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Abstract

Estradiol has been used to prevent metabolic diseases, bone loss and menopausal 
symptoms, even though it might raise the risk of cancer. Metformin is usually prescribed 
for type 2 diabetes mellitus and lowers food intake and body mass while improving 
insulin resistance and the lipid profile. Ovariectomized rats show increased body mass, 
insulin resistance and changes in the lipid profile. Thus, the aim of this work was to 
evaluate whether metformin could prevent the early metabolic dysfunction that occurs 
early after ovariectomy. Female Wistar rats were divided into the following groups: 
SHAM-operated (SHAM), ovariectomized (OVX), ovariectomized + estradiol (OVX + E2) 
and ovariectomized + metformin (OVX + M). Treatment with metformin diminished 
approximately 50% of the mass gain observed in ovariectomized animals and reduced 
both the serum and hepatic triglyceride levels. The hepatic levels of phosphorylated AMP-
activated protein kinase (pAMPK) decreased after OVX, and the expression of the inactive 
form of hepatic acetyl-CoA carboxylase (ACC) was also reduced. Metformin was able to 
increase the levels of pAMPK in the liver of OVX animals, sustaining the balance between 
the inactive and total forms of ACC. Estradiol effects were similar to those of metformin 
but with different proportions. Our results suggest that metformin ameliorates the early 
alterations of metabolic parameters and rescues hepatic AMPK phosphorylation and ACC 
inactivation observed in ovariectomized rats.

Introduction

Metabolic syndrome is defined as the presence of at least 
three of a set of features, such as abdominal obesity, high 
fasting glycemia, high blood pressure and dyslipidemia, 
which is characterized by one or more disorders as 
increased levels of serum triglycerides or reduced levels of 
high-density lipoprotein (HDL). Postmenopausal women 
have an elevated risk of developing metabolic syndrome 
compared to premenopausal women (1). In menopause, 
there is a reduction of ovarian function that is linked 
to decreased estradiol production. In this context, 
estrogens are used for hormone therapy to prevent the 
development of metabolic disorders (2, 3). It has been 

shown that although estrogen hormone replacement 
therapy has many benefits, it also increases the risk 
of developing cancer (3, 4, 5). In this study, we used 
ovariectomized animals, a model in which animals have 
both ovaries removed and therefore mimics the estrogen 
deficiency that occurs during menopause. Ovariectomy is 
frequently used in literature for a better understanding of 
metabolic disorders of menopause (6, 7), and for testing 
pharmacological alternatives to prevent menopause 
disturbances (8, 9).

During recent decades, the biguanide metformin 
has become one of the most prescribed antidiabetic 
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drugs worldwide. Although the mechanism of action 
of metformin is not fully understood (10), metformin 
is widely used for the treatment of metabolic disorders 
found in type 2 diabetes mellitus, polycystic ovary 
syndrome and metabolic syndrome (11). Metformin 
ameliorates glycemia levels, insulin sensitivity and body 
mass gain, which are some of the alterations detected in 
ovariectomized rodents (11, 12, 13).

The goal of this study was to evaluate the effects 
of metformin administration in the metabolism of 
short-term ovariectomized rats, comparing to estrogen 
replacement. Metformin was able to partially prevent 
body mass gain and food efficiency, and the drug also 
prevented the increase in food ingestion. Metformin 
treatment also decreased hepatic and serum triglyceride 
levels, probably due to an increase of liver phosphorylated 
AMP-activated protein kinase (pAMPK) and inactivated 
acetyl-CoA carboxylase (ACC) levels. Taken together, our 
data suggest that metformin has metabolic effects similar 
to those observed with estradiol treatment and therefore 
has a potential role in the prevention of early alterations 
in metabolic parameters in ovariectomized rats.

Materials and methods

Animals

Female Wistar rats (Rattus norvegicus) were maintained 
in a 12-h light-dark cycle at a constant temperature of 
22 ± 1°C. Water and food (NUVILAB-CR-1, from Quimtia, 
Parana, Brazil) were available ad libitum. Animal handling 
and euthanasia procedures were approved by the 
Institutional Animal Care and Use Committee (CEUA) of 
the Universidade Federal do Rio de Janeiro, Brazil (number 
170/13).

Animal procedure

Female rats weighing between 180 and 220 g underwent 
ovariectomy surgery. The bilateral ovariectomy was 
performed by surgical procedure, as previously described 
with few modifications (14, 15). In brief, just prior 
the surgery, animals were weighted to calculate the 
amount of anesthetic required for general anesthesia. 
A combination of 50 mg/kg ketamine and 5 mg/kg 
xylazine was administrated by intraperitoneal injection. 
Abdominal area was cleaned with ethanol. To access 
peritoneal cavity, a surgical scalpel was used to make a 
small transverse peritoneal incision on the middle part 
of the lateral abdomen at both sides of the female rats. 

Ovaries were identified and removed (OVX) or exposed 
and reinserted into the peritoneal cavity (SHAM). After 
the procedure, animals were divided into four groups: 
sham-operated rats treated with corn oil subcutaneously 
(vehicle) (SHAM); ovariectomized rats treated with vehicle 
subcutaneously (OVX); ovariectomized rats treated with  
7 µg/kg of body mass of estradiol benzoate (Sigma-
Aldrich) subcutaneously with an injected volume of 
approximately 180–250 µL (OVX + E2), and ovariectomized 
rats treated with vehicle subcutaneously and 5 g/L of 
1,1-dimethylbiguanide hydrochloride (metformin) in 
drinking water (purified from Sigma-Aldrich or from 
commercial MERCK, Darmstadt, Germany; drugs used 
after filtration and validation that the biological actions 
were the same) (OVX + M). The dose of estradiol benzoate 
was the same as used by Pantaleão  et al. (16). Based on 
Johns Hopkins manual of animal care and use committee 
(http://web.jhu.edu/animalcare/procedures/rat.html; 
retrieved August 28, 2019) and the results described 
by Castro   et  al. (17), Wistar rats drink approximately  
10 mL/100 g of body mass per day. This allows us to calculate 
a daily ingestion of approximately 500 mg metformin/
kg/day, which is a dose used found in the literature that 
is able to ameliorate some cardiovascular parameters, 
protect against mitochondria damage, decrease insulin 
levels, food intake, body weight gain, serum triglycerides, 
increase glucose tolerance and insulin sensitivity (18, 
19, 20, 21, 22, 23). Animals were housed individually, 
and daily food intake was monitored. Rats were weighed 
daily, and the percentage of mass gain was calculated by 
setting the mass immediately after surgery as 100%. Food 
efficiency was calculated by the difference between final 
(at 20 days postsurgery) and initial (immediately after 
surgery) body mass, and dividing by the total food intake 
in grams during the 20 days of treatment of each animal.

Twenty days after ovariectomy, the rats were fasted 
for 14 h and killed by decapitation at 21 days post surgery. 
Blood was collected from the trunk, centrifuged at 1500 g  
for 20 min at room temperature, and the serum 
was stored at −80°C. The liver, white gastrocnemius  
(W. Gastrocnemius) and soleus muscles, uterus,interscapular 
brown adipose tissue (BAT) and white adipose tissue 
depots (retroperitoneal, inguinal and gonadal) were 
excised, weighed and normalized to the rat tibia length.

Serum analyses

The levels of serum total cholesterol, total triglycerides 
and high-density lipoprotein (HDL) were analyzed with 
commercial kits (K083-2, K117-2 and K071-1, respectively 
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from Bioclin, Belo Horizonte, Brazil). Insulin and 
17β-estradiol levels were measured by radioimmunoassay 
kits from MP Biomedicals (Santa Ana, USA). The quantitative 
insulin sensitivity check index (QUICKI) was calculated as 
previously described: QUICKI = 1 / (LOG fasting glycemia 
(mg/dL) + LOG fasting insulin (µU/mL)) (24).

Hepatic cholesterol and triglyceride levels

Protocol based on Bucolo & David and Allain  et al. (25, 
26) with minor modifications, as described by Nigro et al. 
(27). Briefly, 30 mg of liver was homogenized in 350 µL 
of PBS and 350 µL of 0.25% deoxycholic acid, and 10 
µL of the homogenate was incubated for 5 min at 37°C. 
Two hundred microliters of cholesterol or triglyceride 
(TG) reagent from a Bioclin (Belo Horizonte, Brazil) kit 
was added and incubated for more than 10 min at 37°C. 
The absorbance was read at 500 nm according to the 
manufacturer’s instructions.

RNA isolation and quantification

Approximately 50 mg of liver or 100 mg of hypothalamus 
was homogenized in TRI Reagent (Sigma-Aldrich) according 
to the manufacturer’s instructions. Samples were treated 
with 0.04 IU/μL of DNase (Thermo Fisher Scientific) for 
20 min at room temperature. After TRI Reagent extraction, 
cDNA was synthesized with minor alterations using 1 µL 
of oligo dT primers and the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems). For real-time PCR, 
the manufacturer’s protocol from a Power SYBR Green 
Master Mix (Thermo Fisher Scientific) was used. The primers 
used are described in Table 1. mRNA expression of the 
genes of interest was calculated using the relative standard 
curve method and normalized to the mRNA expression of 
the housekeeping gene peptidylprolyl isomerase A, Ppia.

Western blotting analysis

Approximately 50 mg of liver was homogenized in 500 µL 
of buffer containing 20 mM Tris (pH 8.0), 150 mM NaCl,  
2.7 mM KCl, 1 mM MgCl2, 10% (v/v) glycerol, 1% (v/v) 
Triton X-100, 0.5 mM Na3VO4, 1 µM phenylmethylsulfonyl 
fluoride, 10 mM NaF and 1× protease and phosphatase 
inhibitor cocktails (Sigma-Aldrich P8340 and P0044, 
respectively). After 10 min of centrifugation at 1500 g  
at 4°C, the supernatant was collected. The protein 
concentration was determined as described by Smith 
and collaborators (28) using a bicinchoninic acid 
assay kit (Thermo Fisher Scientific). Electrophoresis 
was performed on polyacrylamide SDS-PAGE  
gels as described by Laemmli (29) using a 7.5% (w/v) gel 
for ACC and a 10% (w/v) gel for AMPK. Wet transfer to a 
PVDF membrane was performed for 120 min at 110 V in 
a buffer containing 192 mM glycine, 25 mM Tris and 20% 
(v/v) methanol. The membranes were blocked for 1 h in 
3% (w/v) BSA in Tris-buffered saline containing 0.1% (v/v) 
Tween 20 (TBS-T). Membranes were incubated overnight 

Table 1 Primers sequence for amplification of genes in liver or hypothalamus of Wistar rats via qRT-PCR.

Sequence NCBI reference Fragment size (bp)

Prkaa1 F: CAGTACACCGTCTGATATTTTCATG NM_019142.2 142
R: ACAATAGTCCACACCAGAAAGG

Prkaa2 F: ACCGTTCTATTGCCACTCTG NM_023991.1 126
R: CTTCAGGAAAGAGGTAACTGGG

Acaca F: TCCGGCTTGCACCTAGTAAA NM_022193.1 104
R: CCCCCAAAACGAGTAACAA

Ppia F: GCTGTCTTTGGAACTTTGTCTG NM_017101.1 129
R: CCGCTGTCTCTTTTCGCC

Pomc F: CCACTGAACATCTTCGTCCTC NM_139326.2 75
R: GAATCTCGGCATCTTCCAGG

Npy F: GACAGAGATATGGCAAGAGATCC NM_012614.2 148
R: CTAGGAAAAGTCAGGAGAGCAAG

Agrp F: CCATATAAGCTCAGGGCACAAG NM_033650.1 93
R: GACACAGCTCAGCAACATTG

Pmch F: ATTCTCCCCACATTCTCTTCG NM_012625.1 143
R: CTACGTTCCTGATGGACTTGG

Actb F: ACAACCTTCTTGCAGCTCCTC NM_031144.3 275
R: GCCGTGTTCAATGGGGTACT

Acaca, acetyl-CoA carboxylase alpha; Actb, actin, beta; Agrp, Agouti-related neuropeptide; Npy, Neuropeptide Y; Pmch, pro-melanin-concentrating 
hormone; Pomc, proopiomelanocortin; Ppia, peptidylprolyl isomerase A; Prkaa1 and Prkaa2, protein kinase AMP-activated catalytic subunit alpha 1 or 2, 
respectively; Srebf1, sterol regulatory element-binding transcription factor 1.
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with the appropriate primary antibodies (Table 2). Then, 
the membranes were washed and incubated with the 
appropriate secondary antibody for 1 h. After detection 
of the immunocomplex using a Luminata Forte Western 
HRP Substrate (Millipore), the membranes were incubated 
with 0.01% (w/v) sodium azide in 3% (v/v) BSA in TBS-T 
to inhibit the signal from the secondary antibody. Then, 
immunodetection was also performed for α-tubulin as 
a loading control. Images were quantified using ImageJ 
1.52a software (National Institutes of Health, NIH, 
Bethesda, USA) (30). Western blotting for phosphorylated 
and total ACC, and phosphorylated and total AMPK 
proteins, were done using different polyacrylamide gels 
and thus values of the same animal were normalized.

Statistical analysis

Data are expressed as the mean ± s.e.m. and were analyzed 
using GraphPad Prism 6 Software. Daily body mass gain 
was analyzed by two-way ANOVA followed by Bonferroni’s 
post-test. All the other data were analyzed by one-way 
ANOVA with Tukey’s post-test to detect the differences 
between all groups. Statistical significance was inferred 
when P < 0.05. Symbols were used to describe P values 
smaller than 0.05.

Results

Effects of estradiol and metformin on the body 
mass gain and food intake of ovariectomized rats

Based on the various well-described benefits of metformin, 
we decided to investigate the effect of this drug on 
the phenotype observed in ovariectomized rats. As 
documented previously (27), sham-operated (SHAM) rats 
showed a progressive elevation of their body masses from 
day 1 to the end of day 20 after surgery (data not shown).

In agreement with the literature (6, 9, 13), the 
ovariectomized animals gained significantly more body 

mass than the SHAM animals (Fig. 1, black and white 
squares, respectively). Estradiol replacement completely 
prevented body mass gain in the OVX animals (OVX + E2, 
light gray squares), and metformin administration (5 g/L 
in drinking water) was also able to attenuate body mass 
gain in the OVX group (OVX + M, dark gray squares); 
while the OVX rats presented a 16% body mass gain, the 
OVX + M group gained only 7% more body mass than 
SHAM group (Table 3). The prevention of body mass gain 
was statistically significant from the 13th day after surgery 
onward, although the trend was already observed in the 
first days of metformin administration.

To further understand the change in body mass, we 
weighed several tissues (Table 3). We did not observe 
any changes in the W. Gastrocnemius portion, soleus 
or BAT mass. Twenty-one days after OVX, an increased 
inguinal white adipose tissue content was observed in 
OVX rats compared to SHAM group (P = 0.09). This effect 
was prevented by estradiol treatment, and metformin 
promotes a decrease (P = 0.11) comparing to OVX. There 
was a trend to increase retroperitoneal adipose tissue mass 
in OVX rats (P = 0.12) that was abolished in the metformin 
and estradiol treatment groups comparing to SHAM. We 
also observed an increase in the liver mass of OVX + E2 
rats, although their liver triglyceride content was reduced 
(Fig. 3). This increment might be an effect of estradiol 
increasing cell proliferation, as already documented (31).

Table 2 Antibodies.

Reference Dilution

Phospho-AMPKα (Thr172) #2531 (Cell Signaling) 1:2500
AMPKα #2532 (Cell Signaling) 1:2000
Phospho-acetyl-CoA 

carboxylase (Ser79)
#3661 (Cell Signaling) 1:2500

Acetyl-CoA carboxylase #3662 (Cell Signaling) 1:2500
Monoclonal anti-α-tubulin T5168 (Sigma) 1:25,000
Anti-rabbit IgG A0545 (Sigma) 1:2500
Anti-mouse IgG A3673 (Sigma) 1:2500

Figure 1
Body mass gain in ovariectomized Wistar rats treated with estradiol or 
metformin. Body mass was measured during the 20 days postsurgery. The 
body mass percentage was calculated based on the body mass just after 
surgery and normalized to the SHAM mean of each experimental 
procedure for each day after surgery. The animal groups were SHAM-
operated rats treated with vehicle (SHAM), ovariectomized rats treated with 
vehicle (OVX), ovariectomized rats treated with 7 µg/kg of body mass of 
estradiol benzoate (OVX + E2) and ovariectomized rats treated with vehicle 
and 5 g/L of metformin in the drinking water (OVX + M). Data are shown as 
the mean ± s.e.m. of 13–18 animals per experimental group. Two-way 
ANOVA was used to compare groups and followed by Bonferroni’s post-test 
to detect differences compared with the SHAM group. *P < 0.05.
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Although OVX animals showed a significant 
increase in food intake (Table 4), it was not solely 
responsible for the observed increase in body mass since 
food efficiency (body mass gain/food intake) was also 
increased in OVX rats. Metformin treatment prevented 
the increase in food intake but did not completely 
normalize food efficiency, since it was smaller in the 
OVX + M than in the OVX group, but was higher in 
OVX + M than in the SHAM group. Estradiol treatment 
completely prevented the increase in both food intake 
and food efficiency.

To better understand the alterations in food intake 
observed in OVX rats, we analyzed the hypothalamic 
mRNA levels of orexigenic and anorexigenic markers  
(Fig. 2), but the levels were unaltered.

Serum hormone levels

Despite the slight increase in insulin levels in the OVX + E2 
group comparing to SHAM group (P = 0.06), and the 
significant increase comparing OVX and OVX + M groups, 

glycemia did not differ among the groups. However, 
metformin treatment slightly increased QUICKI index 
when comparing to OVX + E2 (Table 4). Although minor 
changes were detected in OVX + E2 group, we observed 
that short-term ovariectomy did not significantly alter 
these parameters.

Although serum 17β-estradiol levels were not 
significantly decreased in the OVX and OVX + M groups, 
these groups showed a significant decrease in uterus mass 
(Tables 3 and 4), which indicates atrophy of this tissue. 
The OVX + E2 group showed increase in both 17β-estradiol 
serum levels and uterus mass.

Serum and hepatic lipid profiles

The OVX group showed a statistically significant increase 
in serum cholesterol levels, with no statistical changes 
in the OVX + E2 and OVX + M groups (Fig. 3A). Despite 
this observation, there was a decrease in the hepatic 
cholesterol levels in OVX + E2 in comparation to OVX and 
OVX + M groups (Fig. 2B).

Table 3 Body mass gain and tissue mass/tibia length at the end of the 21 days of treatment.

SHAM OVX OVX + E2 OVX + M

Body mass gain 1.00 ± 0.01 1.16 ± 0.01b 0.99 ± 0.01d 1.07 ± 0.01d,b,f

Uterus 1.00 ± 0.08 0.24 ± 0.01b 1.25 ± 0.09d,a 0.25 ± 0.02b,f

Liver 1.00 ± 0.02 1.05 ± 0.02 1.13 ± 0.03b 1.02 ± 0.03e

BAT 1.00 ± 0.05 1.07 ± 0.07 1.12 ± 0.06 1.16 ± 0.05
Retroperitoneal 1.00 ± 0.06 1.35 ± 0.18 0.97 ± 0.04 1.13 ± 0.09
Inguinal 1.00 ± 0.04 1.17 ± 0.05 0.97 ± 0.05c 1.01 ± 0.06
Gonadal 1.00 ± 0.06 1.02 ± 0.01 0.94 ± 0.07 0.88 ± 0.06
W. Gastrocnemius 1.00 ± 0.05 1.05 ± 0.04 0.99 ± 0.03 0.99 ± 0.05
Solear 1.00 ± 0.03 1.02 ± 0.02 1.00 ± 0.03 1.02 ± 0.07

White adipose tissue depots (retroperitoneal, inguinal and gonadal); BAT, interscapular brown adipose tissue; W. gastrocnemius, gastrocnemius-white 
portion. Values of SHAM means: body mass weight at 20 days post surgery: 211.9 ± 3.4 g; uterus: 16.5 ± 1.8 mg/mm; liver: 180.9 ± 3.9 mg/mm; BAT: 
5.9 ± 0.5 mg/mm; retroperitoneal: 33.5 ± 4.4 mg/mm; inguinal: 68.8 ± 5.8 mg/mm; gonadal: 52.9 ± 6.0 mg/mm; W. Gastrocnemius: 14.5 ± 1.8 mg/mm ; 
solear: 5.0 ± 0.3 mg/mm. Data were normalized by sham mean of each experimental procedure and represented as mean ± s.e.m., n = 10–11. One-way 
ANOVA was used to compare groups, followed by Tukey’s post-test to detect differences: aP < 0.05, bP < 0.01 vs SHAM group; cP < 0.05, dP < 0.01 vs OVX 
group; eP < 0.05, fP < 0.01 vs OVX + E2 group.

Table 4 Animal parameters.

SHAM OVX OVX + E2 OVX + M

Food intake 1.00 ± 0.02 1.16 ± 0.03a 1.02 ± 0.28c 0.98 ± 0.02c

Food efficiency 1.00 ± 0.14 3.33 ± 0.31a 0.59 ± 0.20c 2.02 ± 0.19c,a,e

Glycemia 1.00 ± 0.02 1.02 ± 0.04 1.01 ± 0.03 0.94 ± 0.03
Insulin 1.00 ± 0.04 0.97 ± 0.04 1.20 ± 0.07b 0.96 ± 0.05d

QUICKI 1.00 ± 0.01 1.00 ± 0.01 0.97 ± 0.01 1.01 ± 0.01d

17β-estradiol 1.00 ± 0.10 0.71 ± 0.06 3.24 ± 0.22c,a 0.93 ± 0.11e

Values of SHAM means: food intake: 378 ± 15 g; food efficiency: 0.042 ± 0.005 g/g; glycemia: 94.4 ± 3.2 mg/dL; insulin: 14.4 ± 0.8 µIU/mL; QUICKI: 
0.321 ± 0.004; 17β-estradiol: 117.0 ± 20.89 pg/mL. Data were normalized by SHAM mean of each experimental procedure and represented as 
mean ± s.e.m., n = 9–18. One-way ANOVA was used to compare groups, followed by Tukey’s post-test to detect differences: aP < 0.01 vs SHAM group; 
bP < 0.05, cP < 0.01 vs OVX group; dP < 0.05, eP< 0.01 vs OVX + E2 group.

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-19-0470

https://ec.bioscientifica.com	 © 2019 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-19-0470


C S Barthem et al. Metformin ameliorates 
metabolism in OVX rats

1573

PB–11

8:12

Triglyceride levels were reduced in the serum of OVX 
rats but did not change in the liver. The OVX + E2 group 
had an opposite profile, with no changes in serum TG levels 
compared to SHAM and lower hepatic TG levels compared 
to SHAM and OVX. In contrast, metformin treatment 
reduced both the serum and hepatic triglyceride content 
comparing to SHAM and OVX group, respectively.

Hepatic AMPK and ACC levels

Since it is known that metformin is a potent activator 
of AMPK and to better understand the reduction in 
the serum and hepatic triglyceride levels observed in 
the OVX + M rats, we investigated the protein levels of 
AMPK and ACC in our model. AMPK plays a key role 
in metabolic homeostasis in the cell. Activated AMPK 
(pAMPK) phosphorylates ACC, leading to the inhibition 
of ACC and the blockade of lipid synthesis (32).

Hepatic pAMPK (Thr-172) levels were analyzed by 
Western blotting (Fig. 4A), and OVX diminished pAMPK 
levels, but this decrease was prevented by the estradiol 
and metformin treatments. We did not observe any 
changes in total AMPK (Fig. 4B). Although there were no 
statistical changes in pAMPK/tAMPK ratio (Fig. 4C), we 
observed the same expression profile as seen in pAMPK. 
No alterations were seen in AMPK mRNAs expression: 

protein kinase AMP-activated catalytic subunit alpha 1 
(Prkaa1) and alpha 2 (Prkaa2) (Fig. 4D).

As expected given the reduced levels of pAMPK, pACC 
levels were also reduced in the OVX rats, but interestingly, 
metformin treatment did not normalize pACC levels 
(Fig. 5A). However, we noticed that the total ACC levels 
tended to decrease in the OVX + M group comparing to 
SHAM (P = 0.06) (Fig. 5B). The data from Fig. 5A and B 
allowed us to estimate the amount of ACC in the inactive 
state using the ratio of pACC/total ACC. As shown in Fig. 
5C, we observed decreased levels of ACC inhibition only 
in the ovariectomized rats, thus metformin treatment 
increased the amount of ACC inhibition, which was 
not significantly different from neither SHAM nor OVX 
groups. Acetyl-CoA carboxylase alpha (Acaca) mRNA levels, 

Figure 2
Hypothalamus mRNA expression. qRT-PCR for (A) Npy, neuropeptide Y,  
(B) Pomc, proopiomelanocortin, (C) Agrp, Agouti-related neuropeptide,  
(D) Pmch, pro-melanin-concentrating hormone expression. The quantity 
of each target gene was normalized to that of Actb, actin, beta in the 
respective sample (n = 4–5). Data were normalized to the SHAM mean of 
each experimental procedure and are represented as the mean ± s.e.m. 
One-way ANOVA was used to compare groups and was followed by 
Tukey’s post-test to detect the differences between groups. No 
statistically significant differences were detected.

Figure 3
Lipid profile. (A) Serum lipid profile. Animals were fasted for 14 h before 
being killed by decapitation, and their blood was collected and 
centrifuged as described in the ‘Materials and methods’ section. The 
cholesterol (white bars; SHAM mean 65.0 ± 2.7 mg/dL), triglyceride (black 
bars, SHAM mean 30.7 ± 2.6 mg/dL), and HDL (gray bars, SHAM mean 
20.2 ± 1.0 mg/dL) levels were analyzed using commercial kits (n = 7–14). (B) 
The hepatic cholesterol (white bars, SHAM mean 3.8 ± 0.3 mg/g) and 
triglyceride (black bars, SHAM mean 16.2 ± 0.6 mg/g) levels were analyzed 
using commercial kits (n = 13–18). Data were normalized to the SHAM 
mean of each experimental procedure and are represented as the 
mean ± s.e.m. One-way ANOVA was used to compare groups and was 
followed by Tukey’s post-test to detect differences: *P < 0.05, **P < 0.01 vs 
SHAM group; #P < 0.05, ##P < 0.01 vs OVX group; &P < 0.05, &&P < 0.01 vs 
OVX + E2 group.
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which encodes ACC, were higher in the OVX rats treated 
with estradiol (Fig. 5D), corroborating the rise in the ACC 
protein levels. Since metformin treatment did not change 
the ACC mRNA levels, our results suggest that metformin 
acts mainly by post-transcriptional regulation of the 
AMPK/ACC pathway in this ovariectomized rat model.

Discussion

Here we show that, similar to estradiol administration, 
metformin treatment improves metabolism in 
ovariectomized rats, although the treatments achieved 
different degrees of impact. We focused in metformin 
prevention of ovariectomy’s metabolic effects. To 
minimized the effects of obesity that naturally develops 
after ovariectomy in rats (8), we have chosen a short-term 
treatment of only 21 days with a normal diet.

Metformin is widely known to reduce body mass 
gain in human (33), rats (34) and mice (35), but in 
ovariectomized rodents, the effect of metformin on 
metabolism has been poorly explored. However, there 
are a few studies that investigated the treatment with 
metformin for 1 (36) or 4 weeks (37, 38) that confirmed 
our results of reduced body mass gain (Fig. 1), but these 
studies did not focus on metabolic pathways.

Ovariectomy is known to augment adipose tissue 
depots, but this is usually shown with a longer post-
OVX time course or the ingestion of a high-fat diet 
(13, 39). We observed a tendency to increase inguinal 
and retroperitoneal adipose tissue depot in this short-
term post-OVX that was prevented by metformin and 
estradiol treatment (Table 3). This observation alone does 
not explain the differences observed in body mass gain. 
Further studies should be performed to investigate the 
observed effects on body mass gain. In agreement with 
previous works (27, 40), here we found a rise in food 

Figure 4
AMPK levels in the liver. (A) Western blotting for pAMPK (n = 8–10) and (B) 
total AMPK (tAMPK) (n = 5). Fifteen micrograms of total liver homogenate 
derived from the different experimental groups was loaded on the gel. 
The immunodetection was performed with an anti-pAMPK or anti-tAMPK 
antibody. After an overnight incubation in 0.01% sodium azide in 3% BSA, 
an anti-α-tubulin antibody was used as the loading control. 
Representative experiments for pAMPK, tAMPK and α-tubulin detection 
are shown. Each lane represents one animal. S, SHAM; O, OVX; E, 
OVX + E2; M, OVX + M. (C) The values of pAMPK/α-tubulin were normalized 
to those of tAMPK/α-tubulin in each sample (n = 4–6). (D) qRT-PCR for 
Prkaa1 expression and Prkaa2 expression. The quantity of each target 
gene was normalized to that of Ppia in the respective sample (n = 8–10). 
Data were normalized to the SHAM mean of each experimental 
procedure and are represented as the mean ± s.e.m. One-way ANOVA was 
used to compare groups and was followed by Tukey’s post-test to detect 
differences: *P < 0.05 vs SHAM group.

Figure 5
Hepatic ACC levels. (A) Western blotting for pACC (n = 8–11) and (B) total 
ACC (tACC) (n = 8–11). Fifteen micrograms of total liver homogenate 
derived from the different experimental groups was loaded on the gel. 
The immunodetection was performed with an anti-pACC or anti-tACC 
antibody. After an overnight incubation in 0.01% sodium azide in 3% BSA, 
an anti-α-tubulin antibody was used as the loading control. 
Representative experiments for pACC, tACC and α-tubulin detection, 
where each lane represents one animal, are shown. S, SHAM; O, OVX; E, 
OVX + E2; M, OVX + M. (C) The values of pACC/α-tubulin were normalized 
to those of tACC/α-tubulin in each sample (n = 5–6). (D) qRT-PCR for Acaca 
expression. The quantity of the target gene was normalized to that of Ppia 
of in the sample (n = 9–10). Data were normalized to the SHAM mean of 
each experimental procedure and are represented as the mean ± s.e.m. 
One-way ANOVA was used to compare groups and was followed by 
Tukey’s post-test to detect differences: *P < 0.05, **P < 0.01 vs SHAM 
group; ##P < 0.01 vs OVX group; &P < 0.05, &&P < 0.01 vs OVX + E2 group.
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efficiency induced by ovariectomy in the rats. For the 
first time of our knowledge, we identified that metformin 
treatment was able to decrease food efficiency (Table 4), 
showing that this drug can attenuate the development 
of early alterations observed in metabolic parameters 
detected in ovariectomized rats. In the present study, we 
show that metformin administration, as well as estradiol 
treatment, normalizes the food intake of OVX rats; 
however, previous studies in mice treated with a lower 
dose of metformin did not find similar results (37).

It has been shown that estradiol increases anorexigenic 
Pomc and decreases orexigenic Npy mRNA expression (41) 
and that metformin reduced the mRNA levels of Npy in 
a diabetic animal model and in cultured hypothalamic 
neurons (42, 43). Here, we did not find any differences 
in Npy, Pomc, Agrp and Pmch expression (Fig. 3), probably 
due to the 14 h of fasting used in this study to allow the 
analysis of serum lipids. Perhaps, this prolonged fasting 
time had hyper stimulated the expression of orexigenic 
genes and inhibited the expression of anorexigenic gene.

Fasting glycemia did not change in this short time 
after ovariectomy, and insulin levels were increased only 
by estradiol treatment, which might be due to the positive 
effect of estradiol on insulin secretion (44). This led to a 
minor increase of insulin sensitivity, detected by QUICKI 
calculation by metformin treatment when to OVX + E2 
group (Table 4).

Natural menopause in rodents occurs with the arrest 
of regular ovarian cycling, followed by irregular cycling, 
and then an arrest in cycling that maintains a constant 
cycle phase without a reduction in the estradiol levels 
(45). We did not observe any significant changes in serum 
17β-estradiol levels in the OVX rats at 21 days, although 
some previous studies have reported decreased serum 
estradiol in models of ovariectomy (7, 46). Vaginal smears 
showed that the OVX and OVX + M rats were in a constant 
diestrous phase (data not shown), and uterus mass was 
hypotrophic in these two groups, demonstrating a low 
estradiol effect. The dose of 17β-estradiol administered 
was based on previous works and has been reported to be 
enough to abolish the body mass gain in ovariectomized 
rats (16, 27).

Pedram   et  al. (47) showed that estradiol activates 
AMPK, which diminishes the activation and mRNA levels 
of sterol regulatory element-binding transcription factor 1 
(Srebf1), which encodes sterol regulatory element-binding 
protein-1 (SREBP1), an important transcription factor of 
several lipogenic genes, and also decreases 3-hydroxy-3-
methylglutaryl CoA reductase (Hmgcr), which encodes 
3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 

reductase, a key enzyme of cholesterol synthesis. 
Although the role of estradiol in preventing the increase 
in serum cholesterol levels has already been described in 
a longer treatment protocol (48), we did not observe any 
significant changes in the serum cholesterol levels, and 
only a slight decrease in hepatic cholesterol in OVX + E2 
comparing to OVX group (Fig. 2) or the Srebf1 mRNA levels 
(fold change relative to SHAM; SHAM: 1.00 ± 0.20; OVX: 
0.76 ± 0.13; OVX + E2: 0.75 ± 0.16; OVX + M: 0.90 ± 0.17). 
We did not observe any significant effects of metformin 
on the serum and hepatic cholesterol levels of OVX 
rats when comparing to SHAM or OVX groups, despite 
the findings of Sivasinprasasn   et al. (37), who observed 
a reduction in the serum cholesterol levels in 12 weeks 
post-OVX rats treated with metformin for more 4 weeks. 
Although the effects of metformin on cholesterol levels 
have already been demonstrated in other models (49, 
50), the action of metformin in ovariectomized rats needs  
to be further studied.

Estradiol has been shown to play an important role 
in the expression of proteins involved in the hepatic 
production and formation of lipoproteins. This could 
explain the diminished levels of serum triglycerides 
observed in OVX rats, although we were not able to 
detect alterations in the hepatic TG content, as it has 
been seen in longer treatment models (9, 13, 51, 52). 
Geerling  et al. (53) showed that metformin increases the 
mass and activity of BAT, draining serum triglycerides. 
We did not observe any alteration in BAT mass (Table 
3) and in content of triglyceride per gram of tissue (data 
not shown). In fact, Nigro et al. (27) have shown, using 
the same experimental model, no alterations in BAT 
activity (oxygen consumption, ATP synthesis, and heat 
production) in ovariectomized rats. The authors have also 
found no differences in UCP1 protein levels and PGC1β 
mRNA expression in this tissue. So, BAT does not seem 
to be a metabolic target of changes in this short-term 
ovariectomy in rats, but further analysis is needed to 
exclude if metformin acts modulating BAT metabolism in 
this model. We saw a decrease in the levels of both serum 
and hepatic triglycerides, suggesting alterations in their 
production, utilization and/or absorption.

The precise mechanism by which metformin activates 
AMPK is still unknown, but it is widely accepted that 
this drug indirectly stimulates AMPK activation (10, 54, 
55). We showed that the effect of metformin is preserved 
in the liver of OVX rats (Fig. 4). Our study suggests that 
metformin is able to regulate the amount of total ACC, 
and increases the levels of the inactive state protein 
observed in this work (Fig. 5C).
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AMPK is known as a metabolic sensor and has already 
been shown to be responsible for increased lipolysis, 
fatty acid β-oxidation and mitochondrial biogenesis 
and to induce decreases in fatty acid synthesis and 
gluconeogenesis, among other effects (32). All these 
functions are impaired after ovariectomy (13, 27, 56, 57, 
58, 59), providing evidence that AMPK may be a key protein 
involved in the metabolic dysfunction that occurs due to 
the estrogen deficiency induced by ovariectomy. ACC is a 
limiting enzyme for lipogenic synthesis. Fullerton  et al. 
(60) showed in mice that a mutation in ACC that inhibits 
ACC phosphorylation by AMPK causes increased hepatic 
lipogenesis and decreased hepatic β-oxidation as well 
as insulin resistance and glucose intolerance. These 
features are also observed in ovariectomized models (13, 
56, 58). Thus, AMPK and ACC may be implicated in the  
benefits promoted by metformin and estradiol in 
ovariectomized animals.

Here, we showed that metformin, by preventing 
increases in body mass and serum and hepatic triglyceride 
levels as well as avoiding the inactivation of hepatic 
AMPK/ACC, is a potential drug to prevent the early 
metabolic impairment observed in ovariectomized 
rats. Further studies should be performed to investigate 
whether metformin treatment would have the same effect 
in a long-term ovariectomy model.
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