
ORIGINAL ARTICLE

Soft Robots for Ocean Exploration and Offshore Operations:
A Perspective

Simona Aracri,1 Francesco Giorgio-Serchi,1 Giuseppe Suaria,2 Mohammed E. Sayed,1

Markus P. Nemitz,3,4 Stephen Mahon,1 and Adam A. Stokes1

Abstract

The ocean and human activities related to the sea are under increasing pressure due to climate change,
widespread pollution, and growth of the offshore energy sector. Data, in under-sampled regions of the ocean
and in the offshore patches where the industrial expansion is taking place, are fundamental to manage suc-
cessfully a sustainable development and to mitigate climate change. Existing technology cannot cope with the
vast and harsh environments that need monitoring and sampling the most. The limiting factors are, among
others, the spatial scales of the physical domain, the high pressure, and the strong hydrodynamic perturbations,
which require vehicles with a combination of persistent autonomy, augmented efficiency, extreme robustness,
and advanced control. In light of the most recent developments in soft robotics technologies, we propose that
the use of soft robots may aid in addressing the challenges posed by abyssal and wave-dominated environments.
Nevertheless, soft robots also allow for fast and low-cost manufacturing, presenting a new potential problem:
marine pollution from ubiquitous soft sampling devices. In this study, the technological and scientific gaps are
widely discussed, as they represent the driving factors for the development of soft robotics. Offshore industry
supports increasing energy demand and the employment of robots on marine assets is growing. Such expansion
needs to be sustained by the knowledge of the oceanic environment, where large remote areas are yet to be
explored and adequately sampled. We offer our perspective on the development of sustainable soft systems,
indicating the characteristics of the existing soft robots that promote underwater maneuverability, locomotion,
and sampling. This perspective encourages an interdisciplinary approach to the design of aquatic soft robots and
invites a discussion about the industrial and oceanographic needs that call for their application.

Keywords: ocean exploration, offshore operation, sustainable development, abyssal exploration, evolution of
soft robots, oceanography

Introduction: Challenges for Aquatic Soft Robots
in the Ocean Observing System and Offshore Monitoring

Scientists established the unfolding of climate change
*40 years ago. Since then it has become increasingly

important to understand the factors that influence the climate
of our planet. The oceans play a key role in climate regula-

tion: the sea is capable of storing energy and chemicals (e.g.,
CO2, O) and sustaining coastal populations and offshore
human activities. In 2017, a United Nations factsheet esti-
mated that 2.4 billion people live within 100 km of the coast.1

Nevertheless, we know more about the moon surface than the
ocean floor.2 The best known water masses lie in the first
2 km beneath the ocean surface.
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Industry currently faces the challenge of making offshore
sites safer, both for personnel and for the environment.3,4

This improvement in safety entails monitoring aging infra-
structures to minimize the hazards associated with structural
decay and human error.3,5 However, the harsh climate of the
offshore environment renders working safely in these areas
extremely daunting for human operators and conventional
autonomous systems alike (Fig. 1). Therefore, industry is
calling for the development of efficient solutions that offer
increased autonomy and data collection capabilities,6 to
sustain the thriving offshore renewable industry, whose as-
sets are located in remote and high energy sites to facilitate
the power takeoff.

Data (e.g., corrosion trends, structural vibration, algal
cover, soil stability, and so on) are vital to assess the integrity
of structures, to build accurate prognostic models, and to
minimize human interventions. As a consequence, the use
of robots, gathering data, during inspection, operation, and
maintenance of offshore infrastructures, is growing (Fig. 2A).7

It is crucial to collect more data to investigate also the
ecological and physical effects of anthropogenic structures in
high seas. For instance, it is not clear yet how unused offshore
assets could affect species migration, larvae spreading, and
whether such structures would coherently interact with ex-
istent Marine Protected Areas.5,8,9 The offshore industry is
increasingly involved in operations in deeper waters, where
delicate ecosystems, such as cold-water coral reefs,8,9 hy-
drothermal vents, and sponge grounds,10 are subject to threat.

Similarly, coastal waters, with their intricate and diverse
ecological networks, are progressively exposed to increasing
danger by human exploitation.

The expansion of human activities at sea has not been
followed by a proportional development of data collecting
subsea technology. Autonomous Underwater Vehicles
(AUVs)—gliders—are ideal for long-distance travel at mid-
depth—up to 1500 m—and Remotely Operated underwater
Vehicles (ROVs) are designed for low-speed maneuvering
far from the disturbance of the sea surface. Hence, despite the
growth in the employment of underwater robots, technolog-
ical constraints prevent their regular usage in the extreme
oceanic environment, such as the two ends of the water col-
umn: in deep waters and in superficial, highly perturbed
waters.

Within the scope of this article, we consider deep water the
zones of the water column below 2000 m and/or the benthic
layer. Current technological solutions prevent long-distance
travelling close to the sea bottom and accurate slow-speed
operations close to the surface.

This study considers these two frames of operation as
exemplar case scenarios, where the employment of under-
water soft robots could become a viable solution.11–13 In this
perspective we convey the state of the art of aquatic soft
robots13–23 suggesting that future soft robotic systems may
provide a complementary approach to the use of standard
robotics, addressing the challenges posed by abyssal explo-
ration and automation of offshore systems.

FIG. 1. Distribution of the technology used presently to explore the ocean. Rigid robots are, at present, the majority of the
devices, used for marine applications. This figure highlights potential applications where soft robots need to be used, which
would be impossible/hard to achieve with rigid robots. The autonomous devices, for example, AUVs, gliders, drifters, and Argo
floats, have limited battery life (up to 180 days). In addition to this Argo floats, drifters, and gliders are limited to the surface or
the first 2 km of the water column. Only few AUVs in the world can reach 6000 m depth, and they have to follow a
predetermined path. ROVs commonly used for seabed exploration and industrial surveys are tethered and need to be constantly
remotely operated. Long-distance deep exploration is one of the limitations of currently available technology, where soft robots
can come into play. The right panel depicts the present (grippers for coral reef sampling) and future applications of soft robots,
all represented in green, as we envisage them. These applications encompass benthic exploration (e.g., autonomous fish robot),
surface perturbed water navigation, and near-surface repair operations for offshore platforms. AUV, Autonomous Underwater
Vehicle; ROVs, Remotely Operated Vehicles. Color images are available online.
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Applications

Abyssal exploration and sampling

Most of the sea floor has been mapped to a 5 km resolution,
which is sufficient to detect a large-scale submerged ridge,
but is not enough to identify smaller-scale geological fea-
tures, a ship, or plane wreck.24 The need to understand the
role of the deep sea in the circulation25 and energy balance of
the ocean26 is a pressing argument pushing for further abyssal
exploration. Deep sea data will unveil a better knowledge of
the deep marine environment and its urgency to be protected
or its potential for a sustainable use.27

For instance, the uncertainty related to deep ocean tem-
perature data (Fig. 3) could be reduced by increasing the
amount of abyssal measurements.28 In addition, the leading
dissipative terms that regulate the overall dynamical balance
of the ocean still remain an open question in the under-
standing of the ocean general circulation.29 Momentum sinks
are commonly associated with prominent features of the
bottom topography, but smaller-scale elements of the order of
tens of kilometers are being regarded as essential to achieve
the full understanding of the driving forces of the climate.30

However, these features are systematically unresolved by
conventional global topographic datasets and by the general
circulation models regularly used to investigate ocean dy-
namics. The availability of oceanographic data is too sparse
to adequately characterize topographic terms, whose defini-
tion requires high-resolution flow measurements in remote
and topographically complex areas.31,32 The lack of suitable
ocean observing systems, to survey extended regions of the
bottom layer of the ocean, Figure 4A, hinders the complete
understanding of the ocean dynamics.

Existing AUVs are not able to perform long-range opera-
tions at very close proximity to the bottom of the ocean, thus
highlighting the need for disruptive new technologies suited
for persistent navigation adjacent to the bottom of the sea.

In observational natural sciences, such as bio-geophysical-
oceanography, AUVs are often used to survey regions be-
neath the polar ice sheets to map large morphological features
on the sea floor and to explore deep sea hydrothermal vents.
Some of these operations have to be undertaken as close to
the sea bottom as possible.33 When the bathymetry is not known
well enough to allow the operator to program the AUV for a safe
mission, or the basin is swept by strong currents, or the survey
needs real-time data or physical samples, AUVs are not suitable.
An analysis of the risks of AUV operations is reported in Brito
et al.34 When physical samples or real-time data are necessary,
explorers turn to ROVs, which are tethered and not autonomous
and can only operate within a very limited range.

The development of soft robotics technologies35 represents
a unique opportunity to address these challenges, offering
new perspectives in navigation, manipulation, propulsion
(Fig. 5),36–48 and sensing. Soft materials: incompressible,49

resistant, compliant, and versatile50 can alleviate the risk as-
sociated with explorative missions of traditional robots.

Flanking traditional rigid robots with soft devices could
aid underwater existing technology to accomplish hazardous
tasks in the yet unknown oceanic environment.

The use of soft materials to constitute or protect core
electronics could reduce the chance of a collision with un-
known bottom or floating features to result fatal for an un-
derwater mission. In contrast, relaxing security measures to
avoid collisions would enable the collection of remote data in
areas that fall out of the action map of completely rigid ro-
bots. Nevertheless, conducting this study, we did not come
across with entirely soft robots capable to perform complex
tasks in the environments that we identified as crucial for
industrial sustainable development and oceanographic ex-
ploration.51–54 From our investigation emerged an increasing
trend in embedding soft elements into established underwater
technologies45,46,55 (Fig. 5G–I).

Furthermore, the inherent dexterity of soft materials
empowered bioinspired propulsion, paving the way for
novel navigation techniques achievable for soft ro-
bots17,18,36,38,43,56–74 (Fig. 5A–F, K). Even in case the pro-
pulsion would not entirely rely on the elongated body theory
of fish locomotion,17,39,47,57,61,62,75–87 soft fins21,22,79,88

(Fig. 5J, L) and bladders55 can aid stabilizing the robots’
navigation route and depth. As far as the composition of the
used soft materials is concerned, recent progresses support
the use of highly biodegradable blends,89–98 which would
attenuate the environmental impact of those soft parts that
will go lost or replaced.

At high depth, the impracticality of accurate manipulation
control gives way to soft grippers (Fig. 5G–I), which can
better deal with a larger variety of objects to be grasped and

FIG. 3. Increasing temperature trend at 2000 m depth. Data
are from Global Ocean-Gridded objective analysis fields of
temperature and salinity, using profiles from the reprocessed
in situ global product CORA, using the ISAS software. Ob-
jective analysis is based on a statistical estimation method that
allows presenting a synthesis and a validation of the dataset,
providing a validation source for operational models, observ-
ing seasonal cycle, and interannual variability.

‰

FIG. 4. (A) Shows the General Bathymetric Chart of the Oceans bathymetry. Regions of the ocean shallower than 2000 m are
highlighted in red. Light blue color shows ocean depths between 2000 and 5000 m, blue between 5000 and 6000 m, indigo indicates
depth >6000 m. (B) Represents the global wind speed distribution. Data are from 2018. The climatology includes monthly averaged
wind variables calculated over the global oceans. The gridded daily wind and wind stress fields have been estimated over global
oceans from Metop/Advanced SCATterometer retrievals using the objective method. (C) Significant height of combined wind waves
and swell from ERA5, the fifth generation of ECMWF reanalysis. Data are from 2018. Color images are available online.
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can account for fragile samples of complex shape. Coral
reefs, for example, are one of the most delicate and important
ecosystems of the planets99,100 and constitute a proxy for ocean
acidification and warming. Hence, enabling autonomous
sampling and monitoring of coral reefs is important for their
safeguard. Navigation in the vicinity of a coral colony and
handling of corals are extremely complex tasks, where soft
grippers45–47,101 (Fig. 5G–I) and soft eversion robots42,102

prompt the advantage of a compliant mechatronic system.42

While robotics prototypes are progressively getting
closer to their biological counterparts,22,58,60,61,88,103–106

these remain for the most part laboratory-scale experi-
ments. Hence, if on one hand there is evidence that bioin-
spired soft robots are not simply an academic exercise,
rather offering a clear advantage in terms of performance,
on the other hand a major effort is still needed to drive the
transition of these systems from prototypes to actual vehi-
cles fit for operation at sea.

FIG. 5. Some examples of underwater soft robots, which represent some of the aspects that could aid in ocean operations. In
particular soft robotics advances brought to light the advantage of innovative propulsion methods allowed by soft materials, in
the ‘‘Propulsion’’ panel. Few traditional robots exploited the capabilities of soft materials for delicate sampling, in the
‘‘Grippers’’ column. Soft materials can be moulded into fins and legs, which can stabilise the movement of a robot (soft or rigid)
or allow locomotion, in the ‘‘Fins and Legs’’ section. (A) Multi-functional soft-bodied jellyfish-like swimming (Ren et al.36).
(B) Untethered Miniature Soft Robots: Modeling and Design of a Millimeter-Scale Swimming Magnetic Sheet (Jiachen Zhang
and Eric Diller37). (C) Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators (Christianson
et al.41). (D) A soft robot that navigates its environment through growth (Hawkes et al.42). (E) Ultra-fast escape maneuver of an
octopus-inspired robot (Weymouth et al.,43 image credit SMMI, University of Southampton.40). (F) Undulatory Swimming
Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model (Jusufi et al.44). (G) Soft Robotic
Grippers for Biological Sampling on Deep Reefs (Galloway et al.45). (H) Stronger at Depth: Jamming Grippers as Deep Sea
Sampling Tools (Licht et al.46). (I) Ultragentle manipulation of delicate structures using a soft robotic gripper (Sinatra et al.47).
(J) Harnessing bistability for directional propulsion of soft, untethered robots (Chen et al.48). (K) Hybrid parameter identifi-
cation of a multi-modal underwater soft robot (Giorgio-Serchi et al.,38 photo credits Massimo Brega). (L) Tuna robotics: A
high-frequency experimental platform exploring the performance space of swimming fishes (Zhu et al.,39 figure credits
Christopher Tyree, University of Virginia School of Engineering).
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The employment of soft autonomous platforms roaming the
depth of the oceans to perform high-resolution observation of
the abyssal environment relies on new advanced sensing
technologies fit for embedding in compliant structures.

In recent times, the interest in wearable devices has fostered
the development of new flexible sensors and bioinspired
technologies have further promoted the study of sensing
technologies.

Recent examples entail whisker-inspired sensors,107–113 de-
vices which replicate the flow diagnostic capabilities of the
lateral line of fish44,114,115 and sensor-embedded wearable
skin116,117 for marine mammals. These sensors are designed to
be distributed as dense arrays over the surface of a body trav-
elling underwater, thus enabling a better spatial description of
the parameters of interest, as well as accurate prognostic of the
state of the robots, for the purpose of control and localization.
Given the importance that turbulence measurements of mi-
crostructure hold in the understanding of the nature of energy
dissipation in the ocean,118 these new breed of sensors may
unveil an unprecedented degree of information.

Operations in highly perturbed surface waters

The surface of the ocean is a challenging environment,
where standard operations (i.e., inspection and manipulation)
become extremely impractical and dangerous due to the
disturbances from waves and currents. Furthermore, offshore
infrastructures are often located in environments subject to
extreme weather conditions, making operation and mainte-
nance of these systems especially costly and unsafe.

The World Meteorological Organization (WMO), adopt-
ing the Douglas Sea Scale,119 states that rough sea conditions
are characterized by waves with heights of at least 2.5 m. The
Beaufort scale considers winds above *10 m/s as a strong
breeze.120,121 Figure 4B122 and C123 therefore shows the ex-
tension of the harshest regions on our planet (2018 data).

Wave data collected on the eastern coast of the United
Kingdom (Fig. 2B–D) show how the coastal environments
too pose considerable challenges to offshore infrastructures.

With the expansion in the ocean of human activities124

toward less accessible and more fragile environments, state-
of-the-art underwater robotics technologies have progres-
sively become less suited at coping with the increased degree
of complexity of their missions.

As an example, commercially available robots are not
suited for acquiring field measurements in the vicinity of
submerged structures and performing even basic manipula-
tion tasks when subject to stochastic currents and wave per-
turbations.125 A technological answer to this challenge,
however, is still to be found. Existing vehicles are not suited
for operating at low operational depth, where the effect of
waves126,127 is so prominent that standard control techniques
are not able to compensate for wave disturbances in order for
autonomous systems to safely perform station keeping for
inspection or manipulation.128,129 Similar problems arise in
the case of vehicles operating close to submerged structure
under the effect of superficial currents130,131 of <2 m/s.

In the rough offshore environment, the inherent structural
flexibility of the robot will play an invaluable role in enabling
a safe physical interaction132,133 with the submerged struc-
tures upon which the vehicle is operating. At the same time,
compliance of the vehicle body will alleviate the computa-

tional burden and power otherwise required from the control
and thrusters to maintain a safe distance. Evidence that these
strategies represent viable solutions is the extensive work
performed on compliant, tendon-driven manipulators capable
of performing robust and firm grasp with minimal actua-
tion134–137 and by recent work on advanced adhesion tech-
nologies.138–140

The performances of reversible adhesive systems suitable
for operating on wetted and irregular surfaces are improving
remarkably, and as suction forces in the order of 300 kPa
become achievable,141 the chance to use these technologies
to enable soft robots to work in the wave slamming region of
an offshore platform becomes a reality.

The swimming skills of fish and cephalopods have inspired
many of the advanced functional capabilities now encoun-
tered in soft robots. Enhanced stability during underwater
legged locomotion59,134–137 and thrust augmentation due to
added-mass variation72,142,143 are only two examples in the
design of new soft unmanned underwater vehicles.

Thanks to emerging technology144,145 offshore assets can
be autonomously, safely, and closely monitored.

The advantage of using soft robots for industrial applica-
tions lies in the fact that soft robots are low cost and easy to
manufacture; they can navigate into restricted spaces where
a hard robot would struggle. Soft robots can overcome the
difficulties of such environment thanks to their compliant
intrinsic nature.

Discussion

The new generation of marine robots is not exempt from
challenges. Some important issues that have to be addressed
are energy consumption, autonomy, efficiency, sensing cap-
abilities, memory, and pollution from polymers. Ubiquitous
plastic pollution, ocean acidification, and chemical contami-
nation are already heavily affecting ocean wildlife and coastal
communities. Therefore, it is imperative to plan the future of
marine soft robots minimizing their impact on the ocean.

Currently, soft robots do not meet the requirements for
performing data collection in the remotest areas of the oce-
anic environment (Fig. 1).

Untethered underwater soft robots are rare; those controlled
without the aid of tethers have an autonomy of only few tens of
meters or less. Autonomy also includes power supply.

Existing marine devices (e.g., SBE 911plus CTD,146 SBE
19plus V2 SeaCAT Profiler CTD memory147) can live un-
derwater for 6 months to 2 years, sampling at 24/4 Hz up to
10,500 m (tethered).

Energy consumption and efficiency

The Energy consumption and efficiency of soft robotic
systems have not been studied extensively in the literature.148

The ratio of the task-oriented output energy from the robot to
the total energy input is known as the efficiency of the robot,
and it is a key figure of merit for all machines.148 The energy
input to soft robots is usually sourced from batteries, pres-
surized gas or liquid, or chemicals, and it is converted into
useful work by the robot to actuate, locomote, crawl, climb,
grasp, pick-up objects, jump, or sense.148 Energy efficiency
is, thus, an important indicator for guiding the design and
optimization of enhanced soft robotic systems.149 The energy
efficiency can influence the choice of actuator, energy source,
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materials, structural properties, and locomotion mode and
ultimately justify the use of soft mechatronics systems rather
than a conventional machine.149

Soft robots are complex hybrids of chemical, pneumatic,
hydraulic, mechanical, and electrical components and this
complexity makes analyzing the efficiency and characteriz-
ing the energy losses in the system a difficult task.148

Most soft robots currently sit at a prototype level of de-
velopment, making the assessment of their actual efficiency
partly speculative.

According to an analysis of energy efficiency of mobile
soft robots,149 the efficiency of most mobile soft robots in
literature is low, with most robots having an efficiency lower
than 0.1%.149 Nemiroski et al.150 reported an efficiency of
1–2% for a single joint of their soft robot ‘‘Arthrobot,’’ where
the joint was an inflation-based elastomeric actuator. The
remaining input energy to the system went into reversible
expansion of the elastomer and irreversible losses.150

In general, inflation-based elastomeric actuators for soft ro-
bots have a low efficiency,151,152 and they are not only affected
by the reversible expansion of the elastomer but also are influ-
enced by the strain, strain rate, and viscous losses in the flowing
gas.148 Another class of soft actuators—Vacuum-Actuated
Muscle-inspired Pneumatic structures—which use deflation
rather than inflation and operate at low strain levels, achieves a
relatively higher efficiency of *27%.153 This efficiency value
is comparable to human muscle efficiency (*40%).154

Pneumatic soft actuators, particularly ‘‘Pneunets,’’14 are
very popular among soft robotic researchers for many dif-
ferent applications, despite their low efficiency.155 Analysis
of PneuNet actuators with various wall thicknesses and dif-
ferent soft materials shows that the efficiency of these soft
actuators lies in the range of 0.4–2.5%.156

When it comes to propulsive efficiency in the aquatic en-
vironment, experimental and theoretical evidence suggests
that compliant bioinspired systems may yield better perfor-
mances than standard propeller-driven robots,157,158 and bio-
logical studies show that soft organisms indeed benefit from an
unprecedented degree of efficiency.159 Energy recovery tech-
niques and energy harvesting techniques have been developed
for fluidic soft robots to reduce the power consumption, which
makes the robot more power efficient.160–162

Sensors

One of the challenges that soft robots face is the balance
between softness and load bearing capacity of the robot,
where the soft robot needs to be able to withstand its own
weight.149 The size and weight of the soft robot, or parts of
the robot, are two important factors that need to be carefully
studied in the design stage.163

The discussion about data collection by soft robots naturally
leads to soft sensors, that is, sensors that adapt to the change in
shape, tension, and extensibility of the body of the robot.16

Soft sensors are beyond the scope of this study, but it is worth
noticing that recent developments in sensory skins, including
material advance (e.g., hydrogel employment),16 sensing
technique, manufacturing progress, and communication,164

are promising also for marine applications.116,117,165–168

Moreover aquatic soft sensing can benefit from the develop-
ment of biomedical soft sensing, as they share similar chal-
lenges, such as adhesion, resilience to environmental changes,
adaptability, biocompatibility,167 and reliability.

Recent studies discuss the complexity of integrating bio-
compatible materials, memories, communication, and energy
harvesting modules, in a unique fully functional platform.167

State-of-the-art soft sensors focus on very few sensing
modalities, such as temperature and pressure. The soft sensors
needed to perform exploration and to generate a sensing based
reaction need to be able to embed several sensing modali-
ties,168 as neuromimetic architectures suggest.169 This re-
quirement poses the new challenge of recording, processing,
and generating a response using a minimal amount of time
and energy. To this purpose machine learning is a flexible
tool to extract and organize information from a vast amount
of data.168 In particular, Shih et al. consider reinforcement
learning as a strong tool to develop close-loop control.168

Memory

Another challenging aspect for soft robots is having soft
onboard memory. Soft robots are still usually interfaced with
hard electronic components that control and power the robot
(e.g., batteries and microprocessors). However, soft memory,
as soft sensors, would allow the employment of environ-
mental friendly materials reducing the e-waste introduced in
the ocean.

Exploiting the digital fluidic logic principle for the on-
board memory would reduce the problem of energy support
for recording data and reduce the fire hazard constituted by
electronic devices around offshore assets, as suggested by
recent trends in soft robotics.144,170–173 Developing memory
using these fluidic logic gates can be quite complex and
bulky.173 A fluidic S-R latch144 is the closest example to
a soft memory device. A single S-R latch also requires
multiple components (three logic gates and a monostable
membrane).144,173

Nemitz et al.173 developed a soft nonvolatile memory
device with a bistable membrane, which enables permanent
storage of binary information in soft materials. This soft
memory device allows writing of information to the memory,
as well as erasing the stored information.173

According to Calais et al.,174 chalcogenides is a potential
source for providing soft robots with onboard memory cap-
abilities. Chalcogenides, which are natural semiconductors,
are also referred to as phase-change materials and are con-
tinuing to attract major attention for nonvolatile memory
devices with high switching speeds and cycle endurance.174

Chalcogenides are good candidates for nonvolatile mem-
ory devices because of their phase-changing properties,
where they can change from amorphous to polycrystalline
structures through thermal annealing.174 This phase change
significantly increases their electrical conductivity and re-
sults in an optical change, allowing them to be used as non-
volatile optical memory materials.175 Das Gupta et al.176 and
Li et al.177 demonstrated the integration of chalcogenides on
soft substrates—polydimethylsiloxane (PDMS), where this
integration shows the potential of using such materials for
onboard memory for soft robotic systems.

Polymeric pollution

The body of soft robots is often made of polymeric ma-
terials. Given the increasing concerns about the accumula-
tion of plastic materials in marine and freshwater
environments178,179 and especially in light of the toxicity and
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persistence of many petroleum-based polymers,180 it is par-
amount that the massive deployment of man-made robots in
the aquatic environment does not further exacerbate the
widespread issue of plastic pollution.

Every year between 4.8 and 12.7 million tonnes of plastic
waste ends up in the world’s oceans,181 with plastic pollution
being reported virtually everywhere, from abyssal plains182

to polar regions.183

Petroleum-based plastics are ubiquitous. They constitute a
low-cost, versatile, resilient184,185 manufacturing material.
But they have a very low biodegradability and persist in the
environment for hundreds of years.186,187 Therefore, natural
and biodegradable materials should be always preferred over
synthetic polymers, marking a compromise between envi-
ronmental impact and technical performance.

Eco-friendly polymers are emerging as an alternative so-
lution to the most common ‘‘traditional polymers.’’89–91,188

Bio-based materials (i.e., produced from renewable re-
sources), however, cannot always be classified as biode-
gradable.97,189 Several products marketed as compostable or
biodegradable do not always achieve significant degradation
rates when released into the environment.190

Ceseracciu et al.90 estimate their patented starch-based
polymer to degrade in Mediterranean waters in 3–6 weeks,
but other than that very little is known about the actual
degradation times of both traditional and bio-based polymers
in the natural environment. Most information originates from
laboratory tests187; however, the bacterial and physico-
chemical conditions in natural environments can be drasti-
cally different from those achieved in industrial composting
plants. Therefore, actual degradation rates of oxo-degradable
and compostable polymers are often much slower than ex-
pected.189

Ideally, selected polymers should meet international
standards for biodegradability in the marine environment
(e.g., ASTM).191 An example is the recent design and large-
scale deployment of biodegradable oceanic drifters by the
CARTHE Consortium.192 After careful considerations,
polyhydroxyalkanoates (PHA)—a nontoxic bio-based ther-
moplastic—were chosen to build the drifter body by indus-
trial injection molding, guaranteeing structural resistance in
the marine environment for the duration of the experiment
and full bacterial degradation of the drifter body after 5 years
at sea with a rate of 0.1 mm/month.192

Preferably, all accessories and electronic components need
to be nontoxic, favoring the use of lithium batteries, which do
not contain lead, mercury, or other hazardous substances. The
use of metal should be encouraged, so that it will eventually
oxidize in the ocean, as well as other less harmful compo-
nents such as wood, plant-based materials, or natural rubber.
All components should be compliant with the most stringent
European and U.S. EPA regulations on hazardous substances,
restricting as much as possible the use (and leaching) of toxic
compounds such as phthalates, PCBs, PBDs, heavy metals,
PAHs, and so on.

Besides the most common thermoplastics such as PVC,
PET, PS, and PC, other polymers commonly used in the
production of body and skin of aquatic soft robot prototypes
are synthetic foams, such as Lycra, silicon rubber, elasto-
mers, latex, acrylic, PDMS, and epoxy resins. Nontoxic
bioplastics, manufactured from industrial food waste, are
being tested as artificial robotic skins and for the develop-

ment of biodegradable electronic circuits,93 to make the en-
tire device biodegradable.92,188

Among innovative materials being tested for the con-
struction of soft robots, there are fluidic elastomers, ionic
polymer–metal composites, and piezoceramic materials,
whose environmental impacts and biodegradation times are
currently unknown.

Hence, to minimize the mass of potentially harmful waste
added to the ocean during experiments, it is crucial to always
adequately address environmental concerns in the design
phase, as well as in the production of soft robots (and their
components) designed for release in the natural environment.
In addition, the release of innovative polymers and materials,
which have never been tested for environmental safety should
be always made with caution, and potential negative effects
should be ideally tested in laboratory exposure studies or risk
assessment procedures before deployment.

Conclusion and Future Perspectives

This perspective illustrates the application gaps (Fig. 1)
and environmental knowledge as driving factors for the fu-
ture development of marine soft robots.

Offshore industry (Fig. 2) and ocean exploration (Figs. 3
and 4) are due to grow in the oncoming future. Consequently,
the demand for autonomous operations in these contexts is
deemed to expand. However, long-distance traveling close to
the sea bottom and accurate maneuvering close to the sea
surface remain two challenging tasks, which currently com-
mercial vehicles are not designed for.

The peculiar features of soft robots, arisen with recent
advancement in robotics (Fig. 5), could tackle these contexts
of operation. On one hand, compliant bioinspired design
promises to enable soft vehicles to achieve higher propulsive
efficiency, making them able to navigate over long distances
at close proximity with the seabed. On the other hand, nature-
inspired propulsive strategy will provide unprecedented
maneuvering skills, which, coupled with soft adhesion sys-
tems, will enable operation in highly perturbed superficial
environments where most of the industrial offshore activities
are concentrated.

Flexible sensors will transform these vehicles in nodes of a
self-propelling sensor network, and the use of biodegradable
materials will make them entirely disposable, minimizing
their impact on the environment.

Bioinspiration led the state of the art of soft robots between
laboratory based and in situ tests, hardly close to full opera-
bility. Based on the literature reviewed for this perspective
piece, eight core aspects can bring soft robots to full oper-
ability: autonomy, communication, efficiency, bio-inspira-
tion, maneuverability and control, memory, resilience,
sensors. The development of new sensors, particularly soft
sensors, and new biodegradable materials is prime both for
deep-sea exploration and for industrial applications. In ad-
dition, abyssal expeditions would benefit especially from a
design capable to optimize efficiency, communication,
memory, and autonomy. Similarly, designs that focus on
resilience, maneuverability, and control would strengthen
surface operations, important on offshore assets situated in
harsh areas.

Figure 6 condenses our perspective about the future de-
velopment of soft robots.
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The assignment of each feature to a specific state of de-
velopment reflects the result of the present study and wishes
to offer a debate space for the community.

Soft robots can embrace the challenges embedded in high
seas operation and create a new robotic generation capable of
monitoring the remotest areas in our planet. We have to be
mindful about the design of aquatic soft robots to protect the
environment and to contribute to a sustainable development
of offshore human activities. Development of these systems
will lead to a reduction of manufacturing costs and pave the
way to sustainable large-scale deployment of soft robots for
monitoring the ocean, leading to an increased spatial reso-
lution for environmental data and remote autonomous asset
management.

We wish to encourage present soft robotic studies to de-
velop systems still at a prototype level toward a real world
application. Data, even if sparse, from remote environments
are extremely precious. In the future soft robotic systems
should aim to reach the autonomy, memory, precision, and

efficiency of marine rigid robots currently in use. Then their
dexterity and biodegradability will be an invaluable added
feature in sharp contrast with traditional robots.
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