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The world is facing the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2). Likewise, other viruses of the Coronaviridae family were responsible for causing epidemics
earlier. To tackle these viruses, there is a lack of approved antiviral drugs. Therefore, we have developed
robust computational methods to predict the repurposed drugs using machine learning techniques
namely Support Vector Machine, Random Forest, k-Nearest Neighbour, Artificial Neural Network, and
Deep Learning. We used the experimentally validated drugs/chemicals with anticorona activity
(IC50/EC50) from ‘DrugRepV’ repository. The unique entries of SARS-CoV-2 (142), SARS (221), MERS
(123), and overall Coronaviruses (414) were subdivided into the training/testing and independent valida-
tion datasets, followed by the extraction of chemical/structural descriptors and fingerprints (17968). The
highly relevant features were filtered using the recursive feature selection algorithm. The selected chem-
ical descriptors were used to develop prediction models with Pearson’s correlation coefficients ranging
from 0.60 to 0.90 on training/testing. The robustness of the predictive models was further ensured using
external independent validation datasets, decoy datasets, applicability domain, and chemical analyses.
The developed models were used to predict promising repurposed drug candidates against coronaviruses
after scanning the DrugBank. Top predicted molecules for SARS-CoV-2 were further validated by molec-
ular docking against the spike protein complex with ACE receptor. We found potential repurposed drugs
namely Verteporfin, Alatrofloxacin, Metergoline, Rescinnamine, Leuprolide, and Telotristat ethyl with
high binding affinity. These ‘anticorona’ computational models would assist in antiviral drug discovery
against SARS-CoV-2 and other Coronaviruses.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The 21st century has experienced three novel coronavirus (CoV)
pandemics caused by the Severe Acute Respiratory Syndrome Virus
(SARS), Middle East Respiratory Syndrome Virus (MERS), and Sev-
ere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The
first SARS epidemic from November 2002 till July 2003 led to
around 8,000 reported cases, including about 700 deaths world-

wide (https://www.who.int/csr/sars/country/table2004_04_21/en/).
After about ten years, in June 2012, a second global CoVs outbreak,
i.e., MERS, continued until 2016, resulting in around 1,700
confirmed cases, including about 620 deaths globally [1]. The third
and ongoing SARS-CoV-2 pandemic, officially declared by WHO in
January 2020, has led to around 100 million global cases, including
around 3 million deaths as of April 2021.

Coronaviruses are spherically shaped (approx. 125 nm diame-
ter), positive-sense single-stranded RNA viruses [2,3]. They have
been classified into the order Nidovirales, family Coronaviridae,
and subfamily Orthocoronavirinae, and have the largest genome
ranging from 26 to 32 kb among the RNA viruses. They are further
grouped into alpha-coronavirus (a-CoV), beta-coronavirus (b-CoV),
gamma-coronavirus (c-CoV), and delta-coronavirus (d-CoV) based
on their genetic as well as antigenic variation [4]. SARS-CoV-2 is an
enveloped, positive-sense, unsegmented single-stranded RNA virus
that belongs to the genus Betacoronavirus [5]. SARS-CoV-2 genome
shows 79% and 50% sequence similarity to SARS and MERS gen-
omes, respectively [6]. The CoVs particles majorly consist of four
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different structural proteins, i.e., surface glycoprotein (S),
membrane glycoprotein (M), envelope (E), and nucleocapsid (N)
[7,8] while, some CoVs also encode auxiliary proteins which play
remunerate functions. The homotrimeric class I fusion protein,
namely S protein, allows the viral membrane to fuse with the host
cell surface receptors angiotensin-converting enzyme 2 (ACE2),
leading to fusion and viral entry [9,10] leading to SARS [11]. Addi-
tionally, SARS-CoV-2 has been reported to cause systemic infec-
tions in the digestive, circulatory, urogenital, and nervous system
[12].

Different prophylactic and therapeutic approaches, viz., vaccine
development, cellular therapies, have been deployed to tackle CoVs
diseases. Besides all these strategies, drug repurposing studies, i.e.,
looking for the efficacy of existing FDA-approved drugs against
CoVs, have been very crucial in this regard. Nucleoside analog
remdesivir (GS-5734) [13,14] chloroquine [15–17] and hydroxy-
chloroquine [18,19] are effective in vitro against SARS, MERS, and
SARS-CoV-2. Also, lopinavir/ritonavir (anti-retroviral drugs)
against SARS [20], MERS [21,22], and SARS-CoV-2 [23,24] are
reported to be effective in combination with other drugs such as
ribavirin and interferon-b.

Presently, the ongoing SARS-CoV-2 global pandemic requires an
urgent need for antiviral therapeutics to control its spread. Lack of
effective therapeutics to date necessitates the development of pre-
dictive computational tools that can speed up and support the
existing/ongoing experimental approaches for drug repurposing.
Molecular docking and dynamic simulations based on virtual
screening to identify antiviral compounds against SARS-CoV-2
have already been explored in this context [25,26]. Repurposed
drug identification by machine learning techniques (MLTs) based
approaches is less explored in CoVs’ drug discovery venture to
date. The MLTs based predictive algorithms have previously been
employed in the development of various antiviral predictors viz.,
AVPpred [27], AVP-IC50 Pred [28], HIVprotl [29], anti-flavi [30],
anti-nipah. However, our group recently developed a comprehen-
sive platform for analysis and identification of the epitopes for
the CoVs named ‘CoronaVR’ [31]. The input anti-CoVs data in the
current study was taken from our recently published comprehen-
sive database of the experimentally validated repurposed drug
database named ‘DrugRepV’ [32]. In the current study, we have
identified repurposed drug candidates (against SARS-CoV-2, SARS,
and MERS) using different MLTs like Support Vector Machine
(SVM), Random Forest (RF), k-Nearest Neighbour (KNN), Artificial
Neural Network (ANN), and Deep Learning [Deep Neural network
Table 1
The performance of the Severe Acute Respiratory Syndrome Virus (SARS), Middle East Res
(SARS-CoV-2), and Overall Coronaviruses among the training/testing dataset during 10-fold
Neighbour (KNN), and Artificial Neural Network (ANN).

Virus Algorithm Model Parameters

SARS SVM gamma:0.001C:50
RF n:100 depth:10 split:5 leaf:1
KNN k:9
ANN activation:tanh solver:sgd learning

SARS- CoV-2 SVM gamma:0.005C:50
RF n:500 depth:12 split:2 leaf:1
KNN k:11
ANN activation:tanh solver:sgd learning

MERS SVM gamma:0.0005C:100
RF n:400 depth:8 split:2 leaf:4
KNN k:5
ANN activation:relu solver:sgd

Overall Coronaviruses SVM gamma:0.0005C:500
RF n:400 depth:None split:10 leaf:4
KNN k:5
ANN activation:tanh solver:sgd learning

MAE, Mean absolute Error; RMSE, Root Mean Absolute Error; R2, Coefficient of Determi
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(DNN), Artificial Intelligence]. Further, we also predict the effective
anti-Corona compounds after scanning the DrugBank repository
through the developed predictive models.

2. Results

The robust prediction models were developed using various
MLTs like SVM, RF, KNN, ANN, and DNN. The efficacies of the train-
ing/testing and independent validation dataset were checked using
the performance parameters like Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Coefficient of Determination (R2), and
Pearson’s Correlation Coefficient (PCC or R). The chemical analysis
was also performed on the anti-CoVs (SARS, MERS, and SARS-CoV-
2) compounds. Further, the drug repurposing was done by scan-
ning the DrugBank through the developed machine learning
models.

2.1. Feature selection approach

Among the 17,968 descriptors and fingerprints, the 50 best per-
forming features of SARS, MERS, SARS-CoV-2, and overall CoVs
were selected, which represented their signatures (Supplementary
Table S1). In case of the SARS-CoV-2, the features like ExtFP172
(CDK extended fingerprints), RDF55u (RDF Descriptor, three
dimensions (3D)), KRFP504 (Klekota-Roth fingerprint), FP112
(CDK fingerprint), maxdNH (Electrotopological State Atom Type
Descriptor, two dimensional (2D)), FP8 (CDK fingerprint), L3i
(PaDEL WHIM Descriptor, 3D), E2e (PaDEL WHIM Descriptor, 3D),
Km (PaDELWHIM Descriptor, 3D), ExtFP756 (CDK extended finger-
prints), etc. However, for the MERS virus, the descriptors like
MOMI-XY, E3p, GraphFP309, P1m, PubchemFP462, TDB10u,
minHBint2, KRFPC3596, etc. Likewise, for viruses like SARS and
overall CoVs, top-50 features were extracted from the recursive
feature selection algorithm (Supplementary Table S1).

2.2. Quantitative structure–activity relationship model development

For SARS, various prediction models were developed using the
MLTS like SVM, RF, KNN, and ANN. The performance of the train-
ing/testing dataset with 198 datasets was calculated using the
10-fold cross-validation (Table 1). The prediction model developed
using the training/testing dataset achieved a PCC of 0.92, 0.76, 0.76,
and 0.73, from SVM, RF, KNN, ANN, respectively. In contrast, the 23
sequences of the independent validation dataset give an accuracy
piratory Syndrome Virus (MERS), Severe Acute Respiratory Syndrome CoronaVirus 2
cross validation using Support Vector Machine (SVM), Random Forest (RF), k-Nearest

Dataset MAE RMSE R2 PCC

T198 0.21 0.42 0.82 0.92
T198 0.49 0.74 0.54 0.76
T198 0.50 0.69 0.53 0.76

:adaptive T198 0.83 0.92 0.14 0.73
T127 0.37 0.58 0.60 0.84
T127 0.84 0.86 0.15 0.50
T127 0.86 1.01 0.04 0.50

:constant T127 2.46 1.80 0.39 0.62
T110 0.08 0.30 0.78 0.92
T110 0.37 0.53 0.16 0.60
T110 0.30 0.56 0.29 0.65
T110 1.04 0.69 0.16 0.49
T372 0.81 0.84 0.51 0.73
T372 1.19 1.08 0.31 0.58
T372 1.23 1.10 0.28 0.57

:constant T372 0.95 0.94 0.43 0.68

nation; PCC, Pearson’s correlation coefficient.



Table 2
The performance of the Severe Acute Respiratory Syndrome Virus (SARS), Middle East Respiratory Syndrome Virus (MERS), Severe Acute Respiratory Syndrome CoronaVirus 2
(SARS-CoV-2), and Overall Coronaviruses among the independent validation dataset during 10-fold cross-validation using Support Vector Machine (SVM), Random Forest (RF), k-
Nearest Neighbour (KNN), and Artificial Neural Network (ANN).

Virus Algorithm Model Parameters Dataset MAE RMSE R2 PCC

SARS SVM gamma:0.001C:50 V23 0.20 0.44 0.77 0.90
RF n:100 depth:10 split:5 leaf:1 V23 0.47 0.69 0.65 0.82
kNN k:9 V23 0.47 0.69 0.60 0.79
ANN activation:tanh solver:sgd learning:adaptive V23 0.26 0.51 0.81 0.92

SARS- CoV-2 SVM gamma:0.005C:50 V15 0.21 0.46 0.81 0.92
RF n:500 depth:12 split:2 leaf:1 V15 0.90 0.95 0.14 0.50
kNN k:11 V15 0.52 0.72 0.35 0.67
ANN activation:tanh solver:sgd learning:constant V15 2.64 1.62 0.66 0.68

MERS SVM gamma:0.0005C:100 V13 0.47 0.68 0.69 0.92
RF n:400 depth:8 split:2 leaf:4 V13 0.74 0.86 0.32 0.74
kNN k:5 V13 1.16 1.08 0.24 0.69
ANN activation:relu solver:sgd V13 0.75 0.87 0.39 0.50

Overall Coronaviruses SVM gamma:0.0005C:500 V42 0.78 0.88 0.53 0.75
RF n:400 depth:None split:10 leaf:4 V42 1.03 1.02 0.20 0.49
kNN k:5 V42 1.00 1.00 0.22 0.58
ANN activation:tanh solver:sgd learning:constant V42 1.02 1.01 0.39 0.67

MAE, Mean Absolute Error; RMSE, Root Mean Square Error; R2, Coefficient of Determination; PCC, Pearson’s Correlation Coefficient.
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of 0.90, 0.82, 0.79, and 0.92 correspondingly for the SVM, RF, KNN,
and ANN (Table 2). However, the training/testing and independent
validation dataset show PCC of 0.59 and 0.23, respectively, for the
DNN machine learning (Supplementary Table S2).

The prediction models were also developed for the MERS using
10-fold cross-validation on training/testing and independent vali-
dation datasets (Table 1). The training/testing with 110 datasets
displayed a PCC of 0.92, 0.60, 0.65, and 0.49, respectively, for the
SVM, RF, KNN, and ANN algorithms. While for the 13 independent
validation datasets, the MLTs lead to the PCC of 0.92, 0.74, 0.69, and
0.50 correspondingly (Table 2). However, the PCC of the
training/testing and independent validation dataset are 0.53 and
0.53, respectively, for the DNN machine learning (Supplementary
Table S2).

The SARS-CoV-2 dataset was subdivided into 127
training/testing and 15 independent validation dataset (Table 1).
The training/testing dataset shows the PCC of 0.84, 0.50, 0.50,
and 0.62, respectively, through the SVM, RF, KNN, and ANN
algorithms. However, the independent validation dataset resulted
in the PCC of 0.92, 0.50, 0.67, and 0.68 correspondingly on the MLTs
(Table 2). The training/testing and independent validation datasets
show the PCC of 0.70 and 0.51, respectively, for the DNN machine
learning (Supplementary Table S2).

The Overall CoVs include unique entries from the SARS, MERS,
and SARS-CoV-2 datasets. The overall entries were split into the
training/testing and independent validation datasets with 372
and 42 entries via the randomization approach available in SciKit
library (Table 1). The training/testing dataset provides the PCC of
0.73, 0.58, 0.57, and 0.68, respectively, during 10-fold cross-
validation through SVM, RF, KNN, and ANN. In comparison, the
independent validation dataset provides the PCC of 0.75, 0.49,
0.58, and 0.67 correspondingly for the MLTs (Table 2). However,
the PCC of the training/testing and independent validation dataset
are 0.61 and 0.67, respectively, for the DNNmachine learning (Sup-
plementary Table S2).
2.3. Applicability domain analysis

The applicability domain was calculated between the leverage
and the standardized residuals among the best performing SVM
models. All the models of SVM on the SARS, SARS-CoV-2, MERS,
and overall CoVs are highly robust with the leverage (h*) of 1.18,
1.20, 1.39, and 1.43 as shown in Fig. 1a. The actual and the
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predicted pIC50 plots among the SVM models of the SARS, SARS-
CoV-2, MERS, and the overall CoVs, also show their robustness,
as shown in Fig. 1b.

2.4. Validation using the decoy set

For all the developed models, the PCC values were calculated for
the random decoy sets by comparing the predicted pIC50 of a
decoy and its corresponding parent molecule. The SARS decoy
dataset shows the PCC of 0.10, 0.08, and 0.03 on sets 1, 2, and 3,
respectively. On SARS-CoV-2, we achieved PCC of 0.05, 0.01, and
0.05 on three sets. In the case of MERS, PCC of 0.11, 0.02, and
0.13 was obtained on sets 1, 2, and 3, respectively. The overall CoVs
show the PCC of 0.06, 0.01, and 0.004 on set 1, 2, and 3, respectively
(Fig. 2 and Supplementary Table S9).

2.5. Chemical diversity of anti-Coronaviruses molecules

Binning clustering of 221 anti-SARS compounds with a similar-
ity cut-off of 0.60 produced 101 bins. Similarly, binning clustering
of 123 anti-MERS compounds with a similarity cut-off of 0.60
produced 53 bins. Futhermore, binning clustering of 142 anti-
SARS-CoV-2 compounds with a similarity cut-off of 0.60 produced
131 bins. Multidimensional scaling at 3D showed the diversity of
the anti-SARS-CoV-2 compounds in the chemical space Fig. 3a.
Hierarchical clustering of the anti-SARS-CoV-2 compounds using
the single linkage method provided the hierarchy of compound
clusters provided in the form of circular plots, which shows high
chemical diversity in among them Fig. 3b. However, the 3D
multidimensional scaling and the hierarchical clustering of SARS
and MERS are shown in Supplementary Fig. S1. The 3D multidi-
mensional scaling shows that all the anti-corona compounds are
highly dissimilar in chemical structures. The anti-SARS-CoV-2
compounds are in more chemical diversity, followed by the anti-
MERS and the anti-SARS.

2.6. Prediction of promising repurposed anti-Coronavirus drug
candidates

The best performing SVM predictors were used to identify the
repurposed drug candidates against SARS, MERS, and SARS-CoV-2
(Fig. 3c, Supplementary Figs. S2-S4). For the SARS virus, the drugs
with high efficacies are Antrafenine, Methyprylon, Fosaprepitant,



Fig. 1. The robustness of the Support Vector Machine models of the Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and overall Coronavirus was checked using the a) William’s plot between the leverage and the standardized residuals. b)
the plot between the actual and predicted pIC50.
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Ledipasvir, Raltitrexed, Lumacaftor, Eluxadoline, Ingenol mebutate,
Lapatinib, Sacubitril, and Capreomycin with IC50 of 0.01, 0.02, 0.02,
0.03, 0.05, 0.05, 0.05, 0.05, 0.05, 0.07, and 0.07 lM respectively
(Supplementary Table S3). However, for MERS, the best-
performing drugs Cyanocobalamin, Ceruletide, Teniposide,
Trabectedin, Sincalide, Tetracosactide, Icatibant, Amisulpride,
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Tipranavir, Gabapentin enacarbil, and Peramivir has IC50 of 0.02,
0.03, 0.04, 0.04, 0.04, 0.06, 0.06, 0.06, 0.07, and 0.08 lM respec-
tively (Supplementary Table S4). In case of the SARS-CoV-2, the
drugs Verteporfin, Argatroban, Reboxetine, Guanfacine, Telotristat
ethyl, Betrixaban, Leuprolide, Trovafloxacin, Peramivir, Salmeterol,
Oxybuprocaine, and Warfarin are predicted drugs with high



Fig. 2. The scatter plot shows the correlation between the actual pIC50 and the
predicted pIC50 of the decoy dataset for Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome (SARS), Middle
East Respiratory Syndrome (MERS), and overall coronaviruses.
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performance of IC50 of 0.0003, 0.0004, 0.0005, 0.0007, 0.0007,
0.0008, 0.0008, 0.0009, 0.0009, 0.0010, 0.0011, 0.0011, and
0.0012 lM respectively (Table 3).
2.7. Molecular docking

The molecular docking technique is highly beneficial for under-
standing the protein-ligand interactions and bond lengths among
them. We have selected the top 20 compounds out of 80 predicted
molecules for SARS-CoV-2 based on their predicted high pIC50
value. These compounds were docked sequentially on SARS-CoV-
2 S protein (PDB: 6lzg) to calculate their best binding affinity in
Kcal/mol. The detailed result of their binding affinities are shown
in Supplementary Table S10. Analysis of binding affinity showed
that 15 out of 20 compounds have binding energies ranging from
�6.8 Kcal/mol to �9.5 Kcal/mol. These 15 compounds were
selected for the interaction with SARS-CoV-2 S-protein (PDB:
6LZG), and their comprehensive list is represented in Table 4. Addi-
tionally, 06 molecules Verteporfin, Alatrofloxacin, Metergoline,
Rescinnamine, Leuprolide, and Telotristat ethyl with binding
energy ranging from �8.0 Kcal/mol to �9.5 Kcal/mol and their
interacting residues are displayed in Figs. 4 and 5.

Interaction analysis of Verteporfin revealed 03 interactions with
the N-terminal domain (NTD) and 01 interaction with the C-
terminal domain (CTD) of the SARS-CoV-2 S-protein complex with
ACE2 receptor. These interactive residues were SER-77, TRP-203,
ASP-206, and GLU-398, which showed the conventional hydrogen
bond and carbon-hydrogen bond as shown in Fig. 5, along with
their bond lengths of 2.50(Å), 3.44(Å), 2.57(Å), and 3.60(Å), respec-
tively. The receptor-ligand complex formed between Ala-
trofloxacin and SARS-CoV-2 S-protein showed 12 interactions
with the CTD/Receptor binding domain (RBD) of SARS-CoV-2 S-
protein complexed with the ACE2 receptor Fig. 5. Apart from this,
Metergoline shows 09 interactions, out of which 07 interactions
belong to the NTD of SARS-CoV-2 S-protein complexed with
ACE2 receptor. Further, Rescinnamine shows 09 interactions, out
of which 06 interactions occur in the NTD, and the remaining 03
belong to the CTD of SARS-CoV-2 S-protein complexed with ACE2
receptor. Additionally, Leuprolide and Telotristat ethyl showed
14 and 08 interactions, respectively. In leuprolide, 13 out of 14
interactions and in Telotristat ethyl, 06 among the 08 interactions
occurred in the CTD/RBD of SARS-CoV-2 S-protein complexed with
ACE2 receptor. Table 4 represents the interacting residues, inter-
acting domain of the protein, type of interactions, as well as bond
length of the 06 ligands mentioned above.
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2.8. Status of the predicted repurposed drugs in literature

Apart from performing the cross-validation, internal validation,
and applicability domains, we also checked the literature to find
support for the experimental validation of our predicted repur-
posed drugs. For the same, we searched the predicted drugs from
our pipelines with the (if provided) inhibition efficiencies reported
in the literature through in vivo, in vitro, and computational
approaches (Supplementary Fig. S5). The detail of the top hits pre-
dicted from our pipeline, DrugBank ids, drug name, primary indica-
tion, and testing status are provided in Table 3.

From predicted drugs for the SARS-CoV-2, 17 drugs are already
found in clinical trials like Argatroban, Metformin, Amlodipine, etc.
(Table 3). Out of 17 drugs in clinical trials, 06 are reported as inter-
ventional studies (Argatroban, Metmorfin, Amlodipine, Simvas-
tatin, Isavuconazium, and Diosmin), 07 are in observational
studies (Reserpine, Doxazosin, Warfarin, Proparacaine, Bumeta-
nide, Guanfacine, and Acenocoumarol), and 04 are in clinical stud-
ies (but that are not relevant for SARS-CoV-2 treatments). Further,
some drugs are also predicted through computational approaches
(docking, simulations, etc.) like Lovastatin, Dronabinol, Lisuride,
etc. (Table 3). However, some drugs also validated through
in vivo studies, e.g., Nilotinib showing inhibition win Vero-E6 cells
and Calu-3 cells with EC50 of 1.44 lM and 3.06 lM, respectively,
while Bosutinib shows EC50 of 2.45 ± 0.12 lM for SARS-CoV-2.
Thus, this analysis demonstrates the robustness of our prediction
algorithm, which further suggests that the predicted drugs will
show promising results against the SARS-CoV-2.
3. Discussion

Currently, the world is facing the crisis of SARS-CoV-2 infection,
which has led to millions of deaths. Apart from present pandemics
of the SARS-CoV-2, other CoVs like SARS and MERS also caused var-
ious epidemics/pandemics in past years [33]. Numerous research-
ers around the world are focusing on developing drugs against the
SARS-CoV-2. Drug development is a very complex and time-
consuming process. However, in the current scenario of the
SARS-CoV-2 pandemic, the need for effective antiviral drugs is crit-
ical. In this regard, computational interventions would be an
essential step to speed up the research. Researchers have already
used different computational approaches to find potential drugs
against SARS-CoV-2 infection. To mention a few, Chen TF et al.,
have developed a drug database, DockCoV2, for SARS-CoV-2 which
focuses on predicting the binding affinity of FDA-approved and Tai-
wan National Health Insurance drugs [46]. Another web server,
DockThor-VS, developed by Guedes IA et al., provides a virtual
screening (VS) platform with curated structures of potential thera-
peutic targets from SARS-CoV-2 incorporating genetic information
relevant to non-synonymous variations [47]. In another study, Li R
et al., used network pharmacology-based computational analyses
to understand and characterize the binding capacity, biological
functions, pharmacological targets, and therapeutic mechanisms
of niacin in colorectal cancer (CRC)/COVID-19 [48]. Again, Kumar
A et al., have used a cheminformatics approach to create different
datasets and analyzed scaffold diversity to predict the SARS-CoV-
2 inhibitors [49]. Recently, Beck B et al., used a pre-trained deep
learning-based drug-target interaction model called molecule
transformer-drug target interaction (MT-DTI) to identify commer-
cially available drugs that could act on SARS-CoV-2 proteins [50].
Further, Zhou Y et al. group published their work of integrative
network-based systems pharmacology methodology for rapid
identification of repurposable drugs and drug combinations for
the potential treatment of 2019-nCoV/SARS-CoV-2 [51]. Mainly
the inhibitors were designed against the main protease (Mpro) of



Fig. 3. The chemical analysis of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) inhibitors a) The hierarchical clustering of the SARS-CoV-2 is depicted
using the circular plots, b) The 3-dimensional multiscaling plot among the SARS-CoV-2 inhibitors. c) Chemical network showing the status of top-10 predicted repurposed
drugs against Coronaviruses (SARS, SARS-CoV-2, and MERS). Blue color of the drug shows the predicted repurposed drugs unique to single virus, green color depicts the
common repurposed drugs between SARS-CoV-2 and MERS, orange color shows the common repurposed rugs between SARS and SARS-CoV-2, while the pink color shows the
common drug between the SARS and MERS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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SARS-CoV-2 using in-silico molecular docking approach. However,
the machine learning based approaches are less explored to predict
the drugs against SARS-CoV-2 infection.

MLTs based methods using the experimentally validated chem-
icals/drugs for anti-CoVs activity are lacking. The current study is
focused on predicting the efficient and novel drug repurposed can-
didates for the CoVs, SARS-CoV-2, MERS, and SARS. We extracted
the experimentally validated drugs/compounds tested for antiviral
activities for CoVs from the ‘DrugRepV’ database. To develop the
prediction algorithm, we explored 17,968 chemical and structural
descriptors (one dimensional 1D, 2D, and 3D) as well as finger-
prints. For the prediction algorithm, we used highly robust meth-
ods like feature selection, internal and external validation, MLTs,
and applicability domains. Among all MLTs used in developing
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the predictive models, the SVM outperformed the RF, KNN, ANN,
and DNN. The PCC of the SVM model of the CoVs, i.e., SARS,
SARS-CoV-2, MERS, and overall ranges from 0.73 to 0.92 on the
training/testing datasets. However, the independent validation
datasets performed equally well.

Further, the robustness of the model was cross-checked by plot-
ting the applicability domain, and actual vs. predicted pIC50 val-
ues. William’s plots are used to calculate the applicability of the
predictive models and confer the robustness of all the models.
Likewise, the analysis of the actual vs. predicted plots also vali-
dated the robustness of our models. We have also checked the
robustness of the model by using external validation datasets
and decoy sets. Using the external validation datasets, we achieved
PCCs ranging from 0.60 to 0.90. In comparison, the decoy datasets



Table 3
Table showing the top hits of the predicted repurposed drug candidates against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) with the information like
DrugBank ID, Drug Name, Primary indication, Predicted pIC50, and testing status.

DrugBank ID Drug Name Primary indication Predicted pIC50 Status

DB00007 Leuprolide Prostate cancer; Central precocious puberty (CPP) 9.093 Not Yet tested
DB00014 Goserelin Prostate cancer 8.641 Not Yet tested
DB00050 Cetrorelix Premature LH surge 8.342 Not Yet tested
DB00148 Creatine Dietary shortage or imbalance 8.594 Not Relevant
DB00206 Reserpine Hypertension;

Psychotic disorder
8.728 Clinical trial - Observational

DB00234 Reboxetine Clinical depression 9.308 Not Yet tested
DB00248 Cabergoline Hyperprolactinemic disorders and Parkinsonian Syndrome 8.370 Not Yet tested
DB00266 Dicoumarol Coagulation disorders 8.357 Not Yet tested
DB00278 Argatroban Coagulation disorders 9.357 Clinical trial - Interventional
DB00289 Atomoxetine Attention deficit hyperactivity disorder (ADHD) 8.563 Not Yet tested
DB00331 Metformin Diabetes 8.498 Clinical trial - Interventional
DB00381 Amlodipine Hypertension 8.363 Clinical trial - interventional
DB00460 Verteporfin Subfoveal choroidal neovascularization 9.556 Not Yet tested
DB00470 Dronabinol Anorexia 8.604 Computational
DB00476 Duloxetine Depressive Disorder 8.736 Not Yet tested
DB00486 Nabilone Nausea and vomiting 8.535 Not Yet tested
DB00536 Guanidine Muscle weakness; Myasthenic syndrome of Eaton-Lambert 8.640 Not Yet tested
DB00579 Mazindol Obesity 8.705 Not Yet tested
DB00589 Lisuride Parkinson’s Disease 8.422 Computational
DB00590 Doxazosin Benign prostatic hypertrophy 8.668 Clinical trial - Observational
DB00641 Simvastatin Cardiovascular agents 8.404 Clinical trial - Interventional
DB00644 Gonadorelin Gonadotropes of the anterior pituitary 8.581 Not Yet tested
DB00666 Nafarelin Central precocious puberty 8.621 Computational
DB00682 Warfarin Coagulation disorders 8.924 Clinical trial - Observational
DB00685 Trovafloxacin For treatment of infections caused by microorganisms 9.041 Computational
DB00706 Tamsulosin Benign prostatic hyperplasia 8.890 Not Yet tested
DB00738 Pentamidine Pneumonia 8.592 Not Yet tested
DB00768 Olopatadine Allergic conjunctivitis 8.341 Not Yet tested
DB00776 Oxcarbazepine Partial seizures 8.402 Not Yet tested
DB00778 Roxithromycin Respiratory tract; Urinary and soft tissue infections 8.459 Not Relevant
DB00807 Proparacaine Ophthalmic anesthetic 8.810 Clinical trial - Observational
DB00887 Bumetanide Edema associated with congestive heart failure, hepatic and renal disease 8.548 Clinical trial - Observational
DB00892 Oxybuprocaine Used to temporarily numb the front surface of the eye 8.945 Not Yet tested
DB00914 Phenformin Type 2 diabetes mellitus 8.443 Computational
DB00938 Salmeterol Asthma; Chronic obstructive pulmonary disease 8.976 Not Yet tested
DB00955 Netilmicin Bacteremia; Septicaemia; Respiratory tract infections 8.314 Not Yet tested
DB01018 Guanfacine Attention deficit hyperactivity disorder (ADHD) 9.152 Clinical trial - Observational
DB01079 Tegaserod Irritable bowel syndrome 8.521 Not Yet tested
DB01082 Streptomycin Tuberculosis 8.887 Computational
DB01089 Deserpidine Hypertension 8.555 Not Yet tested
DB01110 Miconazole Fungal infections 8.626 Not Relevant
DB01131 Proguanil Malaria 8.600 Computational
DB01180 Rescinnamine Hypertension 8.921 Not Yet tested
DB01283 Lumiracoxib Osteoarthritis 8.464 Not Yet tested
DB01418 Acenocoumarol Thromboembolic disease 8.800 Clinical trial - Observational
DB01764 Dalfopristin Bacterial infections 8.595 Not Yet tested
DB03615 Ribostamycin NA 8.395 Not Yet tested
DB04840 Debrisoquine Hypertension 8.713 Not Yet tested
DB04864 Huperzine A Alzheimer’s disease 8.852 Not Yet tested
DB04868 Nilotinib Leukemia 8.442 Experimental
DB04931 Afamelanotide Phototoxicity 8.492 Not Yet tested
DB06145 Spiramycin Bacterial infections 8.634 Computational
DB06614 Peramivir Influenza A/B virus 9.018 Computational
DB06616 Bosutinib Chronic myelogenous leukemia (CML) 8.489 Experimental
DB06636 Isavuconazonium Aspergillosis; Mucormycosis 8.313 Clinical trial - Interventional
DB06663 Pasireotide Cushing’s disease 8.480 Not Yet tested
DB06784 Gallium citrate Ga-67 Hodgkin’s disease, lymphoma, and bronchogenic carcinoma 8.419 Not Yet tested
DB08912 Dabrafenib Melanoma 8.788 Computational
DB08916 Afatinib Metastatic non-small cell lung cancer 8.391 Not Yet tested
DB08943 Isoconazole NA 8.577 Not Yet tested
DB08995 Diosmin NA 8.394 Clinical trial - Interventional
DB09084 Benzydamine Analgesic and anti-inflammatory treatment 8.720 Not Yet tested
DB09125 Potassium citrate Renal tubular acidosis 8.394 Not Yet tested
DB09157 Carbon dioxide Insufflation gas for minimal invasive surgery 8.619 Not Relevant
DB09335 Alatrofloxacin NA 8.862 Not Yet tested
DB11512 Dihydrostreptomycin NA 8.830 Not Yet tested
DB11574 Elbasvir HCV genotypes 1 or 4 8.724 Computational
DB11753 Rifamycin Traveller’s Diarrhea 8.359 Computational
DB11827 Ertugliflozin Type 2 diabetes 8.522 Not Yet tested
DB11828 Neratinib Breast cancer 8.401 Not Yet tested
DB12095 Telotristat ethyl To reduce serotonin levels 9.135 Not Yet tested
DB12364 Betrixaban Venous thromboembolism (VTE) 9.116 Computational

(continued on next page)
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Table 3 (continued)

DrugBank ID Drug Name Primary indication Predicted pIC50 Status

DB12500 Fedratinib Myelofibrosis 8.438 Not Yet tested
DB12615 Plazomicin Complicated Urinary Tract Infections (cUTI) 8.348 Not Yet tested
DB13100 Biguanide NA 9.221 Not Yet tested
DB13211 Guanoxan NA 9.694 Not Yet tested
DB13520 Metergoline NA 8.704 Not Yet tested
DB13680 Naftazone NA 8.342 Not Yet tested
DB14575 Eslicarbazepine NA 8.318 Not Yet tested
DB14753 Hydroxystilbamidine Nonprogressive blastomycosis of the skin and other mycoses 8.314 Not Yet tested
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have PCCs from 0.004 to 0.09. In earlier studies also, the decoy sets
had low efficiency compared to corresponding developed models
demonstrating the robustness of our computational models for
each [30,41].

Chemical clustering is often used to understand the distribution
of compounds in the chemical space. Binning clustering method
aggregates chemical compounds to a user-defined similarity cutoff.
Here a Tanimoto coefficient (Tc) (proportion of the features shared
between two compounds divided by their union) of 0.60 was used.
The Tc ranges from 0 to 1, where a higher value indicates the
greater similarity of the compounds under investigation. So, using
a Tc of 0.60 joined the compounds with 0.60 or higher similarity
values together into multiple clusters. As there are many clusters
present per ‘anti-corona’ compound groups, the compounds are
well dispersed in the chemical space. The multidimensional scaling
(MDS) uses the classical multidimensional scaling ‘cmdscale’ func-
tion implemented in R and takes a matrix of ‘item to item’ dis-
tances as input. Each item is assigned with a coordinate, and the
‘item to item’ distances are then displayed in 2D and 3D scatter
plots. The MDS plots generated in the analysis showed that each
group of ‘anti-SARS’, ‘anti-MERS’, ‘anti-SARS-CoV-20 as well as the
overall ‘anti-corona’ compounds are well dispersed in the 2D and
3D chemical space. On the other hand, the hierarchical clustering
uses the ‘hclust’ function of R and requires a distance matrix input
of ‘all-against-all’ compound distances. The ‘all-against-all’ distance
matrix is generated by subtracting the Tc similarity measure from
one (1-Tc). Both the hierarchical clustering circular plots generated
in the analysis show that the anti-corona compounds are highly
dissimilar in their structural features.

Since, drug development is a very complex and time-consuming
process, from the start of the SARS-CoV-2 pandemic, several
research groups have been trying to identify efficient repurposed
drug candidates via computational, in vitro, and in vivo studies.
So our developed computational predictive models were used to
identify the repurposed drug candidates from the ‘‘approved” drug
category of the DrugBank database. Further, we checked the pre-
dicted repurposed drug candidates using our pipeline, which have
been already validated in the literature. Interestingly, we found
that a few top hits from our study have been efficiently validated.
Thus, it further confirms the robustness of our predictive pipeline.
Among the top 10 drug candidates for the SARS-CoV-2 virus with
the lowest IC50 i.e., Verteporfin has been already validated as the
potential ACE2 inhibitor in the in vitro and mouse model [34],
which has primarily been used to treat age-related degeneration
[35], and various types of cancers like prostatic cancer, breast can-
cer, etc [36]. The Guanfacine drug, which is primarily used to treat
Attention Deficit Hyperactivity Disorder (ADHD), is already in use
to treat Delirium condition in COVID-19 patients [37]. Likewise,
the Trovafloxacin drug, which is a broad-spectrum antibiotic, has
been predicted to be an efficient Main protease (Mpro) inhibitor
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in a docking study done by Gimeno A, et al. [38]. The Argatroban
drug, which was earlier used as a thrombin inhibitor also shows
promising inhibition against SARS-CoV-2 [39]. The Reboxetine
drug, which was initially used to treat clinical depression, shows
promising results in the in vitro study with DGbinding(kcal/mol) of
�8.86 and inhibiting MPro [40]. Therefore, the repurposed drug
candidates predicted by our pipeline could be beneficial to speed
up the research in the field of CoVs inhibitors.

Molecular docking and molecular dynamics methods are used
as a well-reasoned strategy that provides valuable insights regard-
ing the physicochemical properties of molecules of interest. It also
provides the information about the interaction and reactivity of the
molecules as potential drug candidates [42]. Few literature reports
have identified the repurposed drugs that targets SARS-CoV-2
Spike protein [43–45]. Current study identifies 06 ligands mole-
cules with high binding affinity, i.e. Verteporfin, Alatrofloxacin,
Metergoline, Rescinnamine, Leuprolide, Telotristat ethyl against
the SARS-CoV-2 S-protein complex with ACE receptor. We found
the binding affinity of Metergoline and Rescinnamine, i.e., �8.8
Kcal/mol and �8.5 Kcal/mol, respectively in this study. These find-
ings correspond with the previous study of Chen T-F. et al., which
showed the docking scores of �8.4 and �7.5, for Metergoline and
Rescinnamine respectively, against SARS-CoV-2 Spike-RBD [46].
Therefore, the present work can contribute to identify the effica-
cious repurposed drugs against SARS-CoV-2 through computa-
tional approaches.

Leveraging this we have developed an AI and MLT based
predictor named ‘anticorona’ which includes modules of predictive
models for CoVs including SARS-CoV-2, SARS, and MERS, with high
performance. We have also ensured the robustness of the predic-
tive models using i) external independent validation datasets, ii)
decoy datasets, iii) applicability domain, and iv) chemical analyses.
The developed models were used to predict promising repurposed
drug candidates against CoVs after scanning the DrugBank. Top
predicted molecules for SARS-CoV-2 were further validated by
molecular docking against the spike protein complex with ACE
receptor. We found potential repurposed drugs namely, Vertepor-
fin, Alatrofloxacin, Metergoline, Rescinnamine, Leuprolide, and
Telotristat ethyl with high binding affinity. Furthermore, some of
the predicted drugs for the SARS-CoV-2 have already entered the
clinical trials as interventional drugs like Argatroban, Metmorfin,
Amlodipine, Simvastatin, Isavuconazium and Diosmin. Likewise,
some drugs were also predicted through computational
approaches by other groups. These findings confirm the predictive
power of our computational models. We anticipate these computa-
tional methods would assist in antiviral drug discovery against
SARS-CoV-2 and other CoVs. In the current scenario of SARS-CoV-
2 pandemic, the researchers can directly use the predicted repur-
posed drug candidates, which would save their money and time
in developing the promising therapeutic candidates.



Table 4
Table represents the ligand, binding affinity, Root Mean Square Deviation (RMSD) value (Å), interacting residues, bond length (Å), type of interactions, as well as interacting
domain of Spike protein. N-Terminal Domain (NTD), C-Terminal Domain (CTD), Receptor Binding Domain (RBD)

DrugBank
ID

Ligand Affinity
(kcal/mol)

RMSD
(Å)

Interacting
residues

Bond length(Å) Interactions Interacting
domain

DB00460 Verteporfin �9.5 0 SER-77
TRP-203
ASP-206
GLU-398

2.50
3.44, 3.49
2.57
3.67

Hydrogen Bond
Carbon-Hydrogen Bond

NTD / CTD (RBD)

DB09335 Alatrofloxacin �9.1 0 HIS-345
PRO-346
ALA-348
TRP-349
ASP-350
HIS-374
GLU-375
HIS-378
ASP-382
HIS-401
ZN-704

3.98
2.43
3.74, 5.44
5.08, 5.10
2.15
2.34, 3.75
2.80
2.43, 3.43, 4.93, 5.39
4.85
2.82, 4.84

Hydrogen Bond
Carbon-Hydrogen Bond
Alkyl Bond
Pi-Alkyl
Metal-Acceptor
Pi-Anion

CTD (RBD)

DB13520 Metergoline �8.8 0 LEU-95
TYR-202
TRP-203
GLY-205
ASP-206
GLU-208
VAL-209
LYS-562
PRO-565

3.43
3.32
3.56, 4.55
3.23
3.31, 3.93
3.36
4.13
2.90, 2.94
4.53

Hydrogen Bond
Carbon-Hydrogen Bond
Pi-Alkyl
Pi-Anion

NTD / CTD (RBD)

DB01180 Rescinnamine �8.5 0 PHE-40
SER-47
ASN-51
TRP-69
LEU-73
ALA-348
TRP-349
ASP-350
HIS-378

4.98, 5.52
1.94, 2.67
2.52
5.08
4.53
3.09
3.80, 4.61
1.90, 3.77

Hydrogen Bond
Carbon-Hydrogen Bond
Alkyl Bond

NTD / CTD (RBD)

DB00014 Goserelin �8.5 0 ASP-350
ASP-382
ARG-393
ASN-394
HIS-401
GLU-402
ARG-514

2.10
2.40
2.10
2.70
2.80
2.80
2.80

NA CTD (RBD)

DB00007 Leuprolide �8.2 0 ARG-273
ASP-350
GLU-375
HIS-378
ASP-382
TYR-385
ARG-393
HIS-401
GLU-402
PHE-504
HIS-505
TYR-510
TYR-515
ZN-704

1.40, 2.00, 2.50, 2.88,
3.37
3.44
2.20, 4.41
3.50, 5.20
4.26
3.00
2.29
2.73
2.05, 2.32, 2.43,
4.00, 4.74
5.03
4.42
2.44

Hydrogen Bond
Carbon-Hydrogen Bond

NTD / CTD (RBD)

DB12095 Telotristat ethyl �8 0 TRP-69
LEU-73
ALA-348
TRP-349
ASP-350
ASP-382
PHE-390
LEU-391

5.06
4.95
2.93, 3.39
3.97, 4.12
2.17, 2.72
2.14
2.23, 4.91
2.82

Hydrogen Bond
Alkyl
Pi-Alkyl
Pi-Donor Hydrogen
Bond

NTD / CTD (RBD)

DB11512 Dihydrostreptomycin �7.6 0 GLN-102
TRY-202
TRP-203
GLY-205
ASP-206
GLU208
ARG-514

2.81
2.74, 2.91
2.82
2.49, 3.33
2.49
2.17, 2.60
1.53

Hydrogen Bond
Carbon-Hydrogen Bond
Alkyl
Pi-Alkyl
Metal-Acceptor
Pi-Anion

NTD / CTD (RBD)

DB00706 Tamsulosin �7.3 0 SER-43
TRP-349
ASP-350

2.23, 2.29
4.56
3.71

Hydrogen Bond
Carbon-Hydrogen Bond
Pi-Alkyl

NTD / CTD (RBD)

(continued on next page)
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Table 4 (continued)

DrugBank
ID

Ligand Affinity
(kcal/mol)

RMSD
(Å)

Interacting
residues

Bond length(Å) Interactions Interacting
domain

ARG-393 4.68 Pi-Pi Stacked
DB04840 Debrisoquine �7.3 0 LEU-95

ASP-206
GLU-208
VAL-209
LYS-562
PRO-565

3.43
2.32, 2.42, 4.93
4.11
5.05
4.65

Hydrogen Bond
Carbon-Hydrogen Bond
Pi-Alkyl
Attractive Charge

NTD / CTD (RBD)

DB00579 Mazindol �7.2 0 LEU-95
ALA-99
ASP-206
LYS-562

5.12
3.88, 5.03
2.52
3.72, 4.76, 5.12

Hydrogen Bond
Alkyl
Pi-Alkyl

NTD / CTD (RBD)

DB04864 Huperzine A �7.1 0 PHE-40
TRP-69
LEU-73
PHE-390
LEU-391
ARG-393

4.95
4.86
4.37
2.11, 4.14, 4.72
5.06
3.08, 5.35, 8.40

Hydrogen Bond
Carbon-Hydrogen Bond
Alkyl Bond

NTD / CTD (RBD)

DB09084 Benzydamine �7.1 0 ASP-382
PHE-390
ARG-393
ASN-394

8.30
3.79
4.78
2.69

Hydrogen Bond
Carbon-Hydrogen Bond
Pi-Alkyl

CTD (RBD)

DB13211 Guanoxan �7 0 LEU-95
ASP-206
VAL-209
ALA-396
PRO-565

3.70
2.17, 2.98
2.44
4.46

Hydrogen Bond
Pi-Alkyl

NTD / CTD (RBD)

DB00476 Duloxetine �6.8 0 LEU-95
GLN-98
GLU-208
VAL-209
LYS-562
PRO-565

3.44, 4.66
2.79
2.38, 3.18
4.18,
4.81

Hydrogen Bond
Carbon-Hydrogen Bond

NTD / CTD (RBD)
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4. Material and methods

4.1. Datasets

The dataset of the inhibitors of CoVs used in the study has been
extracted from our recently published DrugRepV database [32]
along with the information of inhibition efficiency, chemical infor-
mation (SMILES). We used three important CoVs namely SARS,
SARS-CoV-2, and MERS in the analysis. Further, we predicted the
repurposed drug candidates using MLTs for four categories of
viruses i.e. overall CoVs, as well as individual SARS-CoV-2, SARS,
and MERS. The datasets used in the analysis are available as Sup-
plementary Tables S5-S8.

The overall methodology is described in Fig. 6. The following
steps have been used:

1. The SARS, SARS-CoV-2, MERS, and overall CoVs have 380, 342,
401, and 1123 inhibitor entries respectively.

2. Further, quality control involves filtering the entries with
IC50/EC50, SMILES, and unique entries per category.

3. The IC50/EC50 were converted into the negative logarithm of
half-maximal inhibitory concentration (pIC50) using the for-
mula (pIC50 = –log10(IC50(M)), where the IC50 would be in Molar
concentration.

4. After the quality control, we obtained 212, 142, 123, and 414
unique entries for SARS-CoV-2, SARS, MERS, and overall CoVs.

5. The dataset is divided into the training/testing and independent
validation datasets using a randomization approach. It resulted
in the 221 T200+V21, 142 T128+V14, 123 T111+V12, and 414 T373+V41

entries for SARS, SARS-CoV-2, MERS, and overall CoVs
correspondingly.
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6. Calculation of the 1D, 2D, 3D, 4D molecular descriptors, and fin-
gerprints was extracted using PaDel software.

7. Feature selection algorithms were performed to get the most
relevant features among all four categories.

8. The prediction model is developed using various MLTs like SVM,
RF, ANN, KNN, and DNN.

4.2. Descriptors extraction

In order to develop the CoVs-specific prediction models, from the
anti-coronacompounds,weused thePaDEL-Descriptor software [52].
We calculated the 1D, 2D, 3Dmolecular descriptors, and fingerprints
totaling up to 17,968 features. The molecular descriptors are the
pieces of information encoded in themolecular structure of a chemi-
cal. They are classified according to their dimensionality, viz., 1D, 2D,
and 3D. The 1D descriptors present the very basic information calcu-
lated from the molecular formula like molecular weight. The 2D
descriptors like the number of bonds, connectivity indices, etc.
describe the signatures calculated from two-dimensional molecular
representations, intramolecular hydrogen bonding, etc. The 3D
descriptors, as the name suggests, describe the molecular properties
related to three-dimensional conformations of the molecule such as
solvent accessible surface areas, intramolecular hydrogen bonding,
etc. The fingerprints are another way of representing molecules as
mathematical objects where binary digits (bits) are used to find
and/ordifferentiatemolecular substructures. Together, thesedescrip-
tors and fingerprints are necessary for establishing a quantitative
structure–activity relationship (QSAR) of the chemical compounds
under study [53]. These descriptors are very important as used previ-
ously in various studies for predicting the inhibitors against various
infectious agents [30,41,54].



Fig. 4. The ligands a) Verteporfin, b) Alatrofloxacin, c) Metergoline, d) Rescinnamine, e) Leuprolide, and f) Telotristat ethyl binding the SARS-CoV-2 S-protein. (SARS-CoV-2 S-
protein in ribbon diagram with grey color and ligand molecule in green color sphere). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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4.3. Format conversion

We converted the anticorona chemical compound structures
from the simplified molecular-input line-entry system (SMILES)
format to the three-dimensional structure-data file (3D-SDF) for-
mat using the open-source chemical toolbox Open Babel version
3.0.0 [55]. This format conversion step is necessary for calculating
the different descriptors and fingerprints for the curated anti cor-
ona chemical compound datasets.
4.4. Machine learning algorithms

For the development of the prediction algorithm, we used five
different MLTs e.g. SVM, RF, KNN, ANN, and DNNwhich were called
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using the SciKit library of Python. While the DNN was run through
the Keras Deep Learning Library.
4.4.1. Support Vector Machine
SVM is a supervised MLT used for solving classification and

regression-based problems [56]. In the current study, we used
SVM for solving the regression problem i.e. Support Vector Regres-
sion (SVR). The SVR works on the same principle as for SVM classi-
fication, with minor differences. In general, its main focus is
minimizing the error, maximizing the margin by individualizing
the hyperplane, such that some proportion of the error is being tol-
erated. It was customized by using the linear and non-linear SVR
along with the kernels like Gaussian Radial Basis function and
Polynomial.



Fig. 5. Two-dimensional representation of molecular interactions of a) Verteporfin, b) Alatrofloxacin, c) Metergoline, d) Rescinnamine, e) Leuprolide, and f) Telotristat ethyl
with the S-protein of SARS-CoV-2.
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4.4.2. Random Forest
RF is a supervised learning algorithm that uses an ensemble

technique for predicting the classification and regression tasks
[57]. It works by forming a forest of multiple decision trees
from the training dataset followed by getting the prediction out-
put by taking the mean of the prediction from individual trees
for solving a regression task. For getting optimal output from
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the RF, we used attributes like number of trees (estimators),
maximum depth of the trees (max_depth), minimum number
of samples required to split an internal node (min_sam-
ples_split), minimum number of samples required to be at a leaf
node (min_samples_leaf), etc. In the case of the regression prob-
lem, it works by taking the mean of the predictions from indi-
vidual trees.



Fig. 6. The overall methodology used in the study. The inhibitors of the Coronaviruses (SARS, SARS-CoV-2, and MERS) were extracted from the literature. Splitting of the
dataset into the training/testing and independent validation using randomization approach. The descriptors were calculated using PaDel software followed by the selection of
relevant features. The prediction model is developed using machine learning algorithms like Support Vector Machine, Random Forest, k-Nearest Neighbor, Artificial Neural
Network, and Deep Neural Network.
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4.4.3. k-Nearest Neighbor
KNN is a non-parametric MLT and works for both classification

and regression problems [58]. It is an instance-based learning or
lazy learning method, which depends on the contribution of the
local data. It works by spreading the input as the k closest net-
works in a feature space. For the KNN algorithm, we used different
nearest networks i.e. 3, 5, 7, 9, 11, etc.
4.4.4. Artificial Neural network
ANN is a supervised algorithm and consists of nodes and con-

nected units. The collection of connected units and nodes known
as artificial neurons, and shows analogy with animal brains [59].
It is an information processing technique, it includes a network
of interconnected processing units, which works together to pro-
cess information and give a meaningful output. For getting the
optimized result, we used different activations (e.g. tahn, relu), sol-
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vers (e.g. sgd, adam), and learning rates (e.g. constant, invscaling,
adative, etc.).

4.4.5. Deep Neural network
DNN is a type of ANN with multiple layers in between input and

output layers. It is a feedforward network, where the data moves
from input towards the output layers via the intermediate layers
without moving in the backward direction [60]. It can be used to
solve linear as well as complex non-linear relationships. The extra
layers help the composition of the features from the lower layers
for modeling the very complex data. We used Keras API of the Ten-
sorFlow package for solving our regression-based problem. We
used a combination of different optimizers (Adam, RMSprop,
SGD, Adamax, etc.) and activations (tahn, sigmoid, softmax, etc.)
to get the best result. We used 06 intermediate layers with differ-
ent numbers of neurons in each layer like 256, 128, 64, 32, 16, and
08.
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4.5. Feature selection

The use of overall extracted 17,968 features in the development
of machine learning would lead to various problems like overfit-
ting, curse of dimensionality, etc. In this regard, feature selection
would be an important step. We used the Recursive feature elimi-
nation (RFE) module of SciKit library in Python. The RFE extracts
the features from the training dataset which are more relevant to
predict the target variable [61,62]. In general, it uses two important
attributes i.e. choice of algorithm and number of the features to be
selected. In the current study, we used algorithms within the SVR
method in the RFE module.

4.6. Performance measures

For regression (quantitative) mode, the correlation between
two variables is measured using Pearson’s correlation coefficient
(PCC or R). In bioinformatics, the two variables are actual and pre-
dicted values. The range of PCC varies from �1 to + 1. If PCC is �1, it
indicates that observed and actual values are negatively correlated,
0 shows random prediction, while +1 displays the positive correla-
tion among them. PCC is calculated using formula:

PCC¼ n
Pn

n¼1E
act
i Epred

i �Pn
n¼1E

act
i

Pn
n¼1E

pred
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n
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2
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where n, Epred
i and Eact

i is the size of the test set, predicted and
actual efficiencies of CoVs inhibition respectively.

The coefficient of determination (R2) is the statistical measure of
determining the efficiency of a regression line to estimate the real
data. The R2 varies from 0 to 1, if it is near to 1 means the estimated
rate of regression is perfect whereas towards 0 means imperfect
estimation.

Mean Absolute Error (MAE) is the difference between actual and
predicted values.

MAE ¼ 1
n

Xn

n¼1

Epred
i � Eact

i

��� ���
where, Epred

i , Eact
i and jEpred

i � Eact
i j are predicted and actual effi-

ciencies of CoVs inhibition and absolute error. The negative values
of MAE are preferred for better prediction quality.

Root Mean Square Error (RMSE) is the scoring rule to measure
the average magnitude of error. Its negative values showed the
efficiency of good prediction.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
n¼1

ðEpred
i � Eact

i Þ2
s

where, Epred
i and Eact

i are predicted and actual efficiencies of CoVs
inhibition.

4.7. Applicability domain

The robustness of the predictive developed model was cross-
checked by checking the applicability domains [29,30]. We used
William’s plot for checking the applicability domain. William’s plot
was plotted among the leverage and the standardized residuals for
training/testing and independent validation datasets. Further, the
robustness was also checked by plotting the actual values against
the predicted values. The applicability domain was checked for
both the training/testing or independent validation dataset. The
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robust predictive model was shown by the plot if the points of
the actual and predictive values localized close to the trend line.
4.8. Decoy dataset

Decoy sets were generated for four categories, i.e. overall CoVs
and individual SARS-CoV-2, SARS, and MERS, using RADER (RApid
DEcoy Retriever) software [63]. We have used the default parame-
ters used in the tool, i.e. Tanimoto threshold for Active ligand vs.
Decoy and Decoy vs. Decoy is 0.75 and 0.50, respectively. For decoy
selection, the ZINC database (17,900,742 entries) was selected.
Decoys were randomly selected for all the categories using a ran-
dom number generator program. Using this program, we have
developed three random sets for each category of virus. For exam-
ple, in SARS-CoV-2, each set contains 142 randomly selected
decoys. Similarly, random sets developed for SARS (221), MERS
(123) and overall (414).
4.9. Chemical analysis

Chemical clustering of the SARS, MERS, SARS-CoV-2, and overall
unique compounds was done using the ChemMine Tools [64]. We
performed the binning clustering using the Tanimoto coefficient
(similarity cutoff 0.6). MDS was done at 2D and 3D level using
the same similarity threshold. Hierarchical clustering was per-
formed for all the molecules where the heatmaps and circular plots
of the heatmaps were constructed for each aforementioned com-
pound group using the ‘distance matrix’ parameter and a ‘single’
linkage method.
4.10. Drug repurposing

Repurposing of the drugs against the SARS-CoV-2, SARS, and
MERS coronaviruses was done using our developed predicted mod-
els. We predicted the repurposed drugs using the best performing
SVM models in all three categories. For repurposing the drug cate-
gories the ‘‘Approved” category of the drugs was downloaded from
the DrugBank repository [65]. The descriptors and fingerprints of
all the 2468 approved drugs were calculated using the PaDel soft-
ware. Further, the descriptors of the approved drugs were used to
predict the highly efficient drugs against all three categories of
viruses.
4.11. Molecular docking

The AutoDock tool (ADT) was used to customize the ligand and
Protein [66]. Further, their molecular structure was saved in
PDBQT file format. The AutoDock Vina (v1.1.2) [67] was used at
default parameter to perform the docking between the SARS-
CoV-2 S-protein complex with ACE-2 receptor (PDB: 6lzg) [68]
and predicted inhibitors. The grid box was generated at
center_x = -26.908, center_y = 18.289, center_z = -13.883, spacing
0.375- Å, size_x = 40, size_y = 40, size_z = 40. Subsequently, protein
and ligand molecules were docked to generate the 09 best docking
poses. To find the minimum binding affinity the exhaustiveness
parameter was set to10. The ligand and protein molecules interact-
ing residues were analysed using Pymol [44] and Discovery Studio
Visualizer [69].
5. Code availability

The Python code used in study is provided on GitHub (https://

github.com/manojk-imtech/antiCorona).

https://github.com/manojk-imtech/antiCorona
https://github.com/manojk-imtech/antiCorona
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