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Background: Considerable evidence suggests that the heterogeneity of ovarian cancer
(OC) is a major cause of treatment failure. Single-cell RNA sequencing (scRNA-seq) is a
powerful tool to analyse the heterogeneity of the tumour at the single-cell level, leading to a
better understanding of cell function at the genetic and cellular levels.

Methods: OC scRNA-seq data were extracted from the Gene Expression Omnibus
(GEO) database and the FindCluster () package used for cell cluster analysis. The GSVA
package was used for single-sample gene set enrichment analysis (ssGSEA) analysis to
obtain a Hallmark gene set score and bulk RNA-seq data were used to analyse the key
genes of OC-associated immune cell subsets. CIBERSORT was used to identify immune
scores of cells and the “WGCNA” package for the weighted correlation network analysis
(WGCNA). KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology)
analyses of subtype groups were performed by GSEA. Then, univariate Cox and lasso
regression were performed to further establish a signature. Finally, qPCR and
immunohistochemistry staining were used to evaluate the expression of signature
genes in OC.

Results: Two scRNA-seq (GSE154600 and GES158937) datasets were integrated to
obtain 20 cell clusters. T cells or NK cells (cluster 5, 6, 7, 11), B cells (cluster 16, 19, 20)
and myeloid cells (cluster 4, 9, 10) were clustered according to immune cell markers. The
ssGSEA revealed that M1- and M2-like myeloid cell-related genes were significantly
upregulated in P3 and P4 patients in the GSE154600 data. Immune cell analysis in TCGA-
OC showed that a high abundance of M1-like tumour-associated macrophages (TAMS)
predicts better survival. WGCNA, univariate Cox and lasso Cox regression established a
two-gene signature (RiskScore=-0.059*CXCL13-0.034*IL26). Next, the TCGA-test and
TCGA-OC were used to test the risk prediction ability of the signature, showing a good
effect in the datasets. Moreover, the qPCR and immunohistochemistry staining revealed
that the expression of CXCL13 and IL26 was reduced in OC tissues.
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Conclusion: A two-gene signature prognostic stratification system (CXCL13 and IL26)
was developed based on the heterogeneity of OC immune cells to accurately evaluate the
prognostic risk.
Keywords: ovarian cancer, scRNA-seq, myeloid cells, 2-gene signature, risk, prognosis
INTRODUCTION

Ovarian cancer (OC) is a common gynaecologic malignancy
with high mortality. The mainstay of treatment for ovarian
cancer is a combination of surgery and chemotherapy,
however, the 5-year survival rate for OC is approximately 47%,
primarily due to a high recurrence rate and drug resistance (1).
With its unique mechanism of action and relatively safe profile,
immunotherapy has recently emerged as a promising modality
for numerous malignancies, including OC. However, clinical
studies showed that the anti-programmed cell death ligand-1/
programmed cell death-1 (PD-L1/PD-1) axis in OC indicates an
objective response rate (ORR) of only 10-15%, even if the CPS
(Cyber Physical Systems) score is above 10, the remission rate is
only 17.1%. The advances have demonstrated that OC with
sufficient heterogeneity contributes to treatment failure and a
poor prognosis (2).

Single-cell RNA sequencing (scRNA-Seq) uses optimised
next-generation sequencing technologies to define the global
gene expression profiles of single cells, facilitating dissection of
the previously hidden heterogeneity in cell populations (3). In
previous studies, scRNA-seq was used to characterise OC
heterogeneity to develop novel therapeutic approaches based
on the JAK/STAT-pathway inhibitor (4). Hu et al. used scRNA-
seq to identify six subtypes of fallopian tube epithelium (FTE)
cells in normal human fallopian tube tissues revealing intra-
tumoural heterogeneity in serous ovarian cancer (SOC) and
defined SOC subtypes that correlated with patient prognosis
(5). Recently, researchers demonstrated the broad utility of
scRNA-seq for discovering immunotherapy emerging standard
of care for several cancer types because it could help the immune
system to fight cancer cells (6). For example, scRNA-seq analyses
were performed on the immune tumour microenvironment in
colorectal cancer patients, providing evidence of the importance
of Bhlhe40+ Th1-like CD4+ T cells in anti-tumour immunity
and immunotherapy (7). Peng Junya et al. employed scRNA-seq
in pancreatic cancer, identifying a subset of ductal cells with
unique proliferative features that were associated with an
inactivation state in tumour-infiltrating T cells, providing novel
markers for the prediction of the antitumor immune response
(8). Therefore, analysis of key genes based on the immune
heterogeneity could provide potential immunotherapy targets
and meaningful risk prediction for OC.

In this study, a series of tissue-specific clusters were constructed
to predict immune cell compositions from two OC scRNA-seq
(GSE154600 and GES158937) datasets in the Gene Expression
Omnibus (GEO) database. Normalisation and variance
stabilisation of single-cell RNA-seq data using regularised
negative binomial regression was performed using SCTransform
2

() and the FindCluster () package was used for immune cell clusters
analysis. Bulk RNA-seq from the TCGA (The Cancer Genome
Atlas) expression profile data was used to analyse the key genes in
the OC-associated immune cell subsets. Next, we performed
univariate Cox, lasso Cox regression and stepwise regression to
establish a signature, with qPCR and immunohistochemistry
performed to evaluate the expression of signature genes in OC.
Finally, a two-gene signature prognostic stratification system
(CXCL13 and IL26) was developed based on the heterogeneity of
OC immune cells to identify potential immunotherapy targets and
accurately evaluate the prognostic risk.
METHODS

Data Download
OC scRNA-seq data GSE154600 including 5 high-grade SOC
patients, 33538 genes and 52121 cells as well as GES158937
including 3 high-grade SOC patients, 36601 genes and 15202
cells were download from GEO databases (Supplementary
Table 1). TCGA-OC bulk RNA-seq data including 378 ovarian
cancer patients and 32484 genes were download from TCGA
databases (Supplementary Table 2).

scRNA-Seq Data Processing
The Seurat package SCTransform () function was used to pre-
process and reduce the batch effect to integrate the two single-cell
transcriptome datasets. The most changed 3000 genes were
chosen by SelectIntegrationFeatures () (Supplementary
Table 3) and the FindCluster () package used for immune cell
cluster analysis with the resolution set to 0.15.

ssGSEA
Single-sample GSEA (ssGSEA) analysis was performed using the
GSVA package to obtain a hallmark gene set score and the
Hallmark gene set was obtained from MSigDB. Spearman’s
coefficient was used to evaluate the correlation between EMT,
carcinogenesis and the p53 pathway.

WGCNA
CIBERSORT was used to estimate the abundance of 22 immune
cells in the TCGA-OC bulk RNA-seq data. The “WGCNA”
package was used for the weighted correlation network analysis
(WGCNA). b is the most important parameter in the analysis
process, and b = 5 was used for subsequent analysis. For hub
genes, the genes with module membership (MM) >0.5 and a
Pearson correlation coefficient of 0.1 with overall survival (OS)
were selected.
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NMF Algorithm to Identify
Molecular Subtypes
First, gene expression data were extracted from the TCGA-OC
database and randomly divided into a training group and test
group. Then, the training data of NMF was collected, with the
NMF method selecting the standard “brunet” for 10 iterations.
The cluster number K was set at 2 to 10, and the average contour
width of the common member matrix was determined by the R
package “NMF” and the training samples were divided into
two categories.

Identification and Functional Analysis of
Differentially Expressed Genes
The DEGs between group 1 and group 2 were calculated by the
limma package, then screened with FDR <0.05 and |log2FC|> 2
to identify the differences. Furthermore, KEGG functional
enrichment analysis was performed using the Clusterprofiler
(V3.16.1) package.

Support Vector Machine
The imvigor 210 cohort includes information on the immune
infiltration type of 348 patients. An SVM model was constructed
with the “e1071” package to predict the type of immune infiltration.

Molecular Risk Model Construction
The coxph () function of the survival package was used to fit the
Cox risk regression and a p-value<0.05 was considered as
survival related. The least absolute shrinkage and selection
operator (Lasso) method is a compression estimation that
obtains a more refined model by constructing a penalty
function, thereby compresses some coefficients and setting
some coefficients to zero at the same time. Therefore, the
advantage of subset shrinkage is retained. It is a biased
estimation for processing data with multicollinearity that can
realise the selection of variables while estimating parameters to
better solve the problem of multicollinearity in regression
analysis. We used the glmnet package to perform lasso Cox
regression for analysis and 10-fold cross-validation for
model construction.

Specimen Collection
Ovarian tumour and normal tissues derived from surgically
resected specimens were snap-frozen in liquid nitrogen and
stored at -80°C until RNA extraction. No patients received
chemotherapy, radiation therapy or received treatment before
surgery. All patients signed informed consent forms provided by
the Cancer Hospital, CAMS & PUMC. This study was approved
by the Ethics Committee of the Cancer Institute (Hospital),
CAMS & PUMC (17-099/1355).

Total RNA Extraction and Quantitative
Real-Time PCR
Total RNA extraction was performed using RNA-easy Isolation
Reagent (No.RC112-01, Vazyme, China) from 10 ovarian
tumour and 4 non-tumour tissues. Then, quantitative real-time
PCR (qRT-PCR) was performed using the HiScript III 1st Strand
Frontiers in Oncology | www.frontiersin.org 3
cDNA Synthesis Kit (No.R312-01, Vazyme, China) and
ChamQTM Universal SYBR® qPCR Master Mix (No.Q712-02,
Vazyme, China) according to the manufacturer’s instructions.
The primer sequences were as follows: CXCL13 Forward
Sequence 5’-3’: TATCCCTAGACGCTTCATTGATCG and
Reverse Sequence 5’-3’: CCATTCAGCTTGAGGGTCCACA;
IL26 Forward Sequence 5’-3’: GGAAGACGTTTTTGGTCA
ACTGC and Reverse Sequence 5’-3’: CTCTCTAGCTGAT
GAAGCACAGG; GAPDH Forward Sequence 5’-3’: GTCTCCT
CTGACTTCAACAGCG and Reverse Sequence 5’-3’: ACCACC
CTGTTGCTGTAGCCA. GAPDH served as an internal control.

IHC Staining
An immunohistochemistry SP kit (No. SP-9000, ZSGB-BIO,
China) was used for IHC, which was performed as previously
described (9). Anti-CXCL13 (1:200) and anti-IL26 (1:200) were
purchased from Abcam (ab272874 and ab254476). The
magnification of the immunohistochemistry images was 20×.

Statistical Analysis
All statistical analyses were performed using R software 3.5.3
and GraphPad Prism v. 8.01 (GraphPad Software, La Jolla,
CA, USA). The Student’s t-test was used to compare values
between the test and control groups and P-values < 0.05 were
considered significant.
RESULTS
Integration and Clustering of
scRNA-Seq Data
Two scRNA-seq datasets (GSE154600 and GES158937) (Table 1
and Figure 1) were used to characterise the OC heterogeneity in
the GEO database. To integrate two single-cell transcriptome
datasets, the Seurat package SCTransform () function was used
to pre-process and reduce the batch effect. Uniform Manifold
Approximation and Projection (UMAP) was used for non-linear
dimension reduction (Figure 2A). The FindCluster () function
was used to cluster cells, obtaining 20 clusters (Figure 2B).

T cells or NK cells (cluster 5, 6, 7, 11; markers: CD3D and
CD3E), B cells (cluster 16, 19, 20; marker: CD79A) and myeloid
cells (cluster 4, 9, 10; LYZ and CD14) were clustered according to
immune cells markers (PTPRC is an immune cell marker;
EPCAM is an epithelial cell marker; COL1A2 is a fibroblast
marker; IL7R is the naive T cell marker; CD8A and NKG7 are
CD8+ the T cell and NK cell markers) (Figure 2C).

Immune Cell Analysis
Cluster analysis of T cells or NK cells, B cells and myeloid cells
was based on immune cell markers (Figure 3A). First, we
classified and identified T cells, then cluster analysis was
performed based on the GSVA enrichment score of each
sample of cells. According to the T cell functional status, such
as regulatory, costimulatory, initial, cytotoxic, and exhaustive,
the gene expression characteristics of naive T cells, costimulatory
T cells, regulatory T cells, and exhausted T cells were
identified (Figure 3B).
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Second, the functional status of B cells was analysed, such as
anti-apoptosis, naive memory, cytokines, proliferation and
germinal centre gene expression characteristics (Figure 3C).
For tumour-infiltrated myeloid cells, the activity of M2 and
M1-like myeloid cells was analysed, showing that M1 and M2-
related genes were significantly upregulated in P3 and P4
patients with GSE154600 (Figure 3D).

CIBERSORT
Based on the results of single-cell sequencing data and immune
cell types analysis, we used bulk data for clinical significance
analysis and prognostic model construction. Since bulk RNA-seq
data has the advantage of more samples and more clinical
information, in order to further analyze the clinical
significance of immune cells infiltrated by OC. CIBERSORT
Frontiers in Oncology | www.frontiersin.org 4
can predict the proportion of 22 immune cells based on RNA-seq
count data and was used to calculate the abundance of M1-like
TAMs (tumour-associated macrophages) in the bulk RNA-seq
data of 378 TCGA-OC patients (Table 2) (Figure 4A). The
results of survival analysis showed that the patients with a high
abundance of M1-TAMS had better survival (Figures 4B, C).
There was no significant survival difference among patients with
proportions of M2-like TAMS (Supplementary Figure S1),
therefore, we conducted an in-depth analysis of M1-like TAMs.
WGCNA Analysis and Immunotherapy
Prediction
To further explore the potential role of M1-like TAMs in OC, we
performedWGCNA analysis based on TCGA data (60,483 genes,
378 patients). The genes with median absolute deviation (MAD)
≤0.01 were filtered out leaving 35,165 genes. With a soft threshold
=5 (Figures 5A, B), a scale-free co-expression network was
constructed to identify gene features related to M1-like TAM. A
total of 7 modules were generated (Figures 5C, D), of which the
brown module (3213 genes) had the highest correlation with the
M1-like TAM score (r=0.42, P=2e−17, Figure 5E). As shown in
Figure 5F, genes are represented as points, the abscissa module
membership represents the correlation between genes and
module eigengene, and the ordinate represents the correlation
between the gene expression and OS. The results show that the
FIGURE 1 | The technical road map.
TABLE 1 | OV patient information (single-cell RNA-seq).

Study ID Sample Sample ID Stage Grade

GSE154600 GSE154600_P1 GSM4675273 stage: IV G3
GSE154600_P2 GSM4675274 stage: III G3
GSE154600_P3 GSM4675275 stage: IV G3
GSE154600_P4 GSM4675276 stage: IV G3
GSE154600_P5 GSM4675277 stage: IV G3

GSE158937 GSE158937_P1 GSM4816045 NA NA
GSE158937_P2 GSM4816046 NA NA
GSE158937_P3 GSM4816047 NA NA
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important elements of the brown module represent OS-related
genes, finally obtaining 45 hub genes (MM>0.5 and GS>0.1) from
the module (Supplementary Table 4).

IMvigor210CoreBiologies package contains RNA-seq data of
348 PD-L1 immunotherapy tumour patients classified into three
phenotypes, inflamed type, immune excluded type and immune
desert type. We used the e1071 package to construct a support
vector machine to predict the three phenotypes (Figure 5G),
showing that the prediction effect was better when used to
distinguish between the inflamed and immune desert types
(Figure 5H). These results indicate that 45 M1-like myeloid
cell-related genes are potential predictors of immune infiltration.

Molecular Typing Based on
M1-Related Genes
First, the expression of 45 M1-related hub genes was extracted
from the TCGA database and the NMF package was used to divide
the TCGA samples into different subgroups based on non-
Frontiers in Oncology | www.frontiersin.org 5
negative matrix factorisation. The cluster = 2 as the optimal
parameter (Figure 6A) and the training set was divided into two
subgroups. Then, the consistency matrix was established
(Figure 6B), the value of the consensus matrix is [0,1], equal to
1 means multiple clustering and two data points are all in the same
class, and 0 represents that multiple clustering is not in the same
class. The heat map showed the expression of 45 M1-related genes
(Figure 6C) and the prognosis of cluster 2 is better than that of
cluster 1 (Figure 6D). The Violin plot shows that the proportion
ofM1 in cluster 2 is higher than in cluster 1 (P=2.865e-07,Wilcox-
test) (Figure 6E). In general, the prognosis of patients in cluster 1
is worse. The genes differentially expressed in cluster 2 and cluster
1 (|logFC|>2 and adj.P.val<0.05) were identified by the limma
package, obtaining 658 DEGs, of which, 39 genes were
downregulated (Supplementary Table 5) and 619 genes were
upregulated in cluster 2 (Supplementary Table 6). The
Clusterprofiler package was used to perform KEGG enrichment
analysis in cluster 2 (Figures 6F, G).
A B

C

FIGURE 2 | The dimension reduction of OC scRNA-seq. (A) Color depending on different patients. (B) Label colors according to separate clusters. (C) Expression
of important marker genes.
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Construct a Genetic Risk Model
To facilitate subsequent verification, 101 protein-coding genes
were selected for subsequent analysis from the 658 DEGs
(Supplementary Table 7). The TCGA was randomly divided
into training and test sets according to a 1:1 ratio, with 189
samples in each dataset (Table 2). Cox (proportional hazards
model) was used to identify four survival-related genes
(CXCL13, PLA2G2D, IL26, CARD17) in the training set.
Frontiers in Oncology | www.frontiersin.org 6
Then, lasso regression was used to solve the multicollinearity
problem during regression analysis and reduce the number of
genes in the risk model. We used the glmnet package to perform
lasso Cox regression analysis and the change trajectory of each
independent variable is shown in the Figure. As the lambda
gradually increases, the number of independent variable
coefficients tends to 0 gradually increases (Figure 7A). Next,
we used a 10-fold cross test to construct the model and
confidence interval under each lambda, as shown in Figure 7B.
The model is optimal when lambda = 0.52 and two genes
(CXCL13, IL26) were chosen to construct a risk model and the
prognostic KM curves of the two genes are shown in
Supplementary Figure S2.

The final 2-gene signature is as follows: RiskScore=-
0.059*CXCL13-0.034*IL26.

We calculated the risk score of the TCGA training set and
determined the risk score distribution, showing that the higher
the risk score and mortality rate of patients with the lower gene
expression of CXCL13 and IL26 (Figures 7C–E). The median
risk score was standardised as 0, and the samples were classified
as high or low risk with median standardisation. The prognosis
of the high-risk group was worse (Figure 7F).

Verification of the Prognostic Risk Model
To determine the robustness of the model, we used the TCGA
test (Figures 8A–C) and all TCGA datasets (Figures 8E–G) to
calculate the RiskScore and distribution, showing that samples
TABLE 2 | OV patient information (bulk RNA-seq).

All dataset Training set Test set

Number 378 189 189
DEAD 232 116 116
Alive 146 73 73
Age > 65 132 67 65
Age <=65 238 119 119
NA 8 3 5
Stage
Stage I 58 36 22
Stage II 23 10 13
Stage III 294 142 152

NA 3 1 2
Grade
G1 1 0 1
G2 45 24 21
G3 321 160 161
G4 1 0 1

NA 10 5 5
A B

C

D

FIGURE 3 | GSVA enrichment analysis of immune cells. (A) Heat map of significant marker gene expression in immune cells. (B) T cell characterization in OC. GSVA
enrichment fractions of naive T cell, co-stimulatory T cells, Regulatory T cells, and exhausted T cells related gene sets. (C) B cell characterization in OC. GSVA
enrichment fraction of naive B cells, proliferative, anti-apoptotic, pro-apoptotic, cytokine and germinal center related gene sets. (D) Characteristics of myeloid cells in
OC. GSVA enrichment fraction of relating gene sets in M1 and M2-like myeloid cells.
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with a high RiskScore were significantly smaller than those with a
low RiskScore. Low expression of CXCL13 and IL26 was
identified as a risk factor. Finally, the results of the KM curves
shown in Figures 8D, H reveal significant differences between
the low and high-risk group (p < 0.05).

The Expression of Signature
Genes in OC Tissues
Furthermore, to verify the accuracy of the two-gene signature, we
examined the expression of the signature genes (CXCL13 and IL26)
in clinical samples from OC patients by qPCR (Figures 9A, B) and
IHC (Figures 9C, D) analysis, showing that the expression of
CXCL13 and IL26 was low in OC tissues.
DISCUSSION

Although PD-L1/PD-1 as targets for immunotherapy have been
identified and the prognosis of most immunotherapy cancer
Frontiers in Oncology | www.frontiersin.org 7
patients has been effectively improved, such as lung cancer (10),
breast cancer (11) and haematological tumours (12),
immunotherapy for OC is not very effective (13). There is
mounting evidence to suggest that intratumoral heterogeneity
exists in cells within OC, which makes it rather challenging to
identify effective immunotherapeutic targets. The current
research shows that single-cell genomics is a powerful tool to
explore tumour heterogeneity and distinct subpopulations,
which is important to identify potential therapeutic targets
(14–17).

In this study, two scRNA-seq datasets (GSE154600 and
GES158937) were used to characterise the OC heterogeneity.
Normalisation and variance stabilisation of the two scRNA-seq
datasets using regularised negative binomial regression by
SCTransform () revealed 20 clusters. According to immune cell
markers, T or NK cells (cluster 5, 6, 7, 11; markers: CD3D and
CD3E), B cells (cluster 16, 19, 20; marker: CD79A) and myeloid
cells (cluster 4, 9, 10; LYZ and CD14) were clustered. Then, we
identified immune-related OC cells based on the GSVA
enrichment score of each sample of cells, showing that
A

B C

FIGURE 4 | The proportion of immune cells. (A) The proportion of 22 immune cells built on RNA-seq count data. The Kaplan-Meier curves of patients with different
proportions of M1-like myeloid cells:(B) are disease free interval (DFI) (C) overall survival (OS).
September 2021 | Volume 11 | Article 711020

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liang et al. OC Immune-Molecular Risk Model
tumour-infiltrated myeloid cells and the activity of M2 and M1-
like myeloid cells were significantly upregulated in P3 and P4
patients with GSE154600 data. Here, we explored the
intratumoral heterogeneity by analysis of the two OC scRNA-
seq datasets and the differential interactions between tumour and
Frontiers in Oncology | www.frontiersin.org 8
myeloid cells based on immune cell subtype. Next, TCGA-OC
bulk RNA-seq data (including 378 ovarian cancer patients and
58385) were used for predicting the proportion of 22 immune
cells and calculating the abundance of M1-like TAMs. The
survival analysis showed that the patients with a high
A B C

D E

G H

F

FIGURE 5 | Hub genes screening and immunotherapy prediction. (A) The nature of the network topology constructed with unique Power values. (B) The
relationship between Power values and average connectivity. (C) Genes are clustered into discrete modules. (D) Four hundred genes were randomly selected and
clustered into distinct modules. (E) The correlation between different modules and the proportion of M1 and M2-like myeloid cells. (F) In the brown module, the
correlation between genes and overall survival was reported as scatter plot, and the dark dots were hub nodes. (G) predicting AUC (Area Under Curve) of three
phenotypes. (H) Different colors represented different types: Large dots represented support vector, red represented desert samples, blue represented excluded-
samples, and green represented inflamed samples.
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abundance of M1-TAMS had better survival, in line with recent
findings of the involvement of innate immunosuppression driven
by myeloid-derived suppressor cells in the development of
ovarian cancer (18–20). Furthermore, we first revealed that
tumour-associated macrophages, such as M1-TAMS, are
closely related to survival and there was no significant survival
difference among patients with proportions of M2-like TAMS.
We further explored the potential role of M1-like TAMs in OC
and performed WGCNA analysis based on TCGA-OC data,
showing that the important elements of the brown module
represent OS-related genes. Finally, 45 hub genes were
obtained from the module. Based on the M1-related genes, the
TCGA-OC training set was divided into two different subgroups
(cluster 1 and cluster 2), and Cox was used to identify four
survival-related genes (CXCL13, PLA2G2D, IL26, CARD17).
The two-gene signature was RiskScore=-0.059*CXCL13-
0.034*IL26 based on lasso Cox regression analysis. To verify
the prognostic risk model, we used the TCGA test and all TCGA
Frontiers in Oncology | www.frontiersin.org 9
datasets to calculate the RiskScore and distribution, showing that
low expression of CXCL13 and IL26 was a risk factor.
Furthermore, to verify the accuracy of the two-gene signature,
qPCR and IHC analysis revealed that the expression of CXCL13
and IL26 was low in OC tissues, demonstrating that the two-gene
signature provides valuable resources to accurately evaluate the
prognostic risk.

Recently, there has been increasing evidence to suggest that
CXCL13 and IL26 could be potential targets for OC. It has been
suggested that the CXCL13 may play a crucial role in the
development, metastasis and relapse of advanced colon cancer,
and can be used as a prognostic marker for colon cancer (21). For
clear cell renal cell carcinoma, gastric cancer, breast cancer and
hepatocellular carcinoma (22–25), CXCL13 had good diagnostic
and prognostic value, hence may become a candidate biomarker
and therapeutic target. Many other investigators have
demonstrated the promising role of IL26 with immunotherapy
in treating cancers. For example, IL26 is a unique, clinically
A

B

C

D E

F

G

FIGURE 6 | M1-related Molecular typing. (A) Consensus Map of NMF Clustering. (B) Sample cluster of TCGA-OC. (C) Expression of relating genes in M1 like myeloid
cells. (D) Kaplan-Meier curves of two OC molecular subtypes. (D) Proportion of M1-like myeloid cells in two OC molecular subtypes. (E) KEGG functional enrichment
analysis of differential genes in two OC molecular subtypes. (F, G) KEGG functional enrichment analysis of differential genes in two OC molecular subtypes.
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relevant, inflammatory amplifier that enhances TNBC (triple
negative breast cancer) engraftment and dissemination in
association with neutrophils, which has the potential as a
therapeutic target (26). The serum IL-26 level is closely
correlated with gastric cancer and has important value for the
determination of disease occurrence and development (27). Yang
Moran et al. revealed that CXCL13 can shape the antitumor
microenvironment and support a clinical investigation for a
combination of CXCL13 and PD-1 blockade therapy in HGSC
(28). Winkler et al. attempted to introduce new therapies based
on Th17 lymphocytes which produce IL-17A, IL-17F, IL-21, IL-
22, IL-26, IL-6, TNF-a and suppress tumour progression through
enhanced antitumor immunity in OC (29). For the first time, we
Frontiers in Oncology | www.frontiersin.org 10
proposed a two-gene signature (CXCL13 and IL26) based on the
heterogeneity of OC, which may be applied for risk prediction
and as potential immunotherapy targets. However, this study has
some limitations, such as few samples for PCR and
immunohistochemical verification and the mechanism of
CXCL13 and IL26 has not been explored in OC. Future efforts
should focus on using many samples to verify the accuracy of the
model and explore the molecular mechanism of CXCL13 and
IL26, providing experimental evidence for application to risk
prediction and treatment in OC.

In conclusion, two scRNA-seq datasets (GSE154600 and
GES158937) were integrated and used to characterise OC
heterogeneity, with the M1 and M2-related genes significantly
A B

C

D

E

F

FIGURE 7 | Construct a genetic risk model: (A) The trajectory of each independent variable: the horizontal axis represents the log value of the independent variable
lambda, and the vertical axis represents the coefficient of the independent variable. (B) The confidence interval under each lambda. (C) The horizontal axis is the patient’s
risk score, ranked from lowest to highest, the vertical axis is survival, the green dots are dead, and the red dots are survival. (D)The abscissa shows the patient’s risk
score from low to high, the ordinate is the standardized risk score, the red represents the high-risk group, and the green represents the low risk group. (E) 2 Expression
of Gene Signature in all TCGA patients. The abscissa shows the order of patients’ risk score from low to high. (F) Survival curve of high and low risk group.
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upregulated in P3 and P4 patients with GSE154600. Our work
not only expands the understanding of tumour-infiltrated
myeloid cells but also provides a two-gene signature based on
M1-related genes in the TCGA-OC data. The combined analysis
of single-cell data and TCGA-OC data identified the two-gene
signature with important prognostic implications and
immunotherapy in OC.
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FIGURE 8 | Verification of the prognostic risk model: (A–C) the TCGA test and (E–G) all TCGA datasets were used to calculate the RiskScore and distribution,
showing that samples with a high RiskScore were significantly smaller than those with a low RiskScore. (D, H) The results of the KM curves shown in reveal
significant differences between the low and high-risk group.
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