ERT2), 0.82 (vAKO), 0.30 (vBKO), 0.00034 (vABKO), 0.041
(vACKO) and 0.0077 (vTKO).
doi:10.1371/journal.pone.0015561.g005
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signaling and induced an apoptotic response, likely accounting for

the severe crypt loss in this model. Furthermore, goblet cells were

lost in irinotecan-treated mice and a robust inflammatory response

was observed in the intestines of these animals. Another important

conclusion that can be drawn from these studies is that the lack of

inflammation observed in the small intestines of the ROSA26-cre

model (TKO mice) is not a consequence of functional impairment

of inflammatory cells due to CDC25 loss. If this were the case,

neutrophil infiltration should have been observed in the intestines

of vTKO mice where CDC25 loss was restricted to intestinal

epithelial cells (Fig. 10I and data not shown for vTKO). These

results indicate that the inflammation observed in the small

intestines of irinotecan-treated mice is a response to the DNA

damage induced by topoisomerase I inhibition.

Despite the development of molecularly targeted therapies,

radiation and cytotoxic chemotherapies remain mainstays of

cancer treatment. These treatments induce cell cycle arrest and

apoptosis of crypt epithelial cells leading to an inflammatory

response and in some cases debilitating mucositis in treated

patients. The development of novel therapeutic strategies capable

of inducing cell cycle arrest in the absence of the accompanying

dose-limiting toxicities associated with radiation and chemother-

apy would be great advance in cancer treatment. Efforts are

currently underway to develop Cdc25 inhibitors for cancer

treatment. The cytotoxicity of Cdc25 inhibition needs to be

assessed before such inhibitors can proceed to the clinic. The

targeted gene knockout studies reported here support the

conclusion that the development of therapeutics that impair cell

division by inhibiting, but not fully blocking, key regulators of the

cell cycle machinery (CDC25s) may have fewer deleterious GI

side-effects than chemotherapeutic agents that block cell division

by inducing DNA damage. Interestingly CDC25A and CDC25B

but not CDC25C are overproduced in several human tumors and

their overproduction correlates with poor clinical outcome [23].

Thus, CDC25-inhibitors targeting either CDC25A or Cdc25B

may have the useful property of exhibiting anti-tumor activity in

those cancers overproducing these phosphatases without inducing

the deleterious GI side effects associated with radiation and

chemotherapy.

The phenotypes arising in mice deleted for all three family

members in intestinal epithelium (vTKO mice) were consistent with

those observed in mice globally deleted for all three family

members (TKO mice) using Rosa-CreERT mice [7]. The phenotype

observed in both cases was a profound cessation of proliferation of

small intestinal epithelial stem cells and progenitors accompanied

by hypoplastic crypts, shortened villi, an overall shortening of

small intestinal length and ultimately animal death. These results

allow us to conclude that mice globally deleted for the Cdc25s die

due to the loss of proliferation of intestinal epithelial cells and that

the loss of Cdc25s in other cell types and tissues of the intestine

including mesenchyme, muscle, blood and endothelium does not

contribute significantly to the death observed in TKO mice [7].

Furthermore, this data demonstrates that enhanced Wnt signaling

observed in these mice is a compensatory response to the loss of

intestinal epithelial cell proliferation. Finally, this study demon-

strates that loss of only two family members (Cdc25A and Cdc25B) is

sufficient to block proliferation of intestinal epithelial cells. Loss of

Cdc25C alone or in combination with loss of either Cdc25A or

Cdc25B had no effect on intestinal homeostasis or animal viability,

even though Cdc25C expression is enriched in small intestinal

crypts [7]. Thus, CDC25A and CDC25B drive proliferation of

intestinal stem and progenitor cells and loss of one can be

compensated for by the other.

How then does CDC25C contribute to the cell division cycle?

Targeted disruption of Cdc25C in mice has failed to reveal unique

or compensatory functions for this family member under steady-

state conditions. Furthermore, livers from Cdc25C knock-out mice

regenerate in a manner that is indistinguishable from livers of

control mice after a partial hepatectomy (data not shown). Like

CDC25A and CDC25B, CDC25C is regulated by protein-protein

interactions, intracellular shuttling, proteolysis and reversible

phosphorylation [24]. CDC25C has the lowest intrinsic phospha-

tase activity of the family but is potently activated during mitosis

by phosphorylation. Data amassed over the past 20 years support

a mitotic function for CDC25C although one study demonstrated

Figure 6. Response of crypt epithelial cells to loss of CDC25s.
(A) Mice were treated with tamoxifen for five consecutive days and
sacrificed 3 days after the final injection. Small intestines were isolated
and fixed. 5 mm tissue sections were prepared and stained with
Hematoxylin and Eosin. Arrow heads indicate Paneth cells. Scale bar:
0.5 mm. (B) Crypts within the proximal portion of the small intestine of
tamoxifen treated mice were examined for epithelial cells and Paneth
cells. Areas containing Brunner’s gland were excluded from analysis.
Twenty crypts were counted per mouse and three mice of each genotype
were evaluated. Similar patterns were observed in mid and distal portions
of the small intestine (data not shown). Data is presented as mean +/2
SEM. Asterisk (*) indicates significantly different from WT mice as
determined by a Student’s t-test (total epithelial cells). *, P,0.05;
**, P,0.01; ***, P,0.001. Actual P-values are 0.41 (vil-Cre-ERT2), 0.21
(vAKO), 0.23 (vBKO), 0.002 (vABKO), 0.15 (ACKO) and 0.0007 (vTKO). vBKO
mice have slightly more mature Paneth cells per crypt compared to WT
mice as determined by a Student’s t-test. P-values are 0.52 (vil-Cre-ERT2),
0.77 (vAKO), 0.044 (vBKO), 0.28 (vABKO), 0.076 (ACKO) and 0.098 (vTKO).
doi:10.1371/journal.pone.0015561.g006
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Figure 7. Proliferation and apoptosis in crypts of Cdc25-disrupted mice. (A) Mice were injected with tamoxifen for five consecutive days and
then sacrificed 3 days after the final injection. One hour prior to sacrifice, mice were injected with BrdU. Intestines were isolated, and sections were
stained with BrdU antibody (brown) and counterstained with hematoxylin (blue). Scale bar: 20 mm. (B) Mice were injected with tamoxifen for five
consecutive days and were sacrificed 3 days after last tamoxifen injection. Intestines were isolated and sections were stained for cleaved caspase-3. 3,
39-diaminobenzidine (DAB, brown) was used as a substrate, and sections were counter-stained with hematoxylin. Arrows indicate cells at the tip of
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that cells deficient in CDC25C arrest at the G1/S-border [25].

Perhaps CDC25C provides a non-essential feed-forward function

that serves to accelerate progression from prophase into

metaphase and that the effects of its loss cannot be detected

within the context of a whole organism.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of Washington University (Animal Welfare Assur-

ance & Accreditation Number: A33381-01).

Mice
Generation of mice globally deleted for all three Cdc25s (TKO)

and methods used to generate and validate Cdc25B conditional

mice as well as methods used for Quantitative RT-PCR; Southern

blotting; histology; Transmission Electron Microscopy; immuno-

histochemistry; and measurements of GI tract, crypt and villi can

be found in Supplemental Material and in Lee et al. [7]. Mice

disrupted for Cdc25A [7], Cdc25B [26]; Cdc25C [27] or doubly

deleted for Cdc25B and Cdc25C [28] have been described. All mice

were of the strain background C57Bl/6;129X1SvJ. Recombinant

DNA research followed the NIH guidelines for research involving

recombinant DNA molecules.

Construction of the Cdc25B targeting vector
A 4 kb Bgl II genomic DNA fragment containing exons 1 and 2

of mouse Cdc25B was inserted into the Bam HI site of pBluescript

SK(+) (Stratagene) to generate pBSK-m25B/B4. Next, an Nhe I

genomic fragment of Cdc25B containing 7 kb of sequence

upstream of exon 1 was inserted into the Nhe I/Xba I site of

pBSK-m25B/B4 to generate pBSK-25B/BN. The 59 homology

arm containing exon 1 as well as sequences 59 and 39 of exon 1 was

isolated as a 3.3 kb fragment by digestion of pBSK-25B/BN with

Avr II. PCR was employed to amplify DNA encoding Cdc25B

from mouse 129/SvJ genomic DNA. The first PCR reaction

utilized primers 59-CTAGTCCTAGGATCACCTCTCCGT-39

and 59-GCTGACCACTGACCACAAGG-39 to amplify 6.9 kb of

Cdc25B genomic DNA beginning within intron 1 and extending

into intron 14. The second PCR reaction utilized primers 59-

CCACCCTAGGCTATCTTTGC-39 and 59-CCTAGGAAAT-

GAGACTCATAC-39 to amplify 4.5 kb of Cdc25B genomic DNA

beginning within intron 14 and extending to noncoding sequences

downstream of exon 16. PCR products were inserted into the

Topo TA vector (Invitrogen). p1339 (Genbank Accession #
AF335419) was used to assemble the targeting vector. p1339

contains a PGK-NEO cassette (phosphoglycerate kinase promoter

driving expression of neomycin phosphotransferase) flanked by 2

loxP sites. p1339 was modified by placing an additional loxP site in

Bam HI/Sac I digested p1339 to create p1339(3loxP). The 3.3kb

59 homologous arm was isolated as an Avr II fragment and cloned

into Eco RV digested p1339(3loxP). The 6.9 Kb fragment was

isolated as an Spe I/Eco RV fragment and inserted into Bam HI

digested p1339(3loxP). The 4.5kb 39 homologous arm was isolated

as an Avr II fragment and cloned into Sal I digested p1339(3loxP).

Generation of mice harboring the Cdc25B mutation
SCC10 ES cells (Siteman Cancer Center at Washington

University School of Medicine) were electroporated with

linearized targeting vector and selected with Geneticin (G418;

Invitrogen) using established protocols developed in the Siteman

Cancer Center Murine Embryonic Stem Cell Core (available

online http://escore.im.wustl.edu). A total of 142 G418-resistant

ES cell clones were analyzed for homologous recombination.

Genomic DNA was digested with Hind III and Bam HI followed

by Southern blotting with the 59 and 39 probes, respectively

(shown in Fig. 1A). Four clones were found to be positive by

Southern blotting. ES cell clones containing the recombinant allele

were expanded and transiently transfected with a plasmid

encoding Cre recombinase under the control of the CMV

promoter to remove the pGK-NEO cassette. To isolate ES cell

clones containing a Cdc25B floxed allele and lacking the pGK-

NEO cassette, genomic DNA was digested with Kpn I and

Southern blotting was performed with the internal probe shown in

Fig.1A. ES cell clones that were identified to have a floxed allele

were karyotyped and microinjected into C57BL/6 blastocysts,

which were subsequently implanted into the uteri of pseudopreg-

nant C57BL/6 X C3HF1 foster mothers. Male chimeras selected

by percentage of agouti color were mated to C57BL/6 females.

Germ line transmission was determined by agouti coat color. F1

animals were tested for the targeted Cdc25B allele by South-

ern blotting and PCR analysis of tail DNA. PCR analysis

was performed with two primers (59-TGGTCCAGCTGCAC-

TAGAAAG-39 and 59-CTTGAGCTTTTGGAGGCTCAC-39).

The sizes of WT and floxed alleles were 383 bp and 433 bp,

respectively.

Quantitative RT-PCR (qRT-PCR)
To determine the efficiency of Cre-mediated recombination at

Cdc25B locus, total RNA was isolated from the jejunums of

tamoxifen-injected animals using Trizol (Invitrogen) and RNeasy

(Qiagen). The RNA was reverse-transcribed using Superscript III

and random primers (Invitrogen). cDNA from the small intestine

of wild type mice was also amplified as a control. cDNA was

mixed with Brilliant II SYBR Green QPCR master mix

(Stratagene) along with the Cdc25B specific primer set (Forward:

59-TCCAGGGAGAGAAGGTGTCT-39, Reverse: 59-TGTCC-

ACAAATCCGTCATCT-39). Each PCR reaction was per-

formed in duplicate using an MX3005P thermocycler (Strata-

gene). For normalization, cDNA encoding 18s rRNA was

amplified with the primer set (Forward: 59-CATTCGAACG-

TCTGCCCTATC-39, Reverse: 59-CCTGCTGCCTTCCTTG-

villi, which stain positive for cleaved caspase-3. Scale bar: 0.1 mm. (C–D) Crypts within the proximal portion of the small intestine of tamoxifen
treated mice were examined for mitotic cells (presence of mitotic figures) (C) and apoptotic cells (presence of fragmented nuclei) (D). Areas
containing Brunner’s gland were excluded from analysis. Twenty crypts were counted per mouse and three mice of each genotype were evaluated.
Similar patterns were observed in mid and distal portions of the small intestine (data not shown). Data is presented as mean +/2 SEM. Asterisks in
panel C indicate significantly different from WT mice as determined by a Student’s t-test (M-phase cells). *, P,0.05; **, P,0.01; ***, P,0.001. Actual P-
values are 0.22 (vil-Cre-ERT2), 0.045 (vAKO), 0.16 (vBKO), 0.00056 (vABKO), 0.17 (ACKO) and 0.00055 (vTKO). Asterisks in panel D indicate significantly
different number of apoptotic cells from WT mice as determined by a Student’s t-test. P-values are 0.48 (vAKO), 0.33 (vBKO), 0.0011 (vABKO), 0.064
(ACKO) and 0.0010 (vTKO). (E) Mice were injected with tamoxifen as described in A and small intestines were isolated, sectioned and stained for
inactive Cdk1 (phosphorylated on Tyr-15, brown) and counterstained with hematoxylin (blue). Arrows indicate epithelial cells positively stained with
the phospho-Tyr 15 CDK1 antibody. Scale bar: 20 mm.
doi:10.1371/journal.pone.0015561.g007
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GA-39) and cDNA was diluted at 1:1000 ratio and used as

template.

Genotyping by Southern blot analysis and PCR
Mice were euthanized 6 or 7 days post the first tamoxifen-

injection, and organs were isolated and lysed overnight in RNE

buffer (100 mM NaCl, 10 mM Tris pH 8.0, 25 mM EDTA

pH 8.0, 0.5% SDS and 0.1 mg/ml Proteinase K). Genomic DNA

was isolated by phenol/chloroform extraction and ethanol

precipitation. DNA was digested with Bst XI, separated on an

agarose gel and transferred to a nylon membrane. The primers

used to make the probes for Southern blotting (Fig. 1A–D) were as

follows 59 Probe: Forward: 59GTTGTG AGCTGCCATGTG-

GAT and Reverse: 59TGCAATCCTACCTTTGTGACG; Inter-

nal probe: Forward 59CGAGTGTGCTCTATGCGACTT and

Reverse 59GTCTTCTCT GGTTTGACTGGT and 39 Probe:

Forward 59GTAGATAGAACAATG ATCGTCG and Reverse

59CTTGAGCTTTTGGAGGCTCAC. Primers used for PCR

analysis (Fig. 1E) include Forward: 59TGGTCCAGCTGCAC-

TAGAAAG and Reverse: 59CTTGAGCTTTTGGAGGCT-

CAC.

vil-Cre-ERT2 mice and tamoxifen administration
Mouse lines were maintained in pathogen-free conditions in the

animal facility of Washington University School of Medicine. The

Animal Studies Committee at Washington University approved all

animal procedures. vil-Cre-ERT2 mice have been described [9].

Tamoxifen (Sigma Chemical Co.) was dissolved in sunflower seed

oil at a concentration of 10 mg/ml by sonication. Mice were

injected IP at 4 mg per 25 g body weight once per day for five

Figure 8. Enhanced Wnt-signaling and differentiation of CBC
cells in vABKO and vTKO mice. (A) Tissue sections of small intestines
prepared from Vil-Cre-ERT2 (left panel), vABKO (middle panel) and vTKO
(right panel) mice were stained with antibodies specific for beta-catenin
(green). Nuclei were stained with hematoxylin (blue). Green hatched
lines outline nuclei. Scale bar: 20 mm. (B) Quantitation of nuclear beta-
catenin staining is shown in A. Data is presented as mean +/2 SEM.
Asterisks in panel B indicate significantly different from vil-Cre-ERT2 mice
as determined by a Student’s t-test. (C) Intestinal sections were stained
with Periodic Acid Schiff/alcian blue to label Paneth cells and goblet
cells from Vil-Cre-ERT2 (left panel), vABKO (middle panel) and vTKO (right
panel) mice. Insets are magnifications of boxed regions shown in
middle and right panel. Asterisks in left panel indicate CBC cells.
Asterisks in middle and right panels indicate immature Paneth cells.
Arrows in middle and right panel indicate small granules of immature
Paneth cells. Scale bar: 10 mm.
doi:10.1371/journal.pone.0015561.g008

Figure 9. Differentiation of CBC cells into immature Paneth
Cells in Cdc25-disrupted mice. Small intestines were dissected and
processed for Transmission Electron Microscopy. EM sections of crypts
from vil-Cre-ERT2 (A), vABKO (B, C) and vTKO (D, E) mice. Insets in panels
B and D are shown at higher magnification in panels C and E,
respectively. The red-hatched lines in panel A demark two CBC cells
separated by a mature Paneth cell. Blue-hatched lines in panels B-D
outline borders of immature Paneth cells arising from premature
differentiation of CBC cells. Note that differentiating CBC cells also
undergo hypertrophy. Scale bar: 10 mm (A, B, D), 5 mm (C, E).
doi:10.1371/journal.pone.0015561.g009
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Figure 10. Response of small intestinal epithelial cells to irinotecan. (A) Significant decrease in the number of BrdU postive cells in the small
intestinal crypts of irinotecan-treated mice. WT mice were injected with PBS (cont) or irinotecan (CPT) for 6 consecutive days and sacrificed on day 7.
One hour prior to sacrifice, mice were injected with BrdU. Intestines were isolated and sections were stained with an antibody specific for BrdU.
Dotted lines demark crypt margins. Red: BrdU, Blue: nuclei (DAPI). Scale bar: 10 mm. (B, C) Significant loss of crypts in the small intestines of
irinotecan-treated mice. Intestines were isolated from irinotecan-treated mice (B) and TKO mice (C), and sections were stained with H & E. Arrows in
(B) indicate remaining crypts. Scale bar: 50 mm. (D–F) Irinotecan induces significant apoptosis in the crypts of treated mice at early time points after
irinotecan-treatment. (D) Intestinal sections were prepared after two irinotecan administrations and stained with H & E. Arrows depict apoptotic cells.
Scale bar: 10 mm. (E) Intestinal sections from WT mice treated with PBS (cont)) and irinotecan (CPT) were stained by terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay. Green: TUNEL, Blue: nuclei (DAPI). Scale bar: 100 mm. (F) Intestinal sections from WT mice treated
with PBS (left) and irinotecan (right) were stained for cleaved caspase-3. DAB (3, 39-diaminobenzidine) was used as a substrate (brown) and sections
were counter-stained with hematoxylin (blue). Scale bar: 50 mm. (G) Differentiation along the enterocyte lineage is not affected in irinotecan-treated
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consecutive days. Injected mice were monitored daily and

sacrificed on day 8 or earlier if they exhibited loss of 20% of

original body weight or if they were unable to access food or water.

Mice ranged in age from 2 to 3 months at the time of injection.

X-gal staining
X-gal staining was performed as described by Ahn et al. [29].

Intestines were embedded in Optimal Cutting Temperature

Medium (Tissue-Tek). Six mm sections were prepared and fixed

for 2 min in 1% formaldehyde, 0.2% glutaraldehyde, 0.02% NP-

40, 1 mM NaCl and then incubated in X-gal solution (1 part X-

gal dissolved at 40 mg/ml in dimethyl formamide in 40 parts

dilution buffer) at 37uC overnight. Dilution buffer consisted of PBS

containing 2 mM MgCl2, 5 mM potassium ferricyanide, 5 mM

potassium ferrocyanide.

Histology
Mice were euthanized in a CO2 chamber. Brain, heart, lung,

liver, spleen, kidney and small and large intestines were isolated,

washed in phosphate-buffered saline (PBS), fixed in 10% neutrally

buffered formalin overnight and embedded in paraffin blocks.

5 mm sections were prepared and stained with H&E or Periodic

Acid Schiff (PAS)/alcian blue (AB). A veterinarian in the Division

of Comparative Medicine at Washington University in St Louis

examined all tissue sections.

GI tract, crypt and villi measurements
Stomachs as well as small and large intestines, isolated from

euthanized mice, were cut open along the cephalocaudal axis,

pinned down on a solid plate and fixed overnight with 10%

neutrally buffered formalin. Small and large intestines were

measured along their entire length and normalized with initial

body weights. Villi at the most proximal end of the small intestine

were used for length measurements. Cross sections of duodenum

were photographed under a dissection microscope and the actual

length of villi was calculated by using a scale bar taken in the same

picture. 30 villi were measured per mouse.

Immunohistochemistry
Mouse tissues were fixed in 10% neutrally buffered formalin

overnight. Tissue sections were deparaffinized in xylene, rehy-

drated in a series of alcohols and PBS. Endogenous peroxidase

activity was removed by incubating the sections in 3% hydrogen

peroxide in methanol for 10 min. Antigen retrieval techniques

were performed by boiling the sections in 10 mM sodium citrate

(pH 6.0) for 20 min. Sections were blocked with 3% bovine serum

albumin, 0.1% Triton X-100 in PBS and incubated at room

temperature for 1 h with beta-catenin antibody (BD Transduction

lab, 1:100), cleaved caspase-3 antibody (Cell Signaling, 1:100) and

phospho-Tyr-15 CDK1 antibody (Santa Cruz, 1:100). MOM kit

(BMK-2202, Vector laboratories) was used to block nonspecific

binding of secondary antibodies and 3.39-diaminobenzidine (DAB)

was used as a chromogenic substrate. Hematoxylin was used to

counter stain. For BrdU single staining, BrdU (Amersham) was IP

injected according to the manufacturer’s recommendations (2 ml

per 100 g body weight). One hour later, mice were euthanized and

their intestinal tracts were dissected and processed as described

above. BrdU staining was performed with a BrdU staining kit

(Zymed) according to the manufacturer’s instructions. Only intact

well-oriented crypts located half-way between the proximal and

distal ends of 2 cm small intestinal sections containing Paneth cells

at their base and an intact intestinal lumen composed of a single

layer of cells were examined for the presence of nuclear b-catenin.

TUNEL staining
TUNEL staining was performed according to the recommen-

dations of the manufacturer (Roche) using the In Situ Cell Death

Detection Fluorescein kit. Intestinal sections were fixed, depar-

affinized and subjected to hydrogen peroxide treatment. Sections

were treated with 20 mg/ml proteinase K in 10 mM Tris pH 7.4

for 15 min at 37uC. Sections were then treated with TUNEL

reaction mix for 1 h at 37uC. Sections were counterstained with

DAPI (nuclei counter stain) using the Prolong Gold mounting

media (Invitrogen).

Transmission Electron Microscopy
Intestines were dissected and fixed in 2% paraformaldehyde/

2.5% glutaraldehyde (Polysciences Inc., Warrington, PA) in

100 mM phosphate buffer, pH 7.2 for 1 h at room temperature.

Samples were washed in phosphate buffer and post-fixed in 1%

osmium tetroxide (Polysciences Inc.) for 1 h. Samples were rinsed

extensively in dH20 prior to en bloc staining with 1% aqueous

uranyl acetate (Ted Pella Inc., Redding, CA) for 1 h. Following

several rinses in dH2O, samples were dehydrated in a graded series

of ethanol and embedded in Eponate 12 resin (Ted Pella Inc.).

Sections of 200 nm were cut with a Leica Ultracut UCT

ultramicrotome (Leica Microsystems Inc., Bannockburn, IL) and

stained with methylene blue to determine appropriate orientation

of the tissue. Sections of 95 nm were then obtained, stained with

uranyl acetate and lead citrate, and viewed on a JEOL 1200 EX

transmission electron microscope (JEOL USA Inc., Peabody,

MA).

Irinotecan treatment
Irinotecan hydrochloride (CPT-11) was obtained as a 20 mg/ml

stock. Prior to administration it was diluted in 0.9% phosphate

buffered saline and the mice were injected with either 100 mg/kg

or 150 mg/kg intraperitoneally. To analyze effects of irinotecan

on intestinal cells at earlier time points, mice were injected with a

100 mg/kg dose at day 1 and day 2 and sacrificed 6 h thereafter.

For prolonged exposure studies and to obtain a maximal inhibition

of cell proliferation, mice were injected with a dose of 150 mg/kg

from day 1 through 6 and sacrificed 6 h following the last dose.

One hour prior to sacrifice, mice were also injected with BrdU.

Control mice received an equal volume of 0.9% phosphate

buffered saline.
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